# 38. Linear Combinations in Python

By **Bernd Klein**. Last modified: 24 Mar 2022.

## Definitions

A linear combination in mathematics is an expression constructed from a set of terms by multiplying each term by a constant and adding the results.

Example of a linear combination:

a · x + b · y is a linear combination of x and y with a and b constants.

Generally;

p = λ_{1} · x_{1} + λ_{2} · x_{2} … λ_{n} · x_{n}

p is the scalar product of the values x_{1}, x_{2} … x_{n} and

λ_{1}, λ_{2} … λ_{n} are called scalars.

In most applications x_{1}, x_{2} … x_{n} are vectors and the lambdas are integers or real numbers. (For those, who prefer it more formally:

x_{1}, x_{2} … x_{n} ∈ V and V is a vector space, and

λ_{1}, λ_{2} … λ_{n} ∈ K with K being a field)

Live Python training

Enjoying this page? We offer **live Python training courses** covering the content of this site.

## Linear Combinations in Python

The vector y = (3.21, 1.77, 3.65) can be easily written as a linear combination of the unit vectors (0,0,1), (0,1,0) and (1,0,0):

(3.21, 1.77, 3.65) = 3.21 · (1,0,0) + 1.77 (0,1,0) + 3.65 · (0,0,1)

We can do the calculation with Python, using the module numpy:

```
import numpy as np
x = np.array([[0, 0, 1],
[0, 1, 0],
[1, 0, 0]])
y = ([3.65, 1.55, 3.42])
scalars = np.linalg.solve(x, y)
scalars
```

### OUTPUT:

array([3.42, 1.55, 3.65])

The previous example was very easy, because we could work out the result in our head. What about writing our vector y = (3.21, 1.77, 3.65) as a linear combination of the vectors (0,1,1), (1,1,0) and (1,0,1)? It looks like this in Python:

```
import numpy as np
x = np.array([[0, 1, 1],
[1, 1, 0],
[1, 0, 1]])
y = ([3.65, 1.55, 3.42])
scalars = np.linalg.solve(x, y)
scalars
```

### OUTPUT:

array([0.66, 0.89, 2.76])

## Another Example

Any integer between -40 and 40 can be written as a linear combination of 1, 3, 9, 27 with scalars being elements of the set {-1, 0, 1}.

For example:

7 = 1 · 1 + (-1) · 3 + 1 · 9 + 0 · 27

We can calculate these scalars with Python. First we need a generator generating all the possible scalar combinations. If you have problems in understanding the concept of a generator, we recommend the chapter "Iterators and Generators" of our tutorial.

```
def factors_set():
for i in [-1, 0, 1]:
for j in [-1,0,1]:
for k in [-1,0,1]:
for l in [-1,0,1]:
yield (i, j, k, l)
```

We will use the memoize() technique (see chapter "Memoization and Decorators" of our tutorial) to memorize previous results:

```
def memoize(f):
results = {}
def helper(n):
if n not in results:
results[n] = f(n)
return results[n]
return helper
```

Finally, in our function linear_combination() we check every scalar tuple, if it can create the value n:

```
@memoize
def linear_combination(n):
""" returns the tuple (i,j,k,l) satisfying
n = i*1 + j*3 + k*9 + l*27 """
weighs = (1,3,9,27)
for factors in factors_set():
sum = 0
for i in range(len(factors)):
sum += factors[i] * weighs[i]
if sum == n:
return factors
```

Putting it all together results in the following script:

```
def factors_set():
for i in [-1, 0, 1]:
for j in [-1, 0, 1]:
for k in [-1, 0, 1]:
for l in [-1, 0, 1]:
yield (i, j, k, l)
def memoize(f):
results = {}
def helper(n):
if n not in results:
results[n] = f(n)
return results[n]
return helper
@memoize
def linear_combination(n):
""" returns the tuple (i,j,k,l) satisfying
n = i*1 + j*3 + k*9 + l*27 """
weighs = (1, 3, 9, 27)
for factors in factors_set():
sum = 0
for i in range(len(factors)):
sum += factors[i] * weighs[i]
if sum == n:
return factors
# calculate the linear combinations of the first 10 positive integers:
for i in range(1,11):
print(linear_combination(i))
```

### OUTPUT:

(1, 0, 0, 0) (-1, 1, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0) (-1, -1, 1, 0) (0, -1, 1, 0) (1, -1, 1, 0) (-1, 0, 1, 0) (0, 0, 1, 0) (1, 0, 1, 0)

Live Python training

Enjoying this page? We offer **live Python training courses** covering the content of this site.

Upcoming online Courses

Python for Engineers and Scientists

29 Aug 2022 to 02 Sep 2022

17 Oct 2022 to 21 Oct 2022

31 Aug 2022 to 02 Sep 2022

19 Oct 2022 to 21 Oct 2022