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M A C H I N E  L E A R N I N G

Machine learning is is the kind of programming which
gives computers the capability to automatically learn
from data without being explicitly programmed. This
means in other words that these programs change their
behaviour by learning from data.

We will cover various aspects of machine learning in
this tutorial. Of course, everything will be related to
Python. So it is Machine Learning by using Python. It
might well be that you came to this website when
looking for an answer to the question: What is the
best programming language for machine learning?
Python is clearly one of the top players!

We will cover in this tutorial on Machine Learning and Python the following topics amongst others:

• k-nearest Neighbor Classifier
• Neural networks

◦ Neural Networks from Scratch in Python
◦ Neural Network in Python using Numypy
◦ Dropout Neural Networks
◦ Neural Networks with Scikit
◦ Machine Learning with Scikit and Python

• Naive Bayes Classifier
• Introduction into Text Classification using Naive Bayes and Python

Machine learning can be roughly separated into three categories:
Supervised learning

The machine learning program is both given the input data and the corresponding labelling. This means
that the learn data has to be labelled by a human being beforehand.

Unsupervised learning
No labels are provided to the learning algorithm. The algorithm has to figure out the a clustering of the
input data.

Reinforcement learning
A computer program dynamically interacts with its environment. This means that the program receives
positive and/or negative feedback to improve it performance.
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M A C H I N E  L E A R N I N G
T E R M I N O L O G Y

CLASSIFIER

A program or a function which maps from unlabeled instances to classes is called a classifier.

CONFUSION MATRIX

A confusion matrix, also called a contingeny table or error matrix, is used to visualize the performance of a
classifier.

The columns of the matrix represent the instances of the predicted classes and the rows represent the instances
of the actual class. (Note: It can be the other way around as well.)

In the case of binary classification the table has 2 rows and 2 columns.
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Example:

Confusion
Matrix

Predicted classes

male female

A
ctu

al
classes

male 42 8

female 18 32

This means that the classifier correctly predicted a male person in 42 cases and it wrongly predicted 8 male
instances as female. It correctly predicted 32 instances as female. 18 cases had been wrongly predicted as male
instead of female.

ACCURACY (ERROR RATE)

Accuracy is a statistical measure which is defined as the quotient of correct predictions made by a classifier
divided by the sum of predictions made by the classifier.

The classifier in our previous example predicted correctly predicted 42 male instances and 32 female instance.

Therefore, the accuracy can be calculated by:

accuracy = (42 + 32) / (42 + 8 + 18 + 32)

which is 0.72

Let's assume we have a classifier, which always predicts "female". We have an accuracy of 50 % in this case.

Confusion
Matrix

Predicted classes

male female

A
ctu

al
classes

male 0 50

female 0 50

We will demonstrate the so-called accuracy paradox.

A spam recogition classifier is described by the following confusion matrix:
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Confusion
Matrix

Predicted classes

spam ham

A
ctu

al
classes

spam 4 1

ham 4 91

The accuracy of this classifier is (4 + 91) / 100, i.e. 95 %.

The following classifier predicts solely "ham" and has the same accuracy.

Confusion
Matrix

Predicted classes

spam ham

A
ctu

al
classes

spam 0 5

ham 0 95

The accuracy of this classifier is 95%, even though it is not capable of recognizing any spam at all.

PRECISION AND RECALL

Confusion
Matrix

Predicted classes

negative positive

A
ctu

al
classes

negative TN FP

positive FN TP

Accuracy: (TN + TP) / (TN + TP + FN + FP)

Precision: TP / (TP + FP)
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Recall: TP / (TP + FN)

SUPERVISED LEARNING

The machine learning program is both given the input data and the corresponding labelling. This means that
the learn data has to be labelled by a human being beforehand.

UNSUPERVISED LEARNING

No labels are provided to the learning algorithm. The algorithm has to figure out the a clustering of the input
data.

REINFORCEMENT LEARNING

A computer program dynamically interacts with its environment. This means that the program receives
positive and/or negative feedback to improve it performance.
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E V A L U A T I O N  M E T R I C S

INTRODUCTION

Not only in machine learning but also in
general life, especially business life, you
will hear questiones like "How accurate is
your product?" or "How precise is your
machine?". When people get replies like
"This is the most accurate product in its
field!" or "This machine has the highest
imaginable precision!", they feel
fomforted by both answers. Shouldn't
they? Indeed, the terms accurate and
precise are very often used

interchangeably. We will give exact
definitions later in the text, but in a
nutshell, we can say: Accuracy is a
measure for the closeness of some
measurements to a specific value, while
precision is the closeness of the measurements to each other.

These terms are also of extreme importance in Machine Learning. We need them for evaluating ML
algorithms or better their results.

We will present in this chapter of our Python Machine Learning Tutorial four important metrics. These metrics
are used to evaluate the results of classifications. The metrics are:

• Accuracy
• Precision
• Recall
• F1-Score

We will introduce each of these metrics and we will discuss the pro and cons of each of them. Each metric
measures something different about a classifiers performance. The metrics will be of outmost importance for
all the chapters of our machine learning tutorial.

ACCURACY

Accuracy is a measure for the closeness of the measurements to a specific value, while precision is the
closeness of the measurements to each other, i.e. not necessarily to a specific value. To put it in other words: If
we have a set of data points from repeated measurements of the same quantity, the set is said to be accurate if
their average is close to the true value of the quantity being measured. On the other hand, we call the set to be
precise, if the values are close to each other. The two concepts are independent of each other, which means
that the set of data can be accurate, or precise, or both, or neither. We show this in the following diagram:
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CONFUSION MATRIX

Before we continue with the term accuracy , we want to make sure that you understand what a confusion
matrix is about.

A confusion matrix, also called a contingeny table or error matrix, is used to visualize the performance of a
classifier.

The columns of the matrix represent the instances of the predicted classes and the rows represent the instances
of the actual class. (Note: It can be the other way around as well.)

In the case of binary classification the table has 2 rows and 2 columns.
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We want to demonstrate the concept with an example.

Example:

Confusion
Matrix

Predicted classes

cat dog

A
ctu

al
classes

cat 42 8

dog 18 32

This means that the classifier correctly predicted a cat in 42 cases and it wrongly predicted 8 cat instances as
dog. It correctly predicted 32 instances as dog. 18 cases had been wrongly predicted as cat instead of dog.

ACCURACY IN CLASSIFICATION

We are interested in Machine Learning and accuracy is also used as a statistical measure. Accuracy is a
statistical measure which is defined as the quotient of correct predictions (both True positives (TP) and True
negatives (TN)) made by a classifier divided by the sum of all predictions made by the classifier, including
False positves (FP) and False negatives (FN). Therefore, the formula for quantifying binary accuracy is:

accuracy =
TP + TN

TP + TN + FP + FN

where: TP = True positive; FP = False positive; TN = True negative; FN = False negative

The corresponding Confusion Matrix looks like this:

Confusion
Matrix

Predicted classes

negative positive

A
ctu

al
classes

negative TN FP

positive FN TP

We will now calculate the accuracy for the cat-and-dog classification results. Instead of "True" and "False",
we see here "cat" and "dog". We can calculate the accuracy like this:
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TP = 42
TN = 32
FP = 8
FN = 18

Accuracy = (TP + TN)/(TP + TN + FP + FN)
print(Accuracy)

Let's assume we have a classifier, which always predicts "dog".

Confusion
Matrix

Predicted classes

cat dog

A
ctu

al
classes

cat 0 50

dog 0 50

We have an accuracy of 0.5 in this case:

TP, TN, FP, FN = 0, 50, 50, 0
Accuracy = (TP + TN)/(TP + TN + FP + FN)
print(Accuracy)

ACCURACY PARADOX

We will demonstrate the so-called accuracy paradox.

A spam recogition classifier is described by the following confusion matrix:

Confusion
Matrix

Predicted classes

spam ham

A
ctu

al
classes

spam 4 1

ham 4 91

0.74

0.5

EVALUATION METRICS 12



TP, TN, FP, FN = 4, 91, 1, 4
accuracy = (TP + TN)/(TP + TN + FP + FN)
print(accuracy)

The following classifier predicts solely "ham" and has the same accuracy.

Confusion
Matrix

Predicted classes

spam ham

A
ctu

al
classes

spam 0 5

ham 0 95

TP, TN, FP, FN = 0, 95, 5, 0
accuracy = (TP + TN)/(TP + TN + FP + FN)
print(accuracy)

The accuracy of this classifier is 95%, even though it is not capable of recognizing any spam at all.

PRECISION

Precision is the ratio of the correctly identified positive cases to all the predicted positive cases, i.e. the
correctly and the incorrectly cases predicted as positive . Precision is the fraction of retrieved documents
that are relevant to the query. The formula:

precision =
TP

TP + FP

We will demonstrate this with an example.

Confusion
Matrix

Predicted classes

spam ham

A
ctu

al
classes

spam 12 14

0.95

0.95
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ham 0 114

We can calculate the precision for our example:

TP = 114
FP = 14
# FN (0) and TN (12) are not needed in the formuala!
precision = TP / (TP + FP)
print(f"precision: {precision:4.2f}")

Exercise: Before you go on with the text think about what the value precision means. If you look at the
precision measure of our spam filter example, what does it tell you about the quality of the spam filter? What
do the results of the confusion matrix of an ideal spam filter look like? What is worse, high FP or FN values?

You will find the answers indirectly in the following explanations.

Incidentally, the ideal spam filter would have 0 values for both FP and FN.

The previous result means that 11 mailpieces out of a hundred will be classified as ham, even though they are
spam. 89 are correctly classified as ham. This is a point where we should talk about the costs of
misclassification. It is troublesome when a spam mail is not recognized as "spam" and is instead presented to
us as "ham". If the percentage is not too high, it is annoying but not a disaster. In contrast, when a non-spam
message is wrongly labeled as spam, the email will not be shown in many cases or even automatically deleted.
For example, this carries a high risk of losing customers and friends. The measure precision makes no
statement about this last-mentioned problem class. What about other measures?

We will have a look at recall and F1-score .

RECALL

Recall, also known as sensitivity, is the ratio of the correctly identified positive cases to all the actual positive
cases, which is the sum of the "False Negatives" and "True Positives".

recall =
TP

TP + FN

TP = 114
FN = 0
# FT (14) and TN (12) are not needed in the formuala!
recall = TP / (TP + FN)
print(f"recall: {recall:4.2f}")

precision: 0.89
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The value 1 means that no non-spam message is wrongly labeled as spam. It is important for a good spam
filter that this value should be 1. We have previously discussed this already.

F1-SCORE

The last measure, we will examine, is the F1-score.

F1 =
2

1

recall
+

1

precision

= 2 ⋅
precision ⋅ recall

precision + recall

TF = 7 # we set the True false values to 5 %
print("  FN    FP   TP     pre   acc   rec   f1")
for FN in range(0, 7):

for FP in range(0, FN+1):
# the sum of FN, FP, TF and TP will be 100:
TP = 100 - FN - FP - TF
#print(FN, FP, TP, FN+FP+TP+TF)
precision = TP / (TP + FP)
accuracy = (TP + TN)/(TP + TN + FP + FN)
recall = TP / (TP + FN)
f1_score = 2 * precision * recall / (precision + recall)
print(f"{FN:6.2f}{FP:6.2f}{TP:6.2f}", end="")
print(f"{precision:6.2f}{accuracy:6.2f}{recall:6.2f}{f1_sc

ore:6.2f}")

recall: 1.00
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We can see that f1-score best reflects the worse case scenario that the FN value is rising, i.e. ham is
getting classified as spam!

FN    FP   TP     pre   acc   rec   f1
0.00  0.00 93.00  1.00  1.00  1.00  1.00
1.00  0.00 92.00  1.00  0.99  0.99  0.99
1.00  1.00 91.00  0.99  0.99  0.99  0.99
2.00  0.00 91.00  1.00  0.99  0.98  0.99
2.00  1.00 90.00  0.99  0.98  0.98  0.98
2.00  2.00 89.00  0.98  0.98  0.98  0.98
3.00  0.00 90.00  1.00  0.98  0.97  0.98
3.00  1.00 89.00  0.99  0.98  0.97  0.98
3.00  2.00 88.00  0.98  0.97  0.97  0.97
3.00  3.00 87.00  0.97  0.97  0.97  0.97
4.00  0.00 89.00  1.00  0.98  0.96  0.98
4.00  1.00 88.00  0.99  0.97  0.96  0.97
4.00  2.00 87.00  0.98  0.97  0.96  0.97
4.00  3.00 86.00  0.97  0.96  0.96  0.96
4.00  4.00 85.00  0.96  0.96  0.96  0.96
5.00  0.00 88.00  1.00  0.97  0.95  0.97
5.00  1.00 87.00  0.99  0.97  0.95  0.97
5.00  2.00 86.00  0.98  0.96  0.95  0.96
5.00  3.00 85.00  0.97  0.96  0.94  0.96
5.00  4.00 84.00  0.95  0.95  0.94  0.95
5.00  5.00 83.00  0.94  0.95  0.94  0.94
6.00  0.00 87.00  1.00  0.97  0.94  0.97
6.00  1.00 86.00  0.99  0.96  0.93  0.96
6.00  2.00 85.00  0.98  0.96  0.93  0.96
6.00  3.00 84.00  0.97  0.95  0.93  0.95
6.00  4.00 83.00  0.95  0.95  0.93  0.94
6.00  5.00 82.00  0.94  0.94  0.93  0.94
6.00  6.00 81.00  0.93  0.94  0.93  0.93
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R E P R E S E N T A T I O N  A N D
V I S U A L I Z A T I O N  O F  D A T A

Machine learning is about adapting
models to data. For this reason we begin
by showing how data can be represented
in order to be understood by the computer.

At the beginning of this chapter we quoted
Tom Mitchell's definition of machine
learning: "Well posed Learning Problem:
A computer program is said to learn from
experience E with respect to some task T
and some performance measure P, if its
performance on T, as measured by P,
improves with experience E." Data is the
"raw material" for machine learning. It
learns from data. In Mitchell's definition,
"data" is hidden behind the terms
"experience E" and "performance measure
P". As mentioned earlier, we need labeled
data to learn and test our algorithm.

However, it is recommended that you
familiarize yourself with your data before
you begin training your classifier.

Numpy offers ideal data structures to
represent your data and Matplotlib offers great possibilities for visualizing your data.

In the following, we want to show how to do this using the data in the sklearn module.

IRIS DATASET, "HELLO WORLD" OF MACHINE LEARNING

What was the first program you saw? I bet it might have been a program giving out "Hello World" in some
programming language. Most likely I'm right. Almost every introductory book or tutorial on programming
starts with such a program. It's a tradition that goes back to the 1968 book "The C Programming Language" by
Brian Kernighan and Dennis Ritchie!

The likelihood that the first dataset you will see in an introductory tutorial on machine learning will be the
"Iris dataset" is similarly high. The Iris dataset contains the measurements of 150 iris flowers from 3 different
species:

• Iris-Setosa,
• Iris-Versicolor, and
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• Iris-Virginica.

Iris Setosa

Iris Versicolor

Iris Virginica

REPRESENTATION AND VISUALIZATION OF DATA 18



The iris dataset is often used for its simplicity. This dataset is contained in scikit-learn, but before we have a
deeper look into the Iris dataset we will look at the other datasets available in scikit-learn.
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L O A D I N G  T H E  I R I S  D A T A  W I T H
S C I K I T - L E A R N

For example, scikit-learn has a very straightforward set of data on these iris species. The data consist of the
following:

• Features in the Iris dataset:

1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm

• Target classes to predict:

1. Iris Setosa
2. Iris Versicolour
3. Iris Virginica

Sepals and Petals in Iris Flower

scikit-learn embeds a copy of the iris CSV file along with a helper function to load it into numpy
arrays:

from sklearn.datasets import load_iris
iris = load_iris()

The resulting dataset is a Bunch object:

type(iris)

You can see what's available for this data type by using the method keys() :

iris.keys()

Output: sklearn.utils.Bunch

Output: dict_keys(['data', 'target', 'target_names', 'DESCR', 'featur
e_names', 'filename'])

LOADING THE IRIS DATA WITH SCIKIT-LEARN 20



A Bunch object is similar to a dicitionary, but it additionally allows accessing the keys in an attribute style:

print(iris["target_names"])
print(iris.target_names)

The features of each sample flower are stored in the data attribute of the dataset:

n_samples, n_features = iris.data.shape
print('Number of samples:', n_samples)
print('Number of features:', n_features)
# the sepal length, sepal width, petal length and petal width of t
he first sample (first flower)
print(iris.data[0])

The feautures of each flower are stored in the data attribute of the data set. Let's take a look at some of the
samples:

# Flowers with the indices 12, 26, 89, and 114
iris.data[[12, 26, 89, 114]]

The information about the class of each sample, i.e. the labels, is stored in the "target" attribute of the data set:

print(iris.data.shape)
print(iris.target.shape)

print(iris.target)

['setosa' 'versicolor' 'virginica']
['setosa' 'versicolor' 'virginica']

Number of samples: 150
Number of features: 4
[5.1 3.5 1.4 0.2]

Output: array([[4.8, 3. , 1.4, 0.1],
[5. , 3.4, 1.6, 0.4],
[5.5, 2.5, 4. , 1.3],
[5.8, 2.8, 5.1, 2.4]])

(150, 4)
(150,)
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import numpy as np
np.bincount(iris.target)

Using NumPy's bincount function (above) we can see that the classes in this dataset are evenly distributed -
there are 50 flowers of each species, with

• class 0: Iris Setosa
• class 1: Iris Versicolor
• class 2: Iris Virginica

These class names are stored in the last attribute, namely target_names :

print(iris.target_names)

DATA IN SKLEARN (SCIKIT-LEARN)

Data in scikit-learn is in most cases saved as two-dimensional Numpy arrays with the shape (n, m) . Many
algorithms also accept scipy.sparse matrices of the same shape.

• n: (n_samples) The number of samples: each sample is an item to process (e.g. classify). A
sample can be a document, a picture, a sound, a video, an astronomical object, a row in database
or CSV file, or whatever you can describe with a fixed set of quantitative traits.

• m: (n_features) The number of features or distinct traits that can be used to describe each item in
a quantitative manner. Features are generally real-valued, but may be Boolean or discrete-valued
in some cases.

The information about the class of each sample of our Iris dataset is stored in the target attribute of the
dataset:

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2
2 2]

Output: array([50, 50, 50])

['setosa' 'versicolor' 'virginica']
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print(iris.target)

Beside of the shape of the data, we can also check the shape of the labels, i.e. the target.shape :

Each flower sample is one row in the data array, and the columns (features) represent the flower measurements
in centimeters. For instance, we can represent this Iris dataset, consisting of 150 samples and 4 features, a

2-dimensional array or matrix R150 × 4 in the following format:

X = [
x ( 1 )

1
x ( 1 )

2
x ( 1 )

3
x ( 1 )

4

x ( 2 )
1

x ( 2 )
2

x ( 2 )
3

x ( 2 )
4

⋮ ⋮ ⋮ ⋮
x ( 150 )

1
x ( 150 )

2
x ( 150 )

3
x ( 150 )

4

].

The superscript denotes the ith row, and the subscript denotes the jth feature, respectively.

Generally, we have n rows and k columns:

X = [
x ( 1 )

1
x ( 1 )

2
x ( 1 )

3
… x ( 1 )

k

x ( 2 )
1

x ( 2 )
2

x ( 2 )
3

… x ( 2 )
k

⋮ ⋮ ⋮ ⋮ ⋮
x ( n )

1
x ( n )

2
x ( n )

3
… x ( n )

k

].

print(iris.data.shape)
print(iris.target.shape)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2
2 2]

(150, 4)
(150,)
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bincount of NumPy counts the number of occurrences of each value in an array of non-negative integers.
We can use this to check the distribution of the classes in the dataset:

import numpy as np
np.bincount(iris.target)

We can see that the classes are distributed uniformly - there are 50 flowers from each species, i.e.

• class 0: Iris-Setosa
• class 1: Iris-Versicolor
• class 2: Iris-Virginica

These class names are stored in the last attribute, namely target_names :

print(iris.target_names)

Output: array([50, 50, 50])

['setosa' 'versicolor' 'virginica']
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V I S U A L I S I N G  T H E  F E A T U R E S  O F
T H E  I R I S  D A T A  S E T

The feauture data is four dimensional, but we can visualize one or two of the dimensions at a time using a
simple histogram or scatter-plot.

from sklearn.datasets import load_iris
iris = load_iris()
print(iris.data[iris.target==1][:5])

print(iris.data[iris.target==1, 0][:5])

HISTOGRAMS OF THE FEATURES
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
x_index = 3
colors = ['blue', 'red', 'green']

for label, color in zip(range(len(iris.target_names)), colors):
ax.hist(iris.data[iris.target==label, x_index],

label=iris.target_names[label],
color=color)

ax.set_xlabel(iris.feature_names[x_index])
ax.legend(loc='upper right')
fig.show()

[[7.  3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4.  1.3]
[6.5 2.8 4.6 1.5]]

[7.  6.4 6.9 5.5 6.5]
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EXERCISE

Look at the histograms of the other features, i.e. petal length, sepal widt and sepal length.

SCATTERPLOT WITH TWO FEATURES

The appearance diagram shows two features in one diagram:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

x_index = 3
y_index = 0

colors = ['blue', 'red', 'green']

for label, color in zip(range(len(iris.target_names)), colors):
ax.scatter(iris.data[iris.target==label, x_index],

iris.data[iris.target==label, y_index],
label=iris.target_names[label],
c=color)

ax.set_xlabel(iris.feature_names[x_index])
ax.set_ylabel(iris.feature_names[y_index])
ax.legend(loc='upper left')
plt.show()

VISUALISING THE FEATURES OF THE IRIS DATA SET 26



EXERCISE

Change x_index and y_index in the above script

Change x_index and y_index in the above script and find a combination of two parameters which maximally
separate the three classes.

GENERALIZATION

We will now look at all feature combinations in one combined diagram:

import matplotlib.pyplot as plt
n = len(iris.feature_names)
fig, ax = plt.subplots(n, n, figsize=(16, 16))

colors = ['blue', 'red', 'green']

for x in range(n):
for y in range(n):

xname = iris.feature_names[x]
yname = iris.feature_names[y]
for color_ind in range(len(iris.target_names)):

ax[x, y].scatter(iris.data[iris.target==color_ind,
x],

iris.data[iris.target==color_ind, y],
label=iris.target_names[color_ind],
c=colors[color_ind])
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ax[x, y].set_xlabel(xname)
ax[x, y].set_ylabel(yname)
ax[x, y].legend(loc='upper left')

plt.show()

VISUALISING THE FEATURES OF THE IRIS DATA SET 28



S C A T T E R P L O T  ' M A T R I C E S

Instead of doing it manually we can also use the scatterplot matrix provided by the pandas module.

Scatterplot matrices show scatter plots between all features in the data set, as well as histograms to show the
distribution of each feature.

import pandas as pd
iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
pd.plotting.scatter_matrix(iris_df,

c=iris.target,
figsize=(8, 8)

);
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3-DIMENSIONAL VISUALIZATION
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from mpl_toolkits.mplot3d import Axes3D
iris = load_iris()
X = []
for iclass in range(3):

X.append([[], [], []])
for i in range(len(iris.data)):

if iris.target[i] == iclass:
X[iclass][0].append(iris.data[i][0])
X[iclass][1].append(iris.data[i][1])
X[iclass][2].append(sum(iris.data[i][2:]))

colours = ("r", "g", "y")
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

for iclass in range(3):
ax.scatter(X[iclass][0], X[iclass][1], X[iclass][2], c=colour

s[iclass])
plt.show()
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O T H E R  A V A I L A B L E  D A T A

Scikit-learn makes available a host of datasets for testing learning algorithms. They come in three flavors:

• Packaged Data: these small datasets are packaged with the scikit-learn installation, and can be
downloaded using the tools in sklearn.datasets.load_*

• Downloadable Data: these larger datasets are available for download, and scikit-learn includes
tools which streamline this process. These tools can be found in
sklearn.datasets.fetch_*

• Generated Data: there are several datasets which are generated from models based on a random
seed. These are available in the sklearn.datasets.make_*

You can explore the available dataset loaders, fetchers, and generators using IPython's tab-completion
functionality. After importing the datasets submodule from sklearn , type

datasets.load_<TAB>

or

datasets.fetch_<TAB>

or

datasets.make_<TAB>

to see a list of available functions.

from sklearn import datasets

Be warned: many of these datasets are quite large, and can take a long time to download!
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L O A D I N G  D I G I T S  D A T A

We will have a closer look at one of these datasets. We look at the digits data set. We will load it first:

from sklearn.datasets import load_digits
digits = load_digits()

Again, we can get an overview of the available attributes by looking at the "keys":

digits.keys()

Let's have a look at the number of items and features:

n_samples, n_features = digits.data.shape
print((n_samples, n_features))

print(digits.data[0])
print(digits.target)

The data is also available at digits.images. This is the raw data of the images in the form of 8 lines and 8
columns.

With "data" an image corresponds to a one-dimensional Numpy array with the length 64, and "images"
representation contains 2-dimensional numpy arrays with the shape (8, 8)

print("Shape of an item: ", digits.data[0].shape)
print("Data type of an item: ", type(digits.data[0]))
print("Shape of an item: ", digits.images[0].shape)

Output: dict_keys(['data', 'target', 'target_names', 'images', 'DESC
R'])

(1797, 64)

[ 0.  0.  5. 13.  9.  1.  0.  0.  0.  0. 13. 15. 10. 15.  5.  0.
0.  3.
15.  2.  0. 11.  8.  0.  0.  4. 12.  0.  0.  8.  8.  0.  0.  5.

8.  0.
0.  9.  8.  0.  0.  4. 11.  0.  1. 12.  7.  0.  0.  2. 14.  5. 1

0. 12.
0.  0.  0.  0.  6. 13. 10.  0.  0.  0.]

[0 1 2 ... 8 9 8]

LOADING DIGITS DATA 32



print("Data tpye of an item: ", type(digits.images[0]))

Let's visualize the data. It's little bit more involved than the simple scatter-plot we used above, but we can do it
rather quickly.

# set up the figure
fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.0
5, wspace=0.05)

# plot the digits: each image is 8x8 pixels
for i in range(64):

ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
ax.imshow(digits.images[i], cmap=plt.cm.binary, interpolatio

n='nearest')

# label the image with the target value
ax.text(0, 7, str(digits.target[i]))

Shape of an item:  (64,)
Data type of an item:  <class 'numpy.ndarray'>
Shape of an item:  (8, 8)
Data tpye of an item:  <class 'numpy.ndarray'>
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EXERCISES

EXERCISE 1

sklearn contains a "wine data set".

• Find and load this data set
• Can you find a description?
• What are the names of the classes?
• What are the features?
• Where is the data and the labeled data?

EXERCISE 2:

Create a scatter plot of the features ash and color_intensity of the wine data set.
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EXERCISE 3:

Create a scatter matrix of the features of the wine dataset.

EXERCISE 4:

Fetch the Olivetti faces dataset and visualize the faces.

SOLUTIONS

SOLUTION TO EXERCISE 1

Loading the "wine data set":

from sklearn import datasets

wine = datasets.load_wine()

The description can be accessed via "DESCR":

In [ ]:

print(wine.DESCR)

The names of the classes and the features can be retrieved like this:

print(wine.target_names)
print(wine.feature_names)

data = wine.data
labelled_data = wine.target

SOLUTION TO EXERCISE 2:

from sklearn import datasets
import matplotlib.pyplot as plt

['class_0' 'class_1' 'class_2']
['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesiu
m', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proant
hocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wine
s', 'proline']
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wine = datasets.load_wine()

features = 'ash', 'color_intensity'
features_index = [wine.feature_names.index(features[0]),

wine.feature_names.index(features[1])]

colors = ['blue', 'red', 'green']

for label, color in zip(range(len(wine.target_names)), colors):
plt.scatter(wine.data[wine.target==label, features_index[0]],

wine.data[wine.target==label, features_index[1]],
label=wine.target_names[label],
c=color)

plt.xlabel(features[0])
plt.ylabel(features[1])
plt.legend(loc='upper left')
plt.show()

SOLUTION TO EXERCISE 3:

import pandas as pd
from sklearn import datasets

wine = datasets.load_wine()
def rotate_labels(df, axes):

""" changing the rotation of the label output,
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y labels horizontal and x labels vertical """
n = len(df.columns)
for x in range(n):

for y in range(n):
# to get the axis of subplots
ax = axs[x, y]
# to make x axis name vertical
ax.xaxis.label.set_rotation(90)
# to make y axis name horizontal
ax.yaxis.label.set_rotation(0)
# to make sure y axis names are outside the plot area
ax.yaxis.labelpad = 50

wine_df = pd.DataFrame(wine.data, columns=wine.feature_names)
axs = pd.plotting.scatter_matrix(wine_df,

c=wine.target,
figsize=(8, 8),

);

rotate_labels(wine_df, axs)
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SOLUTION TO EXERCISE 4

from sklearn.datasets import fetch_olivetti_faces
# fetch the faces data
faces = fetch_olivetti_faces()
faces.keys()

Output: dict_keys(['data', 'images', 'target', 'DESCR'])
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n_samples, n_features = faces.data.shape
print((n_samples, n_features))

np.sqrt(4096)

faces.images.shape

faces.data.shape

print(np.all(faces.images.reshape((400, 4096)) == faces.data))

# set up the figure
fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.0
5, wspace=0.05)

# plot the digits: each image is 8x8 pixels
for i in range(64):

ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
ax.imshow(faces.images[i], cmap=plt.cm.bone, interpolation='ne

arest')

# label the image with the target value
ax.text(0, 7, str(faces.target[i]))

(400, 4096)

Output: 64.0

Output: (400, 64, 64)

Output: (400, 4096)

True
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FURTHER DATASETS

sklearn has many more datasets available. If you still need more, you will find more on this nice List of
datasets for machine-learning research at Wikipedia.
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D A T A  P R E P A R A T I O N

LEARN, TEST AND EVALUATION DATA

You have your data ready and you are eager to start training the
classifier? But be careful: When your classifier will be finished,
you will need some test data to evaluate your classifier. If you
evaluate your classifier with the data used for learning, you may
see surprisingly good results. What we actually want to test is
the performance of classifying on unknown data.

For this purpose, we need to split our data into two parts:

1. A training set with which the learning algorithm
adapts or learns the model

2. A test set to evaluate the generalization
performance of the model

When you consider how machine learning normally works, the idea of a split between learning and test data
makes sense. Really existing systems train on existing data and if other new data (from customers, sensors or
other sources) comes in, the trained classifier has to predict or classify this new data. We can simulate this
during training with a training and test data set - the test data is a simulation of "future data" that will go into
the system during production.

In this chapter of our Python Machine Learning Tutorial, we will learn how to do the splitting with plain
Python.

We will see also that doing it manually is not necessary, because the train_test_split function from
the model_selection module can do it for us.

If the dataset is sorted by label, we will have to shuffle it before splitting.
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We separated the dataset into a learn (a.k.a. training) dataset and a test dataset. Best practice is to split it into a
learn, test and an evaluation dataset.

We will train our model (classifier) step by step and each time the result needs to be tested. If we just have a
test dataset. The results of the testing might get into the model. So we will use an evaluation dataset for the
complete learning phase. When our classifier is finished, we will check it with the test dataset, which it has not
"seen" before!

Yet, during our tutorial, we will only use splitings into learn and test datasets.
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SPLITTING EXAMPLE: IRIS DATA SET

We will demonstrate the previously discussed topics with the Iris Dataset.

The 150 data sets of the Iris data set are sorted, i.e. the first 50 data correspond to the first flower class (0 =
Setosa), the next 50 to the second flower class (1 = Versicolor) and the remaining data correspond to the last
class (2 = Virginica).

If we were to split our data in the ratio 2/3 (learning set) and 1/3 (test set), the learning set would contain all
the flowers of the first two classes and the test set all the flowers of the third flower class. The classifier could
only learn two classes and the third class would be completely unknown. So we urgently need to mix the data.

Assuming all samples are independent of each other, we want to shuffle the data set randomly before we split
the data set as shown above.

In the following we split the data manually:

import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()

Looking at the labels of iris.target shows us that the data is sorted.

iris.target

The first thing we have to do is rearrange the data so that it is not sorted anymore. For this purpose, we will
use the permutation function of the random submodul of Numpy:

indices = np.random.permutation(len(iris.data))
indices

Output: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
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n_test_samples = 12
learnset_data = iris.data[indices[:-n_test_samples]]
learnset_labels = iris.target[indices[:-n_test_samples]]
testset_data = iris.data[indices[-n_test_samples:]]
testset_labels = iris.target[indices[-n_test_samples:]]
print(learnset_data[:4], learnset_labels[:4])
print(testset_data[:4], testset_labels[:4])

SPLITS WITH SKLEARN

Even though it was not difficult to split the data manually into a learn (train) and an evaluation (test) set, we
don't have to do the splitting manually as shown above. Since this is often required in machine learning, scikit-
learn has a predefined function for dividing data into training and test sets.

Output: array([ 98,  56,  37,  60,  94, 142, 117, 121,  10,  15,  8
9,  85,  66,

29,  44, 102,  24, 140,  58,  25,  19, 100,  83, 12
6,  28, 118,

50, 127,  72,  99,  74,   0, 128,  11,  45, 143,  5
4,  79,  34,

32,  95,  92,  46, 146,   3,   9,  73, 101,  23,  7
7,  39,  87,

111, 129, 148,  67,  75, 147,  48,  76,  43,  30, 14
4,  27, 104,

35,  93, 125,   2,  69,  63,  40, 141,   7, 133,  1
8,   4,  12,

109,  33,  88,  71,  22, 110,  42,   8, 134,   5,  9
7, 114, 135,

108,  91,  14,   6, 137, 124, 130, 145,  55,  17,  8
0,  36,  61,

49,  62,  90,  84,  64, 139, 107, 112,   1,  70, 12
3,  38, 132,

31,  16,  13,  21, 113, 120,  41, 106,  65,  20, 11
6,  86,  68,

96,  78,  53,  47, 105, 136,  51,  57, 131, 149, 11
9,  26,  59,

138, 122,  81, 103,  52, 115,  82])

[[5.1 2.5 3.  1.1]
[6.3 3.3 4.7 1.6]
[4.9 3.6 1.4 0.1]
[5.  2.  3.5 1. ]] [1 1 0 1]

[[7.9 3.8 6.4 2. ]
[5.9 3.  5.1 1.8]
[6.  2.2 5.  1.5]
[5.  3.4 1.6 0.4]] [2 2 2 0]
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We will demonstrate this below. We will use 80% of the data as training and 20% as test data. We could just as
well have taken 70% and 30%, because there are no hard and fast rules. The most important thing is that you
rate your system fairly based on data it did not see during exercise! In addition, there must be enough data in
both data sets.

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
data, labels = iris.data, iris.target

res = train_test_split(data, labels,
train_size=0.8,
test_size=0.2,
random_state=42)

train_data, test_data, train_labels, test_labels = res

n = 7
print(f"The first {n} data sets:")
print(test_data[:7])
print(f"The corresponding {n} labels:")
print(test_labels[:7])

STRATIFIED RANDOM SAMPLE

Especially with relatively small amounts of data, it is better to stratify the division. Stratification means that
we keep the original class proportion of the data set in the test and training sets. We calculate the class
proportions of the previous split in percent using the following code. To calculate the number of occurrences
of each class, we use the numpy function 'bincount'. It counts the number of occurrences of each value in the
array of non-negative integers passed as an argument.

import numpy as np
print('All:', np.bincount(labels) / float(len(labels)) * 100.0)
print('Training:', np.bincount(train_labels) / float(len(train_lab
els)) * 100.0)

The first 7 data sets:
[[6.1 2.8 4.7 1.2]
[5.7 3.8 1.7 0.3]
[7.7 2.6 6.9 2.3]
[6.  2.9 4.5 1.5]
[6.8 2.8 4.8 1.4]
[5.4 3.4 1.5 0.4]
[5.6 2.9 3.6 1.3]]

The corresponding 7 labels:
[1 0 2 1 1 0 1]
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print('Test:', np.bincount(test_labels) / float(len(test_labels))
* 100.0)

To stratify the division, we can pass the label array as an additional argument to the train_test_split function:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
data, labels = iris.data, iris.target

res = train_test_split(data, labels,
train_size=0.8,
test_size=0.2,
random_state=42,
stratify=labels)

train_data, test_data, train_labels, test_labels = res

print('All:', np.bincount(labels) / float(len(labels)) * 100.0)
print('Training:', np.bincount(train_labels) / float(len(train_lab
els)) * 100.0)
print('Test:', np.bincount(test_labels) / float(len(test_labels))
* 100.0)

This was a stupid example to test the stratified random sample, because the Iris data set has the same
proportions, i.e. each class 50 elements.

We will work now with the file strange_flowers.txt of the directory data . This data set is created
in the chapter Generate Datasets in Python The classes in this dataset have different numbers of items. First
we load the data:

content = np.loadtxt("data/strange_flowers.txt", delimiter=" ")
data = content[:, :-1] # cut of the target column
labels = content[:, -1]
labels.dtype
labels.shape

All: [33.33333333 33.33333333 33.33333333]
Training: [33.33333333 34.16666667 32.5       ]
Test: [33.33333333 30.         36.66666667]

All: [33.33333333 33.33333333 33.33333333]
Training: [33.33333333 33.33333333 33.33333333]
Test: [33.33333333 33.33333333 33.33333333]

Output: (795,)
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res = train_test_split(data, labels,
train_size=0.8,
test_size=0.2,
random_state=42,
stratify=labels)

train_data, test_data, train_labels, test_labels = res

# np.bincount expects non negative integers:
print('All:', np.bincount(labels.astype(int)) / float(len(label
s)) * 100.0)
print('Training:', np.bincount(train_labels.astype(int)) / float(l
en(train_labels)) * 100.0)
print('Test:', np.bincount(test_labels.astype(int)) / float(len(te
st_labels)) * 100.0)
All: [ 0.         23.89937107 25.78616352 28.93081761 21.3836478 ]
Training: [ 0.         23.89937107 25.78616352 28.93081761 21.3836
478 ]
Test: [ 0.         23.89937107 25.78616352 28.93081761 21.3836478
]
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G E N E R A T E  D A T A S E T S  I N  P Y T H O N

A problem with machine learning,
especially when you are starting out and
want to learn about the algorithms, is that
it is often difficult to get suitable test data.
Some cost a lot of money, others are not
freely available because they are protected
by copyright. Artificial test data can be a
solution in some cases.

For this reason, this chapter of our tutorial
deals with the artificial generation of data.
This chapter is about creating artificial
data. In the previous chapters of our
tutorial we learned that Scikit-Learn
contains different data sets. On the one
hand, there are small toy data sets, but it
also offers larger data sets that are often
used in the machine learning community
to test algorithms or also serve as a
benchmark. It provides us with data
coming from the 'real world'. The
sklearn.datasets package embeds some
small toy records as described in the
Getting Started section.

In addition, scikit-learn includes various
random sample generators that can be
used to create artificial datasets of
controlled size and complexity.

The following Python code is a simple
example in which we create artificial
weather data for some German cities. We
use Pandas and Numpy to create the data:

import numpy as np
import pandas as pd

cities = ['Berlin', 'Frankfurt', 'Hamburg',
'Nuremberg', 'Munich', 'Stuttgart',
'Hanover', 'Saarbruecken', 'Cologne',
'Constance', 'Freiburg', 'Karlsruhe'
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]

n= len(cities)
data = {'Temperature': np.random.normal(24, 3, n),

'Humidity': np.random.normal(78, 2.5, n),
'Wind': np.random.normal(15, 4, n)

}
df = pd.DataFrame(data=data, index=cities)
df

ANOTHER EXAMPLE

We will create artificial data for four nonexistent types of flowers:

• Flos Pythonem
• Flos Java

Output:

Temperature Humidity Wind

Berlin 21.718358 76.470253 21.718908

Frankfurt 22.402957 77.003348 12.918838

Hamburg 23.754734 77.717810 19.122809

Nuremberg 22.006496 76.640180 18.917412

Munich 24.219640 78.615254 14.194463

Stuttgart 25.071628 76.526541 15.572285

Hanover 20.443815 74.998799 14.148577

Saarbruecken 21.389346 79.375324 11.837538

Cologne 23.299269 78.574484 19.976320

Constance 22.189936 78.293309 20.771600

Freiburg 24.104051 76.514997 20.386672

Karlsruhe 21.203245 78.087963 14.438994
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• Flos Margarita
• Flos artificialis

The RGB avarage colors values are correspondingly:

• (255, 0, 0)
• (245, 107, 0)
• (206, 99, 1)
• (255, 254, 101)

The avarage diameter of the calyx is:

• 3.8
• 3.3
• 4.1
• 2.9

Flos pythonem
(254, 0, 0)

Flos Java
(245, 107, 0)

Flos margarita
(206, 99, 1)

Flos artificialis
(255, 254, 101)

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10, type=int):
return truncnorm(

(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

def truncated_normal_floats(mean=0, sd=1, low=0, upp=10, num=100):
res = truncated_normal(mean=mean, sd=sd, low=low, upp=upp)
return res.rvs(num)

def truncated_normal_ints(mean=0, sd=1, low=0, upp=10, num=100):
res = truncated_normal(mean=mean, sd=sd, low=low, upp=upp)
return res.rvs(num).astype(np.uint8)

# number of items for each flower class:
number_of_items_per_class = [190, 205, 230, 170]
flowers = {}
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# flos Pythonem:
number_of_items = number_of_items_per_class[0]
reds = truncated_normal_ints(mean=254, sd=18, low=235, upp=256,

num=number_of_items)
greens = truncated_normal_ints(mean=107, sd=11, low=88, upp=127,

num=number_of_items)
blues = truncated_normal_ints(mean=0, sd=15, low=0, upp=20,

num=number_of_items)
calyx_dia = truncated_normal_floats(3.8, 0.3, 3.4, 4.2,

num=number_of_items)
data = np.column_stack((reds, greens, blues, calyx_dia))
flowers["flos_pythonem"] = data

# flos Java:
number_of_items = number_of_items_per_class[1]
reds = truncated_normal_ints(mean=245, sd=17, low=226, upp=256,

num=number_of_items)
greens = truncated_normal_ints(mean=107, sd=11, low=88, upp=127,

num=number_of_items)
blues = truncated_normal_ints(mean=0, sd=10, low=0, upp=20,

num=number_of_items)
calyx_dia = truncated_normal_floats(3.3, 0.3, 3.0, 3.5,

num=number_of_items)
data = np.column_stack((reds, greens, blues, calyx_dia))
flowers["flos_java"] = data

# flos Java:
number_of_items = number_of_items_per_class[2]
reds = truncated_normal_ints(mean=206, sd=17, low=175, upp=238,

num=number_of_items)
greens = truncated_normal_ints(mean=99, sd=14, low=80, upp=120,

num=number_of_items)
blues = truncated_normal_ints(mean=1, sd=5, low=0, upp=12,

num=number_of_items)
calyx_dia = truncated_normal_floats(4.1, 0.3, 3.8, 4.4,

num=number_of_items)
data = np.column_stack((reds, greens, blues, calyx_dia))
flowers["flos_margarita"] = data

# flos artificialis:
number_of_items = number_of_items_per_class[3]
reds = truncated_normal_ints(mean=255, sd=8, low=2245, upp=2255,

num=number_of_items)
greens = truncated_normal_ints(mean=254, sd=10, low=240, upp=255,

num=number_of_items)
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blues = truncated_normal_ints(mean=101, sd=5, low=90, upp=112,
num=number_of_items)

calyx_dia = truncated_normal_floats(2.9, 0.4, 2.4, 3.5,
num=number_of_items)

data = np.column_stack((reds, greens, blues, calyx_dia))
flowers["flos_artificialis"] = data

data = np.concatenate((flowers["flos_pythonem"],
flowers["flos_java"],
flowers["flos_margarita"],
flowers["flos_artificialis"]

), axis=0)

# assigning the labels
target = np.zeros(sum(number_of_items_per_class)) # 4 flowers
previous_end = 0
for i in range(1, 5):

num = number_of_items_per_class[i-1]
beg = previous_end
target[beg: beg + num] += i
previous_end = beg + num

conc_data = np.concatenate((data, target.reshape(target.shape[0],
1)),

axis=1)

np.savetxt("data/strange_flowers.txt", conc_data, fmt="%2.2f",)
import matplotlib.pyplot as plt
target_names = list(flowers.keys())
feature_names = ['red', 'green', 'blue', 'calyx']
n = 4
fig, ax = plt.subplots(n, n, figsize=(16, 16))

colors = ['blue', 'red', 'green', 'yellow']

for x in range(n):
for y in range(n):

xname = feature_names[x]
yname = feature_names[y]
for color_ind in range(len(target_names)):

ax[x, y].scatter(data[target==color_ind, x],
data[target==color_ind, y],
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label=target_names[color_ind],
c=colors[color_ind])

ax[x, y].set_xlabel(xname)
ax[x, y].set_ylabel(yname)
ax[x, y].legend(loc='upper left')

plt.show()
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G E N E R A T E  S Y N T H E T I C  D A T A  W I T H
S C I K I T - L E A R N

It is a lot easier to use the possibilities of Scikit-Learn to create synthetic data. In the following example we
use the function make_blobs of sklearn.datasets to create 'blob' like data distributions:

from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
import numpy as np
data, labels = make_blobs(n_samples=1000,

#centers=n_classes,
centers=np.array([[2, 3], [4, 5], [7,

9]]),
random_state=1)

labels = labels.reshape((labels.shape[0],1))
all_data = np.concatenate((data, labels), axis=1)
all_data[:10]
np.savetxt("squirrels.txt", all_data)
all_data[:10]

For some people it might be complicated to understand the combination of reshape and concatenate.
Therefore, you can see an extremely simple example in the following code:

import numpy as np
a = np.array( [[1, 2], [3, 4]])
b = np.array( [5, 6])
b = b.reshape((b.shape[0], 1))
print(b)

Output: array([[ 1.72415394,  4.22895559,  0.        ],
[ 4.16466507,  5.77817418,  1.        ],
[ 4.51441156,  4.98274913,  1.        ],
[ 1.49102772,  2.83351405,  0.        ],
[ 6.0386362 ,  7.57298437,  2.        ],
[ 5.61044976,  9.83428321,  2.        ],
[ 5.69202866, 10.47239631,  2.        ],
[ 6.14017298,  8.56209179,  2.        ],
[ 2.97620068,  5.56776474,  1.        ],
[ 8.27980017,  8.54824406,  2.        ]])
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x = np.concatenate( (a, b), axis=1)
x
[[5]
[6]]

Output: array([[1, 2, 5],
[3, 4, 6]])
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R E A D I N G  T H E  D A T A  A N D
C O N V E R S I O N  B A C K  I N T O  ' D A T A '
A N D  ' L A B E L S '

file_data = np.loadtxt("squirrels.txt")

data = file_data[:,:-1]
labels = file_data[:,2:]

labels = labels.reshape((labels.shape[0]))
import matplotlib.pyplot as plt
colours = ('green', 'red', 'blue', 'magenta', 'yellow', 'cyan')
n_classes = 3

fig, ax = plt.subplots()
for n_class in range(0, n_classes):

ax.scatter(data[labels==n_class, 0], data[labels==n_class,
1],

c=colours[n_class], s=10, label=str(n_class))

ax.set(xlabel='Night Vision',
ylabel='Fur color from sandish to black, 0 to 10 ',
title='Sahara Virtual Squirrel')

ax.legend(loc='upper right')
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We will train our articifical data in the following code:

from sklearn.model_selection import train_test_split

data_sets = train_test_split(data,
labels,
train_size=0.8,
test_size=0.2,
random_state=42 # garantees same output fo

r every run
)

train_data, test_data, train_labels, test_labels = data_sets
# import model
from sklearn.neighbors import KNeighborsClassifier

# create classifier
knn = KNeighborsClassifier(n_neighbors=8)

# train
knn.fit(train_data, train_labels)

# test on test data:
calculated_labels = knn.predict(test_data)
calculated_labels

Output: <matplotlib.legend.Legend at 0x7f78911f23a0>
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from sklearn import metrics

print("Accuracy:", metrics.accuracy_score(test_labels, calculate
d_labels))

Output: array([2., 0., 1., 1., 0., 1., 2., 2., 2., 2., 0., 1., 0.,
0., 1., 0., 1.,

2., 0., 0., 1., 2., 1., 2., 2., 1., 2., 0., 0., 2.,
0., 2., 2., 0.,

0., 2., 0., 0., 0., 1., 0., 1., 1., 2., 0., 2., 1.,
2., 1., 0., 2.,

1., 1., 0., 1., 2., 1., 0., 0., 2., 1., 0., 1., 1.,
0., 0., 0., 0.,

0., 0., 0., 1., 1., 0., 1., 1., 1., 0., 1., 2., 1.,
2., 0., 2., 1.,

1., 0., 2., 2., 2., 0., 1., 1., 1., 2., 2., 0., 2.,
2., 2., 2., 0.,

0., 1., 1., 1., 2., 1., 1., 1., 0., 2., 1., 2., 0.,
0., 1., 0., 1.,

0., 2., 2., 2., 1., 1., 1., 0., 2., 1., 2., 2., 1.,
2., 0., 2., 0.,

0., 1., 0., 2., 2., 0., 0., 1., 2., 1., 2., 0., 0.,
2., 2., 0., 0.,

1., 2., 1., 2., 0., 0., 1., 2., 1., 0., 2., 2., 0.,
2., 0., 0., 2.,

1., 0., 0., 0., 0., 2., 2., 1., 0., 2., 2., 1., 2.,
0., 1., 1., 1.,

0., 1., 0., 1., 1., 2., 0., 2., 2., 1., 1., 1., 2.])

Accuracy: 0.97
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O T H E R  I N T E R E S T I N G
D I S T R I B U T I O N S

import numpy as np

import sklearn.datasets as ds
data, labels = ds.make_moons(n_samples=150,

shuffle=True,
noise=0.19,
random_state=None)

data += np.array(-np.ndarray.min(data[:,0]),
-np.ndarray.min(data[:,1]))

np.ndarray.min(data[:,0]), np.ndarray.min(data[:,1])

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

ax.scatter(data[labels==0, 0], data[labels==0, 1],
c='orange', s=40, label='oranges')

ax.scatter(data[labels==1, 0], data[labels==1, 1],
c='blue', s=40, label='blues')

ax.set(xlabel='X',
ylabel='Y',
title='Moons')

#ax.legend(loc='upper right');

Output: (0.0, 0.4918603770503899)
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We want to scale values that are in a range [min, max] in a range [a, b] .

f(x) =
(b − a) ⋅ (x − min)

max − min
+ a

We now use this formula to transform both the X and Y coordinates of data into other ranges:

min_x_new, max_x_new = 33, 88
min_y_new, max_y_new = 12, 20

data, labels = ds.make_moons(n_samples=100,
shuffle=True,
noise=0.05,
random_state=None)

min_x, min_y = np.ndarray.min(data[:,0]), np.ndarray.min(dat
a[:,1])
max_x, max_y = np.ndarray.max(data[:,0]), np.ndarray.max(dat
a[:,1])

#data -= np.array([min_x, 0])
#data *= np.array([(max_x_new - min_x_new) / (max_x - min_x), 1])
#data += np.array([min_x_new, 0])

#data -= np.array([0, min_y])
#data *= np.array([1, (max_y_new - min_y_new) / (max_y - min_y)])

Output: [Text(0.5, 0, 'X'), Text(0, 0.5, 'Y'), Text(0.5, 1.0, 'Moon
s')]
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#data += np.array([0, min_y_new])

data -= np.array([min_x, min_y])
data *= np.array([(max_x_new - min_x_new) / (max_x - min_x), (ma
x_y_new - min_y_new) / (max_y - min_y)])
data += np.array([min_x_new, min_y_new])

#np.ndarray.min(data[:,0]), np.ndarray.max(data[:,0])
data[:6]

def scale_data(data, new_limits, inplace=False ):
if not inplace:

data = data.copy()
min_x, min_y = np.ndarray.min(data[:,0]), np.ndarray.min(dat

a[:,1])
max_x, max_y = np.ndarray.max(data[:,0]), np.ndarray.max(dat

a[:,1])
min_x_new, max_x_new = new_limits[0]
min_y_new, max_y_new = new_limits[1]
data -= np.array([min_x, min_y])
data *= np.array([(max_x_new - min_x_new) / (max_x - min_x),

(max_y_new - min_y_new) / (max_y - min_y)])
data += np.array([min_x_new, min_y_new])
if inplace:

return None
else:

return data

data, labels = ds.make_moons(n_samples=100,
shuffle=True,
noise=0.05,
random_state=None)

scale_data(data, [(1, 4), (3, 8)], inplace=True)

Output: array([[82.23918691, 12.80154979],
[40.69656335, 18.37361554],
[57.99524461, 19.13680029],
[69.75762403, 12.42015366],
[76.03371836, 12.38201273],
[53.60911802, 14.85616006]])
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data[:10]

fig, ax = plt.subplots()

ax.scatter(data[labels==0, 0], data[labels==0, 1],
c='orange', s=40, label='oranges')

ax.scatter(data[labels==1, 0], data[labels==1, 1],
c='blue', s=40, label='blues')

ax.set(xlabel='X',
ylabel='Y',
title='moons')

ax.legend(loc='upper right');

import sklearn.datasets as ds
data, labels = ds.make_circles(n_samples=100,

shuffle=True,

Output: array([[2.48859464, 7.4653476 ],
[2.20095361, 7.92325383],
[2.73279249, 3.54364632],
[3.76443533, 5.23647809],
[2.87230199, 3.33829922],
[2.09330808, 5.11620664],
[2.16564376, 7.78270534],
[3.66021637, 4.5625478 ],
[1.20672005, 6.50606955],
[2.5064654 , 7.3290773 ]])

OTHER INTERESTING DISTRIBUTIONS 62



noise=0.05,
random_state=None)

fig, ax = plt.subplots()

ax.scatter(data[labels==0, 0], data[labels==0, 1],
c='orange', s=40, label='oranges')

ax.scatter(data[labels==1, 0], data[labels==1, 1],
c='blue', s=40, label='blues')

ax.set(xlabel='X',
ylabel='Y',
title='circles')

ax.legend(loc='upper right')

print(__doc__)

import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_gaussian_quantiles

plt.figure(figsize=(8, 8))
plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95)

Output: <matplotlib.legend.Legend at 0x7f788b257a90>
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plt.subplot(321)
plt.title("One informative feature, one cluster per class", fontsi
ze='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_inform
ative=1,

n_clusters_per_class=1)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(322)
plt.title("Two informative features, one cluster per class", fonts
ize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_inform
ative=2,

n_clusters_per_class=1)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(323)
plt.title("Two informative features, two clusters per class",

fontsize='small')
X2, Y2 = make_classification(n_features=2,

n_redundant=0,
n_informative=2)

plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2,
s=25, edgecolor='k')

plt.subplot(324)
plt.title("Multi-class, two informative features, one cluster",

fontsize='small')
X1, Y1 = make_classification(n_features=2,

n_redundant=0,
n_informative=2,
n_clusters_per_class=1,
n_classes=3)

plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,
s=25, edgecolor='k')

plt.subplot(325)
plt.title("Gaussian divided into three quantiles", fontsize='smal
l')
X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')
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plt.show()

EXERCISES

EXERCISE 1

Create two testsets which are separable with a perceptron without a bias node.

Automatically created module for IPython interactive environment
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EXERCISE 2

Create two testsets which are not separable with a dividing line going through the origin.

EXERCISE 3

Create a dataset with five classes "Tiger", "Lion", "Penguin", "Dolphin", and "Python". The sets should look
similar to the following diagram:

SOLUTIONS

SOLUTION TO EXERCISE 1

data, labels = make_blobs(n_samples=100,
cluster_std = 0.5,
centers=[[1, 4] ,[4, 1]],
random_state=1)

fig, ax = plt.subplots()

colours = ["orange", "green"]
label_name = ["Tigers", "Lions"]
for label in range(0, 2):

ax.scatter(data[labels==label, 0], data[labels==label, 1],
c=colours[label], s=40, label=label_name[label])
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ax.set(xlabel='X',
ylabel='Y',
title='dataset')

ax.legend(loc='upper right')

SOLUTION TO EXERCISE 2

data, labels = make_blobs(n_samples=100,
cluster_std = 0.5,
centers=[[2, 2] ,[4, 4]],
random_state=1)

fig, ax = plt.subplots()

colours = ["orange", "green"]
label_name = ["label0", "label1"]
for label in range(0, 2):

ax.scatter(data[labels==label, 0], data[labels==label, 1],
c=colours[label], s=40, label=label_name[label])

ax.set(xlabel='X',
ylabel='Y',

Output: <matplotlib.legend.Legend at 0x7f788afb2c40>
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title='dataset')

ax.legend(loc='upper right')

SOLUTION TO EXERCISE 3

import sklearn.datasets as ds
data, labels = ds.make_circles(n_samples=100,

shuffle=True,
noise=0.05,
random_state=42)

centers = [[3, 4], [5, 3], [4.5, 6]]
data2, labels2 = make_blobs(n_samples=100,

cluster_std = 0.5,
centers=centers,
random_state=1)

for i in range(len(centers)-1, -1, -1):
labels2[labels2==0+i] = i+2

print(labels2)
labels = np.concatenate([labels, labels2])
data = data * [1.2, 1.8] + [3, 4]

Output: <matplotlib.legend.Legend at 0x7f788af8eac0>
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data = np.concatenate([data, data2], axis=0)

fig, ax = plt.subplots()

colours = ["orange", "blue", "magenta", "yellow", "green"]
label_name = ["Tiger", "Lion", "Penguin", "Dolphin", "Python"]
for label in range(0, len(centers)+2):

ax.scatter(data[labels==label, 0], data[labels==label, 1],
c=colours[label], s=40, label=label_name[label])

ax.set(xlabel='X',
ylabel='Y',
title='dataset')

ax.legend(loc='upper right')

[2 4 4 3 4 4 3 3 2 4 4 2 4 4 3 4 2 4 4 4 4 2 2 4 4 3 2 2 3 2 2 3
2 3 3 3 3
3 4 3 3 2 3 3 3 2 2 2 2 3 4 4 4 2 4 3 3 2 2 3 4 4 3 3 4 2 4 2 4

3 3 4 2 2
3 4 4 2 3 2 3 3 4 2 2 2 2 3 2 4 2 2 3 3 4 4 2 2 4 3]

Output: <matplotlib.legend.Legend at 0x7f788b1d42b0>
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K - N E A R E S T - N E I G H B O R  C L A S S I F I E R

"Show me who your friends are and I’ll
tell you who you are?"

The concept of the k-nearest neighbor
classifier can hardly be simpler described.
This is an old saying, which can be found
in many languages and many cultures. It's
also metnioned in other words in the
Bible: "He who walks with wise men will
be wise, but the companion of fools will
suffer harm" (Proverbs 13:20 )

This means that the concept of the k-
nearest neighbor classifier is part of our
everyday life and judging: Imagine you
meet a group of people, they are all very
young, stylish and sportive. They talk
about there friend Ben, who isn't with them. So, what is your imagination of Ben? Right, you imagine him as
being yong, stylish and sportive as well.

If you learn that Ben lives in a neighborhood where people vote conservative and that the average income is
above 200000 dollars a year? Both his neighbors make even more than 300,000 dollars per year? What do you
think of Ben? Most probably, you do not consider him to be an underdog and you may suspect him to be a
conservative as well?

The principle behind nearest neighbor classification consists in finding a predefined number, i.e. the 'k' - of
training samples closest in distance to a new sample, which has to be classified. The label of the new sample
will be defined from these neighbors. k-nearest neighbor classifiers have a fixed user defined constant for the
number of neighbors which have to be determined. There are also radius-based neighbor learning algorithms,
which have a varying number of neighbors based on the local density of points, all the samples inside of a
fixed radius. The distance can, in general, be any metric measure: standard Euclidean distance is the most
common choice. Neighbors-based methods are known as non-generalizing machine learning methods, since
they simply "remember" all of its training data. Classification can be computed by a majority vote of the
nearest neighbors of the unknown sample.

The k-NN algorithm is among the simplest of all machine learning algorithms, but despite its simplicity, it has
been quite successful in a large number of classification and regression problems, for example character
recognition or image analysis.

Now let's get a little bit more mathematically:

As explained in the chapter Data Preparation, we need labeled learning and test data. In contrast to other
classifiers, however, the pure nearest-neighbor classifiers do not do any learning, but the so-called learning set
LS is a basic component of the classifier. The k-Nearest-Neighbor Classifier (kNN) works directly on the
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learned samples, instead of creating rules compared to other classification methods.

Nearest Neighbor Algorithm:

Given a set of categories C = {c1, c2, . . . cm}, also called classes, e.g. {"male", "female"}. There is also a

learnset LS consisting of labelled instances:

LS = {(o1, co1
), (o2, co2

),⋯(on, con
)}

As it makes no sense to have less lebelled items than categories, we can postulate that

n > m and in most cases even n ⋙ m (n much greater than m.)

The task of classification consists in assigning a category or class c to an arbitrary instance o.

For this, we have to differentiate between two cases:

• Case 1:
The instance o is an element of LS, i.e. there is a tupel (o, c) ∈ LS
In this case, we will use the class c as the classification result.

• Case 2:
We assume now that o is not in LS, or to be precise:
∀c ∈ C, (o, c) ∉ LS

o is compared with all the instances of LS. A distance metric d is used for the comparisons.
We determine the k closest neighbors of o, i.e. the items with the smallest distances.
k is a user defined constant and a positive integer, which is usually small.
The number k is typically chosen as the square root of LS, the total number of points in the training data set.

To determine the k nearest neighbors we reorder LS in the following way:
(oi1

, coi1

), (oi2
, coi2

),⋯(oin
, coin

)

so that d(oij
, o) ≤ d(oij + 1

, o) is true for all 1 ≤ j ≤ n − 1

The set of k-nearest neighbors Nk consists of the first k elements of this ordering, i.e.

Nk = {(oi1
, coi1

), (oi2
, coi2

),⋯(oik
, coik

)}

The most common class in this set of nearest neighbors Nk will be assigned to the instance o. If there is no

unique most common class, we take an arbitrary one of these.

There is no general way to define an optimal value for 'k'. This value depends on the data. As a general rule
we can say that increasing 'k' reduces the noise but on the other hand makes the boundaries less distinct.

The algorithm for the k-nearest neighbor classifier is among the simplest of all machine learning algorithms.
k-NN is a type of instance-based learning, or lazy learning. In machine learning, lazy learning is understood
to be a learning method in which generalization of the training data is delayed until a query is made to the
system. On the other hand, we have eager learning, where the system usually generalizes the training data
before receiving queries. In other words: The function is only approximated locally and all the computations
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are performed, when the actual classification is being performed.

The following picture shows in a simple way how the nearest neighbor classifier works. The puzzle piece is
unknown. To find out which animal it might be we have to find the neighbors. If k=1 , the only neighbor is a
cat and we assume in this case that the puzzle piece should be a cat as well. If k=4 , the nearest neighbors
contain one chicken and three cats. In this case again, it will be save to assume that our object in question
should be a cat.

K-NEAREST-NEIGHBOR FROM SCRATCH

PREPARING THE DATASET

Before we actually start with writing a nearest neighbor classifier, we need to think about the data, i.e. the
learnset and the testset. We will use the "iris" dataset provided by the datasets of the sklearn module.

The data set consists of 50 samples from each of three species of Iris

• Iris setosa,
• Iris virginica and
• Iris versicolor.

Four features were measured from each sample: the length and the width of the sepals and petals, in
centimetres.

import numpy as np
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from sklearn import datasets

iris = datasets.load_iris()
data = iris.data
labels = iris.target

for i in [0, 79, 99, 101]:
print(f"index: {i:3}, features: {data[i]}, label: {label

s[i]}")

We create a learnset from the sets above. We use permutation from np.random to split the data
randomly.

# seeding is only necessary for the website
#so that the values are always equal:
np.random.seed(42)
indices = np.random.permutation(len(data))

n_training_samples = 12
learn_data = data[indices[:-n_training_samples]]
learn_labels = labels[indices[:-n_training_samples]]
test_data = data[indices[-n_training_samples:]]
test_labels = labels[indices[-n_training_samples:]]

print("The first samples of our learn set:")
print(f"{'index':7s}{'data':20s}{'label':3s}")
for i in range(5):

print(f"{i:4d} {learn_data[i]} {learn_labels[i]:3}")
print("The first samples of our test set:")
print(f"{'index':7s}{'data':20s}{'label':3s}")
for i in range(5):

print(f"{i:4d} {learn_data[i]} {learn_labels[i]:3}")

index:   0, features: [5.1 3.5 1.4 0.2], label: 0
index:  79, features: [5.7 2.6 3.5 1. ], label: 1
index:  99, features: [5.7 2.8 4.1 1.3], label: 1
index: 101, features: [5.8 2.7 5.1 1.9], label: 2
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The following code is only necessary to visualize the data of our learnset. Our data consists of four values per
iris item, so we will reduce the data to three values by summing up the third and fourth value. This way, we
are capable of depicting the data in 3-dimensional space:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

colours = ("r", "b")
X = []
for iclass in range(3):

X.append([[], [], []])
for i in range(len(learn_data)):

if learn_labels[i] == iclass:
X[iclass][0].append(learn_data[i][0])
X[iclass][1].append(learn_data[i][1])
X[iclass][2].append(sum(learn_data[i][2:]))

colours = ("r", "g", "y")

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

for iclass in range(3):
ax.scatter(X[iclass][0], X[iclass][1], X[iclass][2], c=colo

urs[iclass])
plt.show()

The first samples of our learn set:
index  data                label

0   [6.1 2.8 4.7 1.2]     1
1   [5.7 3.8 1.7 0.3]     0
2   [7.7 2.6 6.9 2.3]     2
3   [6.  2.9 4.5 1.5]     1
4   [6.8 2.8 4.8 1.4]     1

The first samples of our test set:
index  data                label

0   [6.1 2.8 4.7 1.2]     1
1   [5.7 3.8 1.7 0.3]     0
2   [7.7 2.6 6.9 2.3]     2
3   [6.  2.9 4.5 1.5]     1
4   [6.8 2.8 4.8 1.4]     1
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DISTANCE METRICS

We have already mentioned in detail, we calculate the distances between the points of the sample and the
object to be classified. To calculate these distances we need a distance function.

In n-dimensional vector rooms, one usually uses one of the following three distance metrics:

• Euclidean Distance

The Euclidean distance between two points x and y in either the plane or 3-dimensional
space measures the length of a line segment connecting these two points. It can be calculated
from the Cartesian coordinates of the points using the Pythagorean theorem, therefore it is also
occasionally being called the Pythagorean distance. The general formula is

d(x, y) = √
n

∑
i = 1

(xi − yi)
2

• Manhattan Distance

It is defined as the sum of the absolute values of the differences between the coordinates of x
and y:

d(x, y) =

n

∑
i = 1

| xi − yi |

• Minkowski Distance

The Minkowski distance generalizes the Euclidean and the Manhatten distance in one distance
metric. If we set the parameter p in the following formula to 1 we get the manhattan distance
an using the value 2 gives us the euclidean distance:
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d(x, y) = (
n

∑
i = 1

(xi − yi)
p)

1

p

The following diagram visualises the Euclidean and the Manhattan distance:

The blue line illustrates the Eucliden distance between the green and red dot. Otherwise you can also move
over the orange, green or yellow line from the green point to the red point. The lines correspond to the
manhatten distance. The length is equal.

DETERMINING THE NEIGHBORS

To determine the similarity between two instances, we will use the Euclidean distance.

We can calculate the Euclidean distance with the function norm of the module np.linalg :

def distance(instance1, instance2):
""" Calculates the Eucledian distance between two instance

s"""
return np.linalg.norm(np.subtract(instance1, instance2))

print(distance([3, 5], [1, 1]))
print(distance(learn_data[3], learn_data[44]))
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The function get_neighbors returns a list with k neighbors, which are closest to the instance
test_instance :

def get_neighbors(training_set,
labels,
test_instance,
k,
distance):

"""
get_neighors calculates a list of the k nearest neighbors
of an instance 'test_instance'.
The function returns a list of k 3-tuples.
Each 3-tuples consists of (index, dist, label)
where
index    is the index from the training_set,
dist     is the distance between the test_instance and the

instance training_set[index]
distance is a reference to a function used to calculate the

distances
"""
distances = []
for index in range(len(training_set)):

dist = distance(test_instance, training_set[index])
distances.append((training_set[index], dist, labels[inde

x]))
distances.sort(key=lambda x: x[1])
neighbors = distances[:k]
return neighbors

We will test the function with our iris samples:

for i in range(5):
neighbors = get_neighbors(learn_data,

learn_labels,
test_data[i],
3,
distance=distance)

print("Index:         ",i,'\n',
"Testset Data:  ",test_data[i],'\n',
"Testset Label: ",test_labels[i],'\n',
"Neighbors:      ",neighbors,'\n')

4.47213595499958
3.4190641994557516
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VOTING TO GET A SINGLE RESULT

We will write a vote function now. This functions uses the class Counter from collections to count
the quantity of the classes inside of an instance list. This instance list will be the neighbors of course. The
function vote returns the most common class:

from collections import Counter

def vote(neighbors):

Index:          0
Testset Data:   [5.7 2.8 4.1 1.3]
Testset Label:  1
Neighbors:       [(array([5.7, 2.9, 4.2, 1.3]), 0.141421356237309

95, 1), (array([5.6, 2.7, 4.2, 1.3]), 0.17320508075688815, 1), (ar
ray([5.6, 3. , 4.1, 1.3]), 0.22360679774997935, 1)]

Index:          1
Testset Data:   [6.5 3.  5.5 1.8]
Testset Label:  2
Neighbors:       [(array([6.4, 3.1, 5.5, 1.8]), 0.141421356237309

3, 2), (array([6.3, 2.9, 5.6, 1.8]), 0.24494897427831783, 2), (arr
ay([6.5, 3. , 5.2, 2. ]), 0.3605551275463988, 2)]

Index:          2
Testset Data:   [6.3 2.3 4.4 1.3]
Testset Label:  1
Neighbors:       [(array([6.2, 2.2, 4.5, 1.5]), 0.264575131106458

6, 1), (array([6.3, 2.5, 4.9, 1.5]), 0.574456264653803, 1), (arra
y([6. , 2.2, 4. , 1. ]), 0.5916079783099617, 1)]

Index:          3
Testset Data:   [6.4 2.9 4.3 1.3]
Testset Label:  1
Neighbors:       [(array([6.2, 2.9, 4.3, 1.3]), 0.200000000000000

18, 1), (array([6.6, 3. , 4.4, 1.4]), 0.2645751311064587, 1), (arr
ay([6.6, 2.9, 4.6, 1.3]), 0.3605551275463984, 1)]

Index:          4
Testset Data:   [5.6 2.8 4.9 2. ]
Testset Label:  2
Neighbors:       [(array([5.8, 2.7, 5.1, 1.9]), 0.316227766016837

5, 2), (array([5.8, 2.7, 5.1, 1.9]), 0.3162277660168375, 2), (arra
y([5.7, 2.5, 5. , 2. ]), 0.33166247903553986, 2)]
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class_counter = Counter()
for neighbor in neighbors:

class_counter[neighbor[2]] += 1
return class_counter.most_common(1)[0][0]

We will test 'vote' on our training samples:

for i in range(n_training_samples):
neighbors = get_neighbors(learn_data,

learn_labels,
test_data[i],
3,
distance=distance)

print("index: ", i,
", result of vote: ", vote(neighbors),
", label: ", test_labels[i],
", data: ", test_data[i])

We can see that the predictions correspond to the labelled results, except in case of the item with the index 8.

index:  0 , result of vote:  1 , label:  1 , data:  [5.7 2.8 4.1
1.3]
index:  1 , result of vote:  2 , label:  2 , data:  [6.5 3.  5.5
1.8]
index:  2 , result of vote:  1 , label:  1 , data:  [6.3 2.3 4.4
1.3]
index:  3 , result of vote:  1 , label:  1 , data:  [6.4 2.9 4.3
1.3]
index:  4 , result of vote:  2 , label:  2 , data:  [5.6 2.8 4.9
2. ]
index:  5 , result of vote:  2 , label:  2 , data:  [5.9 3.  5.1
1.8]
index:  6 , result of vote:  0 , label:  0 , data:  [5.4 3.4 1.7
0.2]
index:  7 , result of vote:  1 , label:  1 , data:  [6.1 2.8 4.
1.3]
index:  8 , result of vote:  1 , label:  2 , data:  [4.9 2.5 4.5
1.7]
index:  9 , result of vote:  0 , label:  0 , data:  [5.8 4.  1.2
0.2]
index:  10 , result of vote:  1 , label:  1 , data:  [5.8 2.6 4.
1.2]
index:  11 , result of vote:  2 , label:  2 , data:  [7.1 3.  5.9
2.1]
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'vote_prob' is a function like 'vote' but returns the class name and the probability for this class:

def vote_prob(neighbors):
class_counter = Counter()
for neighbor in neighbors:

class_counter[neighbor[2]] += 1
labels, votes = zip(*class_counter.most_common())
winner = class_counter.most_common(1)[0][0]
votes4winner = class_counter.most_common(1)[0][1]
return winner, votes4winner/sum(votes)

for i in range(n_training_samples):
neighbors = get_neighbors(learn_data,

learn_labels,
test_data[i],
5,
distance=distance)

print("index: ", i,
", vote_prob: ", vote_prob(neighbors),
", label: ", test_labels[i],
", data: ", test_data[i])
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THE WEIGHTED NEAREST NEIGHBOUR CLASSIFIER

We looked only at k items in the vicinity of an unknown object „UO", and had a majority vote. Using the
majority vote has shown quite efficient in our previous example, but this didn't take into account the following
reasoning: The farther a neighbor is, the more it "deviates" from the "real" result. Or in other words, we can
trust the closest neighbors more than the farther ones. Let's assume, we have 11 neighbors of an unknown item
UO. The closest five neighbors belong to a class A and all the other six, which are farther away belong to a
class B. What class should be assigned to UO? The previous approach says B, because we have a 6 to 5 vote
in favor of B. On the other hand the closest 5 are all A and this should count more.

To pursue this strategy, we can assign weights to the neighbors in the following way: The nearest neighbor of
an instance gets a weight 1 /1, the second closest gets a weight of 1 /2 and then going on up to 1 /k for the
farthest away neighbor.

This means that we are using the harmonic series as weights:

k

∑
i

1/ (i + 1) = 1 +
1

2
+

1

3
+ . . . +

1

k

We implement this in the following function:

index:  0 , vote_prob:  (1, 1.0) , label:  1 , data:  [5.7 2.8
4.1 1.3]
index:  1 , vote_prob:  (2, 1.0) , label:  2 , data:  [6.5 3.
5.5 1.8]
index:  2 , vote_prob:  (1, 1.0) , label:  1 , data:  [6.3 2.3
4.4 1.3]
index:  3 , vote_prob:  (1, 1.0) , label:  1 , data:  [6.4 2.9
4.3 1.3]
index:  4 , vote_prob:  (2, 1.0) , label:  2 , data:  [5.6 2.8
4.9 2. ]
index:  5 , vote_prob:  (2, 0.8) , label:  2 , data:  [5.9 3.
5.1 1.8]
index:  6 , vote_prob:  (0, 1.0) , label:  0 , data:  [5.4 3.4
1.7 0.2]
index:  7 , vote_prob:  (1, 1.0) , label:  1 , data:  [6.1 2.8
4.  1.3]
index:  8 , vote_prob:  (1, 1.0) , label:  2 , data:  [4.9 2.5
4.5 1.7]
index:  9 , vote_prob:  (0, 1.0) , label:  0 , data:  [5.8 4.
1.2 0.2]
index:  10 , vote_prob:  (1, 1.0) , label:  1 , data:  [5.8 2.6
4.  1.2]
index:  11 , vote_prob:  (2, 1.0) , label:  2 , data:  [7.1 3.
5.9 2.1]
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def vote_harmonic_weights(neighbors, all_results=True):
class_counter = Counter()
number_of_neighbors = len(neighbors)
for index in range(number_of_neighbors):

class_counter[neighbors[index][2]] += 1/(index+1)
labels, votes = zip(*class_counter.most_common())
#print(labels, votes)
winner = class_counter.most_common(1)[0][0]
votes4winner = class_counter.most_common(1)[0][1]
if all_results:

total = sum(class_counter.values(), 0.0)
for key in class_counter:

class_counter[key] /= total
return winner, class_counter.most_common()

else:
return winner, votes4winner / sum(votes)

for i in range(n_training_samples):
neighbors = get_neighbors(learn_data,

learn_labels,
test_data[i],
6,
distance=distance)

print("index: ", i,
", result of vote: ",
vote_harmonic_weights(neighbors,

all_results=True))

The previous approach took only the ranking of the neighbors according to their distance in account. We can

index:  0 , result of vote:  (1, [(1, 1.0)])
index:  1 , result of vote:  (2, [(2, 1.0)])
index:  2 , result of vote:  (1, [(1, 1.0)])
index:  3 , result of vote:  (1, [(1, 1.0)])
index:  4 , result of vote:  (2, [(2, 0.9319727891156463), (1, 0.0
6802721088435375)])
index:  5 , result of vote:  (2, [(2, 0.8503401360544217), (1, 0.1
4965986394557826)])
index:  6 , result of vote:  (0, [(0, 1.0)])
index:  7 , result of vote:  (1, [(1, 1.0)])
index:  8 , result of vote:  (1, [(1, 1.0)])
index:  9 , result of vote:  (0, [(0, 1.0)])
index:  10 , result of vote:  (1, [(1, 1.0)])
index:  11 , result of vote:  (2, [(2, 1.0)])
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improve the voting by using the actual distance. To this purpos we will write a new voting function:

def vote_distance_weights(neighbors, all_results=True):
class_counter = Counter()
number_of_neighbors = len(neighbors)
for index in range(number_of_neighbors):

dist = neighbors[index][1]
label = neighbors[index][2]
class_counter[label] += 1 / (dist**2 + 1)

labels, votes = zip(*class_counter.most_common())
#print(labels, votes)
winner = class_counter.most_common(1)[0][0]
votes4winner = class_counter.most_common(1)[0][1]
if all_results:

total = sum(class_counter.values(), 0.0)
for key in class_counter:

class_counter[key] /= total
return winner, class_counter.most_common()

else:
return winner, votes4winner / sum(votes)

for i in range(n_training_samples):
neighbors = get_neighbors(learn_data,

learn_labels,
test_data[i],
6,
distance=distance)

print("index: ", i,
", result of vote: ",
vote_distance_weights(neighbors,

all_results=True))
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ANOTHER EXAMPLE FOR NEAREST NEIGHBOR CLASSIFICATION

We want to test the previous functions with another very simple dataset:

train_set = [(1, 2, 2),
(-3, -2, 0),
(1, 1, 3),
(-3, -3, -1),
(-3, -2, -0.5),
(0, 0.3, 0.8),
(-0.5, 0.6, 0.7),
(0, 0, 0)

]

labels = ['apple', 'banana', 'apple',
'banana', 'apple', "orange",
'orange', 'orange']

k = 2
for test_instance in [(0, 0, 0), (2, 2, 2),

(-3, -1, 0), (0, 1, 0.9),
(1, 1.5, 1.8), (0.9, 0.8, 1.6)]:

neighbors = get_neighbors(train_set,
labels,
test_instance,
k,
distance=distance)

print("vote distance weights: ",
vote_distance_weights(neighbors))

index:  0 , result of vote:  (1, [(1, 1.0)])
index:  1 , result of vote:  (2, [(2, 1.0)])
index:  2 , result of vote:  (1, [(1, 1.0)])
index:  3 , result of vote:  (1, [(1, 1.0)])
index:  4 , result of vote:  (2, [(2, 0.8490154592118361), (1, 0.1
5098454078816387)])
index:  5 , result of vote:  (2, [(2, 0.6736137462184478), (1, 0.3
263862537815521)])
index:  6 , result of vote:  (0, [(0, 1.0)])
index:  7 , result of vote:  (1, [(1, 1.0)])
index:  8 , result of vote:  (1, [(1, 1.0)])
index:  9 , result of vote:  (0, [(0, 1.0)])
index:  10 , result of vote:  (1, [(1, 1.0)])
index:  11 , result of vote:  (2, [(2, 1.0)])
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KNN IN LINGUISTICS

The next example comes from computer linguistics. We show how we can use a k-nearest neighbor classifier
to recognize misspelled words.

We use a module called levenshtein, which we have implemented in our tutorial on Levenshtein Distance.

from levenshtein import levenshtein

cities = open("data/city_names.txt").readlines()
cities = [city.strip() for city in cities]

for city in ["Freiburg", "Frieburg", "Freiborg",
"Hamborg", "Sahrluis"]:

neighbors = get_neighbors(cities,
cities,
city,
2,
distance=levenshtein)

print("vote_distance_weights: ", vote_distance_weights(neighbo
rs))

Marvin and James introduce us to our next example:

vote distance weights:  ('orange', [('orange', 1.0)])
vote distance weights:  ('apple', [('apple', 1.0)])
vote distance weights:  ('banana', [('banana', 0.529411764705882
4), ('apple', 0.47058823529411764)])
vote distance weights:  ('orange', [('orange', 1.0)])
vote distance weights:  ('apple', [('apple', 1.0)])
vote distance weights:  ('apple', [('apple', 0.5084745762711865),
('orange', 0.4915254237288135)])

vote_distance_weights:  ('Freiberg', [('Freiberg', 0.8333333333333
334), ('Freising', 0.16666666666666669)])
vote_distance_weights:  ('Lüneburg', [('Lüneburg', 0.5), ('Duisbur
g', 0.5)])
vote_distance_weights:  ('Freiberg', [('Freiberg', 0.8333333333333
334), ('Freising', 0.16666666666666669)])
vote_distance_weights:  ('Hamburg', [('Hamburg', 0.714285714285714
3), ('Bamberg', 0.28571428571428575)])
vote_distance_weights:  ('Saarlouis', [('Saarlouis', 0.83870967741
93549), ('Bayreuth', 0.16129032258064516)])
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Can you help Marvin and James?
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british-english.txt

You will need an English dictionary and a k-nearest Neighbor classifier to solve this problem. If you work
under Linux (especially Ubuntu), you can find a file with a British-English dictionary under /usr/share/dict/
british-english. Windows users and others can download the file as

We use extremely misspelled words in the following example. We see that our simple vote_prob function is
doing well only in two cases: In correcting "holpposs" to "helpless" and "blagrufoo" to "barefoot". Whereas
our distance voting is doing well in all cases. Okay, we have to admit that we had "liberty" in mind, when we
wrote "liberdi", but suggesting "liberal" is a good choice.

words = []
with open("british-english.txt") as fh:

for line in fh:
word = line.strip()
words.append(word)
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for word in ["holpful", "kundnoss", "holpposs", "thoes", "innersta
nd",

"blagrufoo", "liberdi"]:
neighbors = get_neighbors(words,

words,
word,
3,
distance=levenshtein)

print("vote_distance_weights: ", vote_distance_weights(neighbo
rs,

all_res
ults=False))

print("vote_prob: ", vote_prob(neighbors))
print("vote_distance_weights: ", vote_distance_weights(neighbo

rs))
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vote_distance_weights:  ('helpful', 0.5555555555555556)
vote_prob:  ('helpful', 0.3333333333333333)
vote_distance_weights:  ('helpful', [('helpful', 0.555555555555555
6), ('doleful', 0.22222222222222227), ('hopeful', 0.22222222222222
227)])
vote_distance_weights:  ('kindness', 0.5)
vote_prob:  ('kindness', 0.3333333333333333)
vote_distance_weights:  ('kindness', [('kindness', 0.5), ('fondnes
s', 0.25), ('kudos', 0.25)])
vote_distance_weights:  ('helpless', 0.3333333333333333)
vote_prob:  ('helpless', 0.3333333333333333)
vote_distance_weights:  ('helpless', [('helpless', 0.3333333333333
333), ("hippo's", 0.3333333333333333), ('hippos', 0.33333333333333
33)])
vote_distance_weights:  ('hoes', 0.3333333333333333)
vote_prob:  ('hoes', 0.3333333333333333)
vote_distance_weights:  ('hoes', [('hoes', 0.3333333333333333),
('shoes', 0.3333333333333333), ('thees', 0.3333333333333333)])
vote_distance_weights:  ('understand', 0.5)
vote_prob:  ('understand', 0.3333333333333333)
vote_distance_weights:  ('understand', [('understand', 0.5), ('int
erstate', 0.25), ('understands', 0.25)])
vote_distance_weights:  ('barefoot', 0.4333333333333333)
vote_prob:  ('barefoot', 0.3333333333333333)
vote_distance_weights:  ('barefoot', [('barefoot', 0.4333333333333
333), ('Baguio', 0.2833333333333333), ('Blackfoot', 0.283333333333
3333)])
vote_distance_weights:  ('liberal', 0.4)
vote_prob:  ('liberal', 0.3333333333333333)
vote_distance_weights:  ('liberal', [('liberal', 0.4), ('libert
y', 0.4), ('Hibernia', 0.2)])
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N E U R A L  N E T W O R K S

INTRODUCTION

When we say "Neural Networks", we
mean artificial Neural Networks (ANN).
The idea of ANN is based on biological
neural networks like the brain of living
being.

The basic structure of a neural network -
both an artificial and a living one - is the
neuron. A neuron in biology consists of
three major parts: the soma (cell body),
the dendrites and the axon.

The dendrites branch of from the soma in
a tree-like way and become thinner with
every branch. They receive signals
(impulses) from other neurons at synapses. The axon - there is always only one - also leaves the soma and
usually tend to extend for longer distances than the dentrites. The axon is used for sending the output of the
neuron to other neurons or better to the synapsis of other neurons.

BIOLOGICAL NEURON

The following image by Quasar Jarosz, courtesy of Wikipedia, illustrates this:
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ABSTRACTION OF A BIOLOGICAL NEURON AND ARTIFICIAL NEURON

Even though the above image is already an abstraction for a biologist, we can further abstract it:

A perceptron of artificial neural networks is simulating a biological neuron.

It is amazingly simple, what is going on inside the body of a perceptron or neuron. The input signals get
multiplied by weight values, i.e. each input has its corresponding weight. This way the input can be adjusted
individually for every xi. We can see all the inputs as an input vector and the corresponding weights as the

weights vector.

When a signal comes in, it gets multiplied by a weight value that is assigned to this particular input. That is, if
a neuron has three inputs, then it has three weights that can be adjusted individually. The weights usually get
adjusted during the learn phase.
After this the modified input signals are summed up. It is also possible to add additionally a so-called bias 'b'
to this sum. The bias is a value which can also be adjusted during the learn phase.

Finally, the actual output has to be determined. For this purpose an activation or step function Φ is applied to
the weighted sum of the input values.
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The simplest form of an activation function is a binary function. If the result of the summation is greater than
some threshold s, the result of Φ will be 1, otherwise 0.

Φ(x) = {1 wx + b > s

0 otherwise

NUMBER OF NEURON IN ANIMALS

We will examine in the following chapters artificial neuronal networks of various sizes and structures. It is
interesting to have a look at the total numbers of neurons some animals have:

• Roundworm: 302
• Jellyfish
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F R O M  D I V I D I N G  L I N E S  T O  N E U R A L
N E T W O R K S

We will develop a simple neural network in this chapter of our tutorial. A network capable of separating two
classes, which are separable by a straight line in a 2-dimensional feature space.

LINE SEPARATION

Before we start programming a simple neural
network, we are going to develop a different concept.
We want to search for straight lines that separate two
points or two classes in a plane. We will only look at
straight lines going through the origin. We will look
at general straight lines later in the tutorial.

You could imagine that you have two attributes
describing an eddible object like a fruit for example:
"sweetness" and "sourness".

We could describe this by points in a two-
dimensional space. The A axis is used for the values
of sweetness and the y axis is correspondingly used
for the sourness values. Imagine now that we have
two fruits as points in this space, i.e. an orange at
position (3.5, 1.8) and a lemon at (1.1, 3.9).

We could define dividing lines to define the points which are more lemon-like and which are more orange-
like.

In the following diagram, we depict one lemon and one orange. The green line is separating both points. We
assume that all other lemons are above this line and all oranges will be below this line.
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The green line is defined by

y = mx

where:

m is the slope or gradient of the line and x is the independent variable of the function.

m =
p2

p1
x

This means that a point P ′ = (p ′
1
, p ′

2
) is on this line, if the following condition is fulfilled:

mp ′
1

− p ′
2

= 0

The following Python program plots a graph depicting the previously described situation:

import matplotlib.pyplot as plt
import numpy as np
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X = np.arange(0, 7)
fig, ax = plt.subplots()

ax.plot(3.5, 1.8, "or",
color="darkorange",
markersize=15)

ax.plot(1.1, 3.9, "oy",
markersize=15)

point_on_line = (4, 4.5)
ax.plot(1.1, 3.9, "oy", markersize=15)
# calculate gradient:
m = point_on_line[1] / point_on_line[0]
ax.plot(X, m * X, "g-", linewidth=3)
plt.show()

It is clear that a point A = (a1, a2) is not on the line, if m ⋅ a1 − a2 is not equal to 0. We want to know more.

We want to know, if a point is above or below a straight line.
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If a point B = (b1, b2) is below this line, there must be a δB > 0 so that the point (b1, b2 + δB) will be on the

line.

This means that

m ⋅ b1 − (b2 + δB) = 0

which can be rearranged to

m ⋅ b1 − b2 = δB

Finally, we have a criteria for a point to be below the line. m ⋅ b1 − b2 is positve, because δB is positive.

The reasoning for "a point is above the line" is analogue: If a point A = (a1, a2) is above the line, there must

be a δA > 0 so that the point (a1, a2 − δA) will be on the line.

This means that

m ⋅ a1 − (a2 − δA) = 0

which can be rearranged to

m ⋅ a1 − a2 = − δA
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In summary, we can say: A point P(p1, p2) lies

• below the straight line if m ⋅ p1 − p2 > 0

• on the straight line if m ⋅ p1 − p2 = 0

• above the straight line if m ⋅ p1 − p2 < 0

We can now verify this on our fruits. The lemon has the coordinates (1.1, 3.9) and the orange the coordinates
3.5, 1.8. The point on the line, which we used to define our separation straight line has the values (4, 4.5). So
m is 4.5 divides by 4.

lemon = (1.1, 3.9)
orange = (3.5, 1.8)
m = 4.5 / 4

# check if orange is below the line,
# positive value is expected:
print(orange[0] * m - orange[1])

# check if lemon is above the line,
# negative value is expected:
print(lemon[0] * m - lemon[1])

We did not calculate the green line using mathematical formulas or methods, but arbitrarily determined it by
visual judgement. We could have chosen other lines as well.

The following Python program calculates and renders a bunch of lines. All going through the origin, i.e. the
point (0, 0). The red ones are completely unusable for the purpose of separating the two fruits, because in
these cases both the lemon and the orange are on the same side of the straight line. However, it is obvious that
even the green ones might not be too useful if we have more than these two fruits. Some lemons might be
sweeter and some oranges can be quite sour.

import numpy as np
import matplotlib.pyplot as plt
def create_distance_function(a, b, c):

""" 0 = ax + by + c """
def distance(x, y):

"""
returns tuple (d, pos)
d is the distance

2.1375
-2.6624999999999996
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If pos == -1 point is below the line,
0 on the line and +1 if above the line
"""
nom = a * x + b * y + c
if nom == 0:

pos = 0
elif (nom<0 and b<0) or (nom>0 and b>0):

pos = -1
else:

pos = 1
return (np.absolute(nom) / np.sqrt( a ** 2 + b ** 2), pos)

return distance

orange = (4.5, 1.8)
lemon = (1.1, 3.9)
fruits_coords = [orange, lemon]

fig, ax = plt.subplots()
ax.set_xlabel("sweetness")
ax.set_ylabel("sourness")
x_min, x_max = -1, 7
y_min, y_max = -1, 8
ax.set_xlim([x_min, x_max])
ax.set_ylim([y_min, y_max])
X = np.arange(x_min, x_max, 0.1)

step = 0.05
for x in np.arange(0, 1+step, step):

slope = np.tan(np.arccos(x))
dist4line1 = create_distance_function(slope, -1, 0)
Y = slope * X
results = []
for point in fruits_coords:

results.append(dist4line1(*point))
if (results[0][1] != results[1][1]):

ax.plot(X, Y, "g-", linewidth=0.8, alpha=0.9)
else:

ax.plot(X, Y, "r-", linewidth=0.8, alpha=0.9)

size = 10
for (index, (x, y)) in enumerate(fruits_coords):

if index== 0:
ax.plot(x, y, "o",

color="darkorange",
markersize=size)
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else:
ax.plot(x, y, "oy",

markersize=size)

plt.show()

Basically, we have carried out a classification based on our dividing line. Even if hardly anyone would
describe this as such.

It is easy to imagine that we have more lemons and oranges with slightly different sourness and sweetness
values. This means we have a class of lemons ( class1 ) and a class of oranges class2 . This is depicted
in the following diagram.

FROM DIVIDING LINES TO NEURAL NETWORKS 100



We are going to "grow" oranges and lemons with a Python program. We will create these two classes by
randomly creating points within a circle with a defined center point and radius. The following Python code
will create the classes:

import numpy as np
import matplotlib.pyplot as plt
def points_within_circle(radius,

center=(0, 0),
number_of_points=100):

center_x, center_y = center
r = radius * np.sqrt(np.random.random((number_of_points,)))
theta = np.random.random((number_of_points,)) * 2 * np.pi
x = center_x + r * np.cos(theta)
y = center_y + r * np.sin(theta)
return x, y

X = np.arange(0, 8)
fig, ax = plt.subplots()
oranges_x, oranges_y = points_within_circle(1.6, (5, 2), 100)
lemons_x, lemons_y = points_within_circle(1.9, (2, 5), 100)

ax.scatter(oranges_x,
oranges_y,
c="orange",
label="oranges")

ax.scatter(lemons_x,
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lemons_y,
c="y",
label="lemons")

ax.plot(X, 0.9 * X, "g-", linewidth=2)

ax.legend()
ax.grid()
plt.show()

The dividing line was again arbitrarily set by eye. The question arises how to do this systematically? We are
still only looking at straight lines going through the origin, which are uniquely defined by its slope. the
following Python program calculates a dividing line by going through all the fruits and dynamically adjusts
the slope of the dividing line we want to calculate. If a point is above the line but should be below the line, the
slope will be increment by the value of learning_rate . If the point is below the line but should be above
the line, the slope will be decremented by the value of learning_rate .

import numpy as np
import matplotlib.pyplot as plt
from itertools import repeat
from random import shuffle

X = np.arange(0, 8)
fig, ax = plt.subplots()
ax.scatter(oranges_x,

oranges_y,
c="orange",
label="oranges")

ax.scatter(lemons_x,
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lemons_y,
c="y",
label="lemons")

fruits = list(zip(oranges_x,
oranges_y,
repeat(0, len(oranges_x))))

fruits += list(zip(lemons_x,
lemons_y,
repeat(1, len(oranges_x))))

shuffle(fruits)

def adjust(learning_rate=0.3, slope=0.3):
line = None
counter = 0
for x, y, label in fruits:

res = slope * x - y
#print(label, res)
if label == 0 and res < 0:

# point is above line but should be below
# => increment slope
slope += learning_rate
counter += 1
ax.plot(X, slope * X,

linewidth=2, label=str(counter))

elif label == 1 and res > 0:
# point is below line but should be above
# => decrement slope
#print(res, label)
slope -= learning_rate
counter += 1
ax.plot(X, slope * X,

linewidth=2, label=str(counter))
return slope

slope = adjust()
ax.plot(X,

slope * X,
linewidth=2)

ax.legend()
ax.grid()
plt.show()
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print(slope)

Let's start with a different slope from the 'lemon side':

X = np.arange(0, 8)
fig, ax = plt.subplots()
ax.scatter(oranges_x,

oranges_y,
c="orange",
label="oranges")

ax.scatter(lemons_x,
lemons_y,
c="y",
label="lemons")

slope = adjust(learning_rate=0.2, slope=3)
ax.plot(X,

slope * X,
linewidth=2)

ax.legend()
ax.grid()
plt.show()

print(slope)

[<matplotlib.lines.Line2D object at 0x7f53b0a22c50>]
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A SIMPLE NEURAL NETWORK

We were capable of separating the two classes with a straight line. One might wonder what this has to do with
neural networks. We will work out this connection below.

We are going to define a neural network to classify the previous data sets. Our neural network will only
consist of one neuron. A neuron with two input values, one for 'sourness' and one for 'sweetness'.

The two input values - called in_data in our Python program below - have to be weighted by weight
values. So solve our problem, we define a Perceptron class. An instance of the class is a Perceptron (or
Neuron). It can be initialized with the input_length, i.e. the number of input values, and the weights, which can
be given as a list, tuple or an array. If there are no values for the weights given or the parameter is set to None,
we will initialize the weights to 1 / input_length.

In the following example choose -0.45 and 0.5 as the values for the weights. This is not the normal way to do
it. A Neural Network calculates the weights automatically during its training phase, as we will learn later.

import numpy as np

0.9999999999999996
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class Perceptron:
def __init__(self, weights):

"""
'weights' can be a numpy array, list or a tuple with the
actual values of the weights. The number of input values
is indirectly defined by the length of 'weights'
"""
self.weights = np.array(weights)

def __call__(self, in_data):
weighted_input = self.weights * in_data
weighted_sum = weighted_input.sum()
return weighted_sum

p = Perceptron(weights=[-0.45, 0.5])

for point in zip(oranges_x[:10], oranges_y[:10]):
res = p(point)
print(res, end=", ")

for point in zip(lemons_x[:10], lemons_y[:10]):
res = p(point)
print(res, end=", ")

We can see that we get a negative value, if we input an orange and a posive value, if we input a lemon. With
this knowledge, we can calculate the accuracy of our neural network on this data set:

from collections import Counter
evaluation = Counter()
for point in zip(oranges_x, oranges_y):

res = p(point)
if res < 0:

evaluation['corrects'] += 1
else:

evaluation['wrongs'] += 1

-1.8131460150609238, -1.1931285955719209, -1.3127632381850327,
-1.3925163810790897, -0.7522874009031233, -0.8402958901009828,
-1.9330506389030604, -1.490534974734101, -0.4441170096959772, -1.9
942817372340516, 1.998076257605724, 1.1512784858148413, 2.51418870
799987, 0.4867012212497872, 1.7962680593822624, 0.875162742271260
9, 1.5455925862569528, 1.6976576197574347, 1.4467637066140102, 1.4
634541513290587,
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for point in zip(lemons_x, lemons_y):
res = p(point)
if res >= 0:

evaluation['corrects'] += 1
else:

evaluation['wrongs'] += 1

print(evaluation)

How does the calculation work? We multiply the input values with the weights and get negative and positive
values. Let us examine what we get, if the calculation results in 0:

w1 ⋅ x1 + w2 ⋅ x2 = 0

We can change this equation into

x2 = −
w1

w2
⋅ x1

We can compare this with the general form of a straight line

y = m ⋅ x + c

where:

• m is the slope or gradient of the line.
• c is the y-intercept of the line.
• x is the independent variable of the function.

We can easily see that our equation corresponds to the definition of a line and the slope (aka gradient) m is

−
w1

w2
and c is equal to 0.

This is a straight line separating the oranges and lemons, which is called the decision boundary.

We visualize this with the following Python program:

import time
import matplotlib.pyplot as plt
slope = 0.1

X = np.arange(0, 8)

Counter({'corrects': 200})
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fig, ax = plt.subplots()
ax.scatter(oranges_x,

oranges_y,
c="orange",
label="oranges")

ax.scatter(lemons_x,
lemons_y,
c="y",
label="lemons")

slope = 0.45 / 0.5
ax.plot(X, slope * X, linewidth=2)

ax.grid()
plt.show()

print(slope)

TRAINING A NEURAL NETWORK

As we mentioned in the previous section: We didn't train our network. We have adjusted the weights to values
that we know would form a dividing line. We want to demonstrate now, what is necessary to train our simple
neural network.

Before we start with this task, we will separate our data into training and test data in the following Python
program. By setting the random_state to the value 42 we will have the same output for every run, which can
be benifial for debugging purposes.

0.9
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from sklearn.model_selection import train_test_split
import random
oranges = list(zip(oranges_x, oranges_y))
lemons = list(zip(lemons_x, lemons_y))

# labelling oranges with 0 and lemons with 1:
labelled_data = list(zip(oranges + lemons,

[0] * len(oranges) + [1] * len(lemons)))
random.shuffle(labelled_data)

data, labels = zip(*labelled_data)

res = train_test_split(data, labels,
train_size=0.8,
test_size=0.2,
random_state=42)

train_data, test_data, train_labels, test_labels = res
print(train_data[:10], train_labels[:10])

As we start with two arbitrary weights, we cannot expect the result to be correct. For some points (fruits) it
may return the proper value, i.e. 1 for a lemon and 0 for an orange. In case we get the wrong result, we have to
correct our weight values. First we have to calculate the error. The error is the difference between the target or
expected value ( target_result ) and the calculated value ( calculated_result ). With this error
we have to adjust the weight values with an incremental value, i.e. w1 = w1 + Δw1 and w2 = w2 + Δw2

[(2.592320569178846, 5.623712204925406), (4.7943502284049355, 0.88
39613414681706), (2.1239534889189637, 5.377962359316873), (4.13018
3870483639, 3.2036358839244397), (2.5700607722439957, 3.4894903329
620393), (1.1874742907020708, 4.248237496795156), (4.9754099376160
54, 3.258818001021547), (2.4858113049930375, 3.778544332039814),
(0.759896779289841, 4.699741038079466), (1.3275488108562907, 4.204
176294559159)] [1, 0, 1, 0, 1, 1, 0, 1, 1, 1]
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If the error e is 0, i.e. the target result is equal to the calculated result, we don't have to do anything. The
network is perfect for these input values. If the error is not equal, we have to change the weights. We have to
change the weights by adding small values to them. These values may be positive or negative. The amount we
have a change a weight value depends on the error and on the input value. Let us assume, x1 = 0 and x2 > 0.

In this case the result in this case solely results on the input x2. This on the other hand means that we can

minimize the error by changing solely w2. If the error is negative, we will have to add a negative value to it,

and if the error is positive, we will have to add a positive value to it. From this we can understand that
whatever the input values are, we can multiply them with the error and we get values, we can add to the
weights. One thing is still missing: Doing this we would learn to fast. We have many samples and each sample
should only change the weights a little bit. Therefore we have to multiply this result with a learning rate
( self.learning_rate ). The learning rate is used to control how fast the weights are updated. Small
values for the learning rate result in a long training process, larger values bear the risk of ending up in sub-
optimal weight values. We will have a closer look at this in our chapter on backpropagation.

We are ready now to write the code for adapting the weights, which means training the network. For this
purpose, we add a method 'adjust' to our Perceptron class. The task of this method is to crrect the error.

import numpy as np
from collections import Counter

class Perceptron:
def __init__(self,

weights,
learning_rate=0.1):

"""
'weights' can be a numpy array, list or a tuple with the
actual values of the weights. The number of input values
is indirectly defined by the length of 'weights'
"""
self.weights = np.array(weights)
self.learning_rate = learning_rate

@staticmethod
def unit_step_function(x):

if x < 0:
return 0

else:
return 1

def __call__(self, in_data):
weighted_input = self.weights * in_data
weighted_sum = weighted_input.sum()
#print(in_data, weighted_input, weighted_sum)
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return Perceptron.unit_step_function(weighted_sum)

def adjust(self,
target_result,
calculated_result,
in_data):

if type(in_data) != np.ndarray:
in_data = np.array(in_data) #

error = target_result - calculated_result
if error != 0:

correction = error * in_data * self.learning_rate
self.weights += correction
#print(target_result, calculated_result, error, in_dat

a, correction, self.weights)

def evaluate(self, data, labels):
evaluation = Counter()
for index in range(len(data)):

label = int(round(p(data[index]),0))
if label == labels[index]:

evaluation["correct"] += 1
else:

evaluation["wrong"] += 1
return evaluation

p = Perceptron(weights=[0.1, 0.1],
learning_rate=0.3)

for index in range(len(train_data)):
p.adjust(train_labels[index],

p(train_data[index]),
train_data[index])

evaluation = p.evaluate(train_data, train_labels)
print(evaluation.most_common())
evaluation = p.evaluate(test_data, test_labels)
print(evaluation.most_common())

print(p.weights)
[('correct', 160)]
[('correct', 40)]
[-1.68135341  2.07512397]
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Both on the learning and on the test data, we have only correct values, i.e. our network was capable of learning
automatically and successfully!

We visualize the decision boundary with the following program:

import matplotlib.pyplot as plt
import numpy as np
X = np.arange(0, 7)
fig, ax = plt.subplots()

lemons = [train_data[i] for i in range(len(train_data)) if train_l
abels[i] == 1]
lemons_x, lemons_y = zip(*lemons)
oranges = [train_data[i] for i in range(len(train_data)) if trai
n_labels[i] == 0]
oranges_x, oranges_y = zip(*oranges)

ax.scatter(oranges_x, oranges_y, c="orange")
ax.scatter(lemons_x, lemons_y, c="y")

w1 = p.weights[0]
w2 = p.weights[1]
m = -w1 / w2
ax.plot(X, m * X, label="decision boundary")
ax.legend()
plt.show()
print(p.weights)

[-1.68135341  2.07512397]
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Let us have a look on the algorithm "in motion".

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
p = Perceptron(weights=[0.1, 0.1],

learning_rate=0.3)
number_of_colors = 7
colors = cm.rainbow(np.linspace(0, 1, number_of_colors))

fig, ax = plt.subplots()
ax.set_xticks(range(8))
ax.set_ylim([-2, 8])

counter = 0
for index in range(len(train_data)):

old_weights = p.weights.copy()
p.adjust(train_labels[index],

p(train_data[index]),
train_data[index])

if not np.array_equal(old_weights, p.weights):
color = "orange" if train_labels[index] == 0 else

"y"
ax.scatter(train_data[index][0],

train_data[index][1],
color=color)

ax.annotate(str(counter),
(train_data[index][0], train_data[index][1]))

m = -p.weights[0] / p.weights[1]
print(index, m, p.weights, train_data[index])
ax.plot(X, m * X, label=str(counter), color=colors[counte

r])
counter += 1

ax.legend()
plt.show()
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Each of the points in the diagram above cause a change in the weights. We see them numbered in the order of
their appearance and the corresponding straight line. This way we can see how the networks "learns".

1 -3.0400347553192493 [-1.45643048 -0.4790835 ] (5.18810161174240
7, 1.930278325463612)
2 0.5905980182798966 [-0.73406347  1.24291557] (2.407890035938178
7, 5.739996893315745)
18 6.70051650445074 [-2.03694068  0.30399756] (4.342924008657758,
3.129726697580847)
20 0.5044094409795936 [-0.87357998  1.73188666] (3.87786897216146
7, 4.759630340827767)
27 2.7418853617419434 [-2.39560903  0.87370868] (5.07343016541601
7, 2.8605932860372967)
31 0.8102423930878537 [-1.68135341  2.07512397] (2.3808520725267
2, 4.004717642222739)
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S I M P L E  N E U R A L  N E T W O R K S

LINEARLY SEPARABLE DATA SETS

As we have shown in the previous chapter of our tutorial on machine
learning, a neural network consisting of only one perceptron was enough to
separate our example classes. Of course, we carefully designed these
classes to make it work. There are many clusters of classes, for whichit will
not work. We are going to have a look at some other examples and will
discuss cases where it will not be possible to separate the classes.

Our classes have been linearly separable. Linear separability make sense
in Euclidean geometry. Two sets of points (or classes) are called linearly
separable, if at least one straight line in the plane exists so that all the
points of one class are on one side of the line and all the points of the other
class are on the other side.

More formally:

If two data clusters (classes) can be separated by a decision boundary in the
form of a linear equation

n

∑
i = 1

xi ⋅ wi = 0

they are called linearly separable.

Otherwise, i.e. if such a decision boundary does not exist, the two classes are called linearly inseparable. In
this case, we cannot use a simple neural network.

PERCEPTRON FOR THE AND FUNCTION

In our next example we will program a Neural Network in Python which implements the logical "And"
function. It is defined for two inputs in the following way:

Input1 Input2 Output

0 0 0

0 1 0

1 0 0
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Input1 Input2 Output

1 1 1

We learned in the previous chapter that a neural network with one perceptron and two input values can be
interpreted as a decision boundary, i.e. straight line dividing two classes. The two classes we want to classify
in our example look like this:

import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
xmin, xmax = -0.2, 1.4
X = np.arange(xmin, xmax, 0.1)
ax.scatter(0, 0, color="r")
ax.scatter(0, 1, color="r")
ax.scatter(1, 0, color="r")
ax.scatter(1, 1, color="g")
ax.set_xlim([xmin, xmax])
ax.set_ylim([-0.1, 1.1])
m = -1
#ax.plot(X, m * X + 1.2, label="decision boundary")
plt.plot()

We also found out that such a primitive neural network is only capable of creating straight lines going through
the origin. So dividing lines like this:

Output: []
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import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
xmin, xmax = -0.2, 1.4
X = np.arange(xmin, xmax, 0.1)
ax.set_xlim([xmin, xmax])
ax.set_ylim([-0.1, 1.1])
m = -1
for m in np.arange(0, 6, 0.1):

ax.plot(X, m * X )
ax.scatter(0, 0, color="r")
ax.scatter(0, 1, color="r")
ax.scatter(1, 0, color="r")
ax.scatter(1, 1, color="g")
plt.plot()

We can see that none of these straight lines can be used as decision boundary nor any other lines going
through the origin.

We need a line

y = m ⋅ x + c

where the intercept c is not equal to 0.

For example the line

y = − x + 1.2

Output: []
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could be used as a separating line for our problem:

import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
xmin, xmax = -0.2, 1.4
X = np.arange(xmin, xmax, 0.1)
ax.scatter(0, 0, color="r")
ax.scatter(0, 1, color="r")
ax.scatter(1, 0, color="r")
ax.scatter(1, 1, color="g")
ax.set_xlim([xmin, xmax])
ax.set_ylim([-0.1, 1.1])
m, c = -1, 1.2
ax.plot(X, m * X + c )
plt.plot()

The question now is whether we can find a solution with minor modifications of our network model? Or in
other words: Can we create a perceptron capable of defining arbitrary decision boundaries?

The solution consists in the addition of a bias node.

SINGLE PERCEPTRON WITH A BIAS

A perceptron with two input values and a bias corresponds to a general straight line. With the aid of the bias
value b we can train the perceptron to determine a decision boundary with a non zero intercept c .

Output: []
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While the input values can change, a bias value always remains constant. Only the weight of the bias node can
be adapted.

Now, the linear equation for a perceptron contains a bias:

n

∑
i = 1

wi ⋅ xi + wn + 1 ⋅ b = 0

In our case it looks like this:

w1 ⋅ x1 + w2 ⋅ x2 + w3 ⋅ b = 0

this is equivalent with

x2 = −
w1

w2
⋅ x1 −

w3

w2
⋅ b

This means:

m = −
w1

w2

and

c = −
w3

w2
⋅ b

import numpy as np
from collections import Counter

class Perceptron:
def __init__(self,
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weights,
bias=1,
learning_rate=0.3):

"""
'weights' can be a numpy array, list or a tuple with the
actual values of the weights. The number of input values
is indirectly defined by the length of 'weights'
"""
self.weights = np.array(weights)
self.bias = bias
self.learning_rate = learning_rate

@staticmethod
def unit_step_function(x):

if x <= 0:
return 0

else:
return 1

def __call__(self, in_data):
in_data = np.concatenate( (in_data, [self.bias]) )
result = self.weights @ in_data
return Perceptron.unit_step_function(result)

def adjust(self,
target_result,
in_data):

if type(in_data) != np.ndarray:
in_data = np.array(in_data) #

calculated_result = self(in_data)
error = target_result - calculated_result
if error != 0:

in_data = np.concatenate( (in_data, [self.bias]) )
correction = error * in_data * self.learning_rate
self.weights += correction

def evaluate(self, data, labels):
evaluation = Counter()
for sample, label in zip(data, labels):

result = self(sample) # predict
if result == label:

evaluation["correct"] += 1
else:

evaluation["wrong"] += 1
return evaluation
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We assume that the above Python code with the Perceptron class is stored in your current working directory
under the name 'perceptrons.py'.

import numpy as np
from perceptrons import Perceptron

def labelled_samples(n):
for _ in range(n):

s = np.random.randint(0, 2, (2,))
yield (s, 1) if s[0] == 1 and s[1] == 1 else (s, 0)

p = Perceptron(weights=[0.3, 0.3, 0.3],
learning_rate=0.2)

for in_data, label in labelled_samples(30):
p.adjust(label,

in_data)

test_data, test_labels = list(zip(*labelled_samples(30)))

evaluation = p.evaluate(test_data, test_labels)
print(evaluation)

import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
xmin, xmax = -0.2, 1.4
X = np.arange(xmin, xmax, 0.1)
ax.scatter(0, 0, color="r")
ax.scatter(0, 1, color="r")
ax.scatter(1, 0, color="r")
ax.scatter(1, 1, color="g")
ax.set_xlim([xmin, xmax])
ax.set_ylim([-0.1, 1.1])
m = -p.weights[0] / p.weights[1]
c = -p.weights[2] / p.weights[1]
print(m, c)
ax.plot(X, m * X + c )
plt.plot()

Counter({'correct': 30})
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We will create another example with linearly separable data sets, which need a bias node to be separable. We
will use the make_blobs function from sklearn.datasets :

from sklearn.datasets import make_blobs

n_samples = 250
samples, labels = make_blobs(n_samples=n_samples,

centers=([2.5, 3], [6.7, 7.9]),
random_state=0)

Let us visualize the previously created data:

import matplotlib.pyplot as plt
colours = ('green', 'magenta', 'blue', 'cyan', 'yellow', 'red')
fig, ax = plt.subplots()

for n_class in range(2):
ax.scatter(samples[labels==n_class][:, 0], samples[labels==n_c

lass][:, 1],
c=colours[n_class], s=40, label=str(n_class))

-3.0000000000000004 3.0000000000000013
Output: []
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n_learn_data = int(n_samples * 0.8) # 80 % of available data point
s
learn_data, test_data = samples[:n_learn_data], samples[-n_learn_d
ata:]
learn_labels, test_labels = labels[:n_learn_data], labels[-n_lear
n_data:]

from perceptrons import Perceptron

p = Perceptron(weights=[0.3, 0.3, 0.3],
learning_rate=0.8)

for sample, label in zip(learn_data, learn_labels):
p.adjust(label,

sample)

evaluation = p.evaluate(learn_data, learn_labels)
print(evaluation)

Let us visualize the decision boundary:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

# plotting learn data
colours = ('green', 'blue')

Counter({'correct': 200})
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for n_class in range(2):
ax.scatter(learn_data[learn_labels==n_class][:, 0],

learn_data[learn_labels==n_class][:, 1],
c=colours[n_class], s=40, label=str(n_class))

# plotting test data
colours = ('lightgreen', 'lightblue')
for n_class in range(2):

ax.scatter(test_data[test_labels==n_class][:, 0],
test_data[test_labels==n_class][:, 1],
c=colours[n_class], s=40, label=str(n_class))

X = np.arange(np.max(samples[:,0]))
m = -p.weights[0] / p.weights[1]
c = -p.weights[2] / p.weights[1]
print(m, c)
ax.plot(X, m * X + c )
plt.plot()
plt.show()

In the following section, we will introduce the XOR problem for neural networks. It is the simplest example of
a non linearly separable neural network. It can be solved with an additional layer of neurons, which is called a
hidden layer.

-1.5513529034664024 11.736643489707035
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THE XOR PROBLEM FOR NEURAL NETWORKS

The XOR (exclusive or) function is defined by the following truth table:

Input1 Input2 XOR Output

0 0 0

0 1 1

1 0 1

1 1 0

This problem can't be solved with a simple neural network, as we can see in the following diagram:

No matter which straight line you choose, you will never succeed in having the blue points on one side and the
orange points on the other side. This is shown in the following figure. The orange points are on the orange
line. This means that this cannot be a dividing line. If we move this line parallel - no matter which direction,
there will be always two orange and one blue point on one side and only one blue point on the other side. If we
move the orange line in a non parallel way, there will be one blue and one orange point on either side, except
if the line goes through an orange point. So there is no way for a single straight line separating those points.
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To solve this problem, we need to introduce a new type of neural networks, a network with so-called hidden
layers. A hidden layer allows the network to reorganize or rearrange the input data.

We will need only one hidden layer with two neurons. One works like an AND gate and the other one like an
OR gate. The output will "fire", when the OR gate fires and the AND gate doesn't.

As we had already mentioned, we cannot find a line which separates the orange points from the blue points.
But they can be separated by two lines, e.g. L1 and L2 in the following diagram:
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To solve this problem, we need a network of the following kind, i.e with a hidden layer N1 and N2

The neuron N1 will determine one line, e.g. L1 and the neuron N2 will determine the other line L2. N3 will
finally solve our problem:
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The implementation of this in Python has to wait until the next chapter of our tutorial on machine learning.

SIMPLE NEURAL NETWORKS 128



EXERCISES

EXERCISE 1

We could extend the logical AND to float values between 0 and 1 in the following way:

Input1 Input2 Output

x1 < 0.5 x2 < 0.5 0

x1 < 0.5 x2 >= 0.5 0

x1 >= 0.5 x2 < 0.5 0

x1 >= 0.5 x2 >= 0.5 1

Try to train a neural network with only one perceptron. Why doesn't it work?

EXERCISE 2

A point belongs to a class 0, if x1 < 0.5 and belongs to class 1, if x1 >= 0.5. Train a network with one

perceptron to classify arbitrary points. What can you say about the dicision boundary? What about the input
values x2

SOLUTIONS TO THE EXERCISES

SOLUTION TO THE 1. EXERCISE

from perceptrons import Perceptron

p = Perceptron(weights=[0.3, 0.3, 0.3],
bias=1,
learning_rate=0.2)

def labelled_samples(n):
for _ in range(n):

s = np.random.random((2,))
yield (s, 1) if s[0] >= 0.5 and s[1] >= 0.5 else (s, 0)

for in_data, label in labelled_samples(30):
p.adjust(label,
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in_data)

test_data, test_labels = list(zip(*labelled_samples(60)))

evaluation = p.evaluate(test_data, test_labels)
print(evaluation)

The easiest way to see, why it doesn't work, is to visualize the data.

import matplotlib.pyplot as plt
import numpy as np
ones = [test_data[i] for i in range(len(test_data)) if test_label
s[i] == 1]
zeroes = [test_data[i] for i in range(len(test_data)) if test_labe
ls[i] == 0]

fig, ax = plt.subplots()
xmin, xmax = -0.2, 1.2
X, Y = list(zip(*ones))
ax.scatter(X, Y, color="g")
X, Y = list(zip(*zeroes))
ax.scatter(X, Y, color="r")
ax.set_xlim([xmin, xmax])
ax.set_ylim([-0.1, 1.1])
c = -p.weights[2] / p.weights[1]
m = -p.weights[0] / p.weights[1]
X = np.arange(xmin, xmax, 0.1)
ax.plot(X, m * X + c, label="decision boundary")

Counter({'correct': 32, 'wrong': 28})
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We can see that the green points and the red points are not separable by one straight line.

SOLUTION TO THE 2ND EXERCISE

from perceptrons import Perceptron

import numpy as np
from collections import Counter

def labelled_samples(n):
for _ in range(n):

s = np.random.random((2,))
yield (s, 0) if s[0] < 0.5 else (s, 1)

p = Perceptron(weights=[0.3, 0.3, 0.3],
learning_rate=0.4)

for in_data, label in labelled_samples(300):
p.adjust(label,

in_data)

test_data, test_labels = list(zip(*labelled_samples(500)))

print(p.weights)
p.evaluate(test_data, test_labels)

Output: [<matplotlib.lines.Line2D at 0x7fabe8bfbf90>]
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import matplotlib.pyplot as plt
import numpy as np
ones = [test_data[i] for i in range(len(test_data)) if test_label
s[i] == 1]
zeroes = [test_data[i] for i in range(len(test_data)) if test_labe
ls[i] == 0]

fig, ax = plt.subplots()
xmin, xmax = -0.2, 1.2
X, Y = list(zip(*ones))
ax.scatter(X, Y, color="g")
X, Y = list(zip(*zeroes))
ax.scatter(X, Y, color="r")
ax.set_xlim([xmin, xmax])
ax.set_ylim([-0.1, 1.1])
c = -p.weights[2] / p.weights[1]
m = -p.weights[0] / p.weights[1]
X = np.arange(xmin, xmax, 0.1)
ax.plot(X, m * X + c, label="decision boundary")

p.weights, m

[ 2.03831116 -0.1785671  -0.9       ]
Output: Counter({'correct': 489, 'wrong': 11})

Output: [<matplotlib.lines.Line2D at 0x7fabe8bc89d0>]

Output: (array([ 2.03831116, -0.1785671 , -0.9       ]), 11.414819026
425487)
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The slope m will have to get larger and larger in situations like this.
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N E U R A L  N E T W O R K S ,  S T R U C T U R E ,
W E I G H T S  A N D  M A T R I C E S

INTRODUCTION

We introduced the basic ideas about
neural networks in the previous chapter of
our machine learning tutorial.

We have pointed out the similarity
between neurons and neural networks in
biology. We also introduced very small
articial neural networks and introduced
decision boundaries and the XOR
problem.

In the simple examples we introduced so
far, we saw that the weights are the
essential parts of a neural network. Before
we start to write a neural network with multiple layers, we need to have a closer look at the weights.

We have to see how to initialize the weights and how to efficiently multiply the weights with the input values.

In the following chapters we will design a neural network in Python, which consists of three layers, i.e. the
input layer, a hidden layer and an output layer. You can see this neural network structure in the following
diagram. We have an input layer with three nodes i1, i2, i3 These nodes get the corresponding input values

x1, x2, x3. The middle or hidden layer has four nodes h1, h2, h3, h4. The input of this layer stems from the

input layer. We will discuss the mechanism soon. Finally, our output layer consists of the two nodes o1, o2

The input layer is different from the other layers. The nodes of the input layer are passive. This means that the
input neurons do not change the data, i.e. there are no weights used in this case. They receive a single value
and duplicate this value to their many outputs.
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The input layer consists of the nodes i1, i2 and i3. In principle the input is a one-dimensional vector, like (2, 4,

11). A one-dimensional vector is represented in numpy like this:

import numpy as np
input_vector = np.array([2, 4, 11])
print(input_vector)

In the algorithm, which we will write later, we will have to transpose it into a column vector, i.e. a two-
dimensional array with just one column:

import numpy as np
input_vector = np.array([2, 4, 11])
input_vector = np.array(input_vector, ndmin=2).T
print("The input vector:\n", input_vector)

print("The shape of this vector: ", input_vector.shape)

[ 2  4 11]

The input vector:
[[ 2]
[ 4]
[11]]

The shape of this vector:  (3, 1)
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WEIGHTS AND MATRICES

Each of the arrows in our network diagram has an associated weight value. We will only look at the arrows
between the input and the output layer now.

The value x1 going into the node i1 will be distributed according to the values of the weights. In the following

diagram we have added some example values. Using these values, the input values (Ih1, Ih2, Ih3, Ih4 into the

nodes (h1, h2, h3, h4) of the hidden layer can be calculated like this:

Ih1 = 0.81 ∗ 0.5 + 0.12 ∗ 1 + 0.92 ∗ 0.8

Ih2 = 0.33 ∗ 0.5 + 0.44 ∗ 1 + 0.72 ∗ 0.8

Ih3 = 0.29 ∗ 0.5 + 0.22 ∗ 1 + 0.53 ∗ 0.8

Ih4 = 0.37 ∗ 0.5 + 0.12 ∗ 1 + 0.27 ∗ 0.8

Those familiar with matrices and matrix multiplication will see where it is boiling down to. We will redraw
our network and denote the weights with wij:
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In order to efficiently execute all the necessary calaculations, we will arrange the weights into a weight matrix.
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The weights in our diagram above build an array, which we will call 'weights_in_hidden' in our Neural
Network class. The name should indicate that the weights are connecting the input and the hidden nodes, i.e.
they are between the input and the hidden layer. We will also abbreviate the name as 'wih'. The weight matrix
between the hidden and the output layer will be denoted as "who".:

Now that we have defined our weight matrices, we have to take the next step. We have to multiply the matrix
wih the input vector. Btw. this is exactly what we have manually done in our previous example.

(
y1

y2

y3

y4
) = (

w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43
)(

x1

x2

x3
) = (

w11 ⋅ x1 + w12 ⋅ x2 + w13 ⋅ x3

w21 ⋅ x1 + w22 ⋅ x2 + w23 ⋅ x3

w31 ⋅ x1 + w32 ⋅ x2 + w33 ⋅ x3

w41 ⋅ x1 + w42 ⋅ x2 + w43 ⋅ x3
)

We have a similar situation for the 'who' matrix between hidden and output layer. So the output z1 and z2 from

the nodes o1 and o2 can also be calculated with matrix multiplications:

( z1

z2 ) = (wh11 wh12 wh13 wh14

wh21 wh22 wh23 wh24 )(
y1

y2

y3

y4
) = (wh11 ⋅ y1 + wh12 ⋅ y2 + wh13 ⋅ y3 + wh14 ⋅ y4

wh21 ⋅ y1 + wh22 ⋅ y2 + wh23 ⋅ y3 + wh24 ⋅ y4 )

You might have noticed that something is missing in our previous calculations. We showed in our introductory
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chapter Neural Networks from Scratch in Python that we have to apply an activation or step function Φ on
each of these sums.

The following picture depicts the whole flow of calculation, i.e. the matrix multiplication and the succeeding
application of the activation function.
The matrix multiplication between the matrix wih and the matrix of the values of the input nodes x1, x2, x3

calculates the output which will be passed to the activation function.

The final output y1, y2, y3, y4 is the input of the weight matrix who:

Even though treatment is completely analogue, we will also have a detailled look at what is going on between
our hidden layer and the output layer:
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INITIALIZING THE WEIGHT MATRICES

One of the important choices which have to be made before training a neural network consists in initializing
the weight matrices. We don't know anything about the possible weights, when we start. So, we could start
with arbitrary values?

As we have seen the input to all the nodes except the input nodes is calculated by applying the activation
function to the following sum:

yj =

n

∑
i = 1

wji ⋅ xi

(with n being the number of nodes in the previous layer and yj is the input to a node of the next layer)

We can easily see that it would not be a good idea to set all the weight values to 0, because in this case the
result of this summation will always be zero. This means that our network will be incapable of learning. This
is the worst choice, but initializing a weight matrix to ones is also a bad choice.

The values for the weight matrices should be chosen randomly and not arbitrarily. By choosing a random
normal distribution we have broken possible symmetric situations, which can and often are bad for the
learning process.

There are various ways to initialize the weight matrices randomly. The first one we will introduce is the unity
function from numpy.random. It creates samples which are uniformly distributed over the half-open interval
[low, high), which means that low is included and high is excluded. Each value within the given interval is
equally likely to be drawn by 'uniform'.

import numpy as np
number_of_samples = 1200
low = -1
high = 0
s = np.random.uniform(low, high, number_of_samples)
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# all values of s are within the half open interval [-1, 0) :
print(np.all(s >= -1) and np.all(s < 0))

The histogram of the samples, created with the uniform function in our previous example, looks like this:

import matplotlib.pyplot as plt
plt.hist(s)
plt.show()

The next function we will look at is 'binomial' from numpy.binomial:

binomial(n, p, size=None)

It draws samples from a binomial distribution with specified parameters, n trials and probability p of
success where n is an integer >= 0 and p is a float in the interval [0,1]. ( n may be input as a float, but
it is truncated to an integer in use)

s = np.random.binomial(100, 0.5, 1200)
plt.hist(s)
plt.show()

True
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We like to create random numbers with a normal distribution, but the numbers have to be bounded. This is not
the case with np.random.normal(), because it doesn't offer any bound parameter.

We can use truncnorm from scipy.stats for this purpose.

The standard form of this distribution is a standard normal truncated to the range [a, b] — notice that a and b
are defined over the domain of the standard normal. To convert clip values for a specific mean and standard
deviation, use:

a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std

from scipy.stats import truncnorm

s = truncnorm(a=-2/3., b=2/3., scale=1, loc=0).rvs(size=1000)

plt.hist(s)
plt.show()
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The function 'truncnorm' is difficult to use. To make life easier, we define a function truncated_normal
in the following to fascilitate this task:

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(

(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

X = truncated_normal(mean=0, sd=0.4, low=-0.5, upp=0.5)
s = X.rvs(10000)

plt.hist(s)
plt.show()

Further examples:
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X1 = truncated_normal(mean=2, sd=1, low=1, upp=10)
X2 = truncated_normal(mean=5.5, sd=1, low=1, upp=10)
X3 = truncated_normal(mean=8, sd=1, low=1, upp=10)

import matplotlib.pyplot as plt
fig, ax = plt.subplots(3, sharex=True)
ax[0].hist(X1.rvs(10000), density=True)
ax[1].hist(X2.rvs(10000), density=True)
ax[2].hist(X3.rvs(10000), density=True)
plt.show()

We will create the link weights matrix now. truncated_normal is ideal for this purpose. It is a good
idea to choose random values from within the interval

( −
1

√n
,

1

√n
)

where n denotes the number of input nodes.

So we can create our "wih" matrix with:

no_of_input_nodes = 3
no_of_hidden_nodes = 4
rad = 1 / np.sqrt(no_of_input_nodes)

X = truncated_normal(mean=2, sd=1, low=-rad, upp=rad)
wih = X.rvs((no_of_hidden_nodes, no_of_input_nodes))
wih
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Similarly, we can now define the "who" weight matrix:

no_of_hidden_nodes = 4
no_of_output_nodes = 2
rad = 1 / np.sqrt(no_of_hidden_nodes) # this is the input in thi
s layer!

X = truncated_normal(mean=2, sd=1, low=-rad, upp=rad)
who = X.rvs((no_of_output_nodes, no_of_hidden_nodes))
who

Output:: array([[-0.41379992, -0.24122842, -0.0303682 ],
[ 0.07304837, -0.00160437,  0.0911987 ],
[ 0.32405689,  0.5103896 ,  0.23972997],
[ 0.097932  , -0.06646741,  0.01359876]])

Output:: array([[ 0.15892038,  0.06060043,  0.35900184,  0.14202827],
[-0.4758216 ,  0.29563269,  0.46035026, -0.2967353

9]])
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R U N N I N G  A  N E U R A L  N E T W O R K
W I T H  P Y T H O N

A NEURAL NETWORK CLASS

We learned in the previous chapter of our tutorial on neural
networks the most important facts about weights. We saw how
they are used and how we can implement them in Python. We
saw that the multiplication of the weights with the input values
can be accomplished with arrays from Numpy by applying
matrix multiplication.

However, what we hadn't done was to test them in a real neural
network environment. We have to create this environment first.
We will now create a class in Python, implementing a neural
network. We will proceed in small steps so that everything is
easy to understand.

The most essential methods our class needs are:

• __init__ to initialize a class, i.e. we will set
the number of neurons for every layer and
initialize the weight matrices.

• run : A method which is applied to a sample,
which which we want to classify. It applies this
sample to the neural network. We could say, we
'run' the network to 'predict' the result. This
method is in other implementations often known
as predict .

• train : This method gets a sample and the corresponding target value as an input. With this
input it can adjust the weight values if necessary. This means the network learns from an input.
Seen from the user point of view, we 'train' the network. In sklearn for example, this method
is called fit

We will postpone the definition of the train and run method until later. The weight matrices should be
initialized inside of the __init__ method. We do this indirectly. We define a method
create_weight_matrices and call it in __init__ . In this way, the init method remains clear.

We will also postpone adding bias nodes to the layers.
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The following Python code contains an implementation of a neural network class applying the knowledge we
worked out in the previous chapter:

import numpy as np
from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(

(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
self.create_weight_matrices()

def create_weight_matrices(self):
rad = 1 / np.sqrt(self.no_of_in_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_in_hidden = X.rvs((self.no_of_hidden_nodes,

self.no_of_in_nodes))
rad = 1 / np.sqrt(self.no_of_hidden_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_hidden_out = X.rvs((self.no_of_out_nodes,

self.no_of_hidden_nodes))

def train(self):
pass

def run(self):
pass

We cannot do a lot with this code, but we can at least initialize it. We can also have a look at the weight
matrices:

simple_network = NeuralNetwork(no_of_in_nodes = 3,
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no_of_out_nodes = 2,
no_of_hidden_nodes = 4,
learning_rate = 0.1)

print(simple_network.weights_in_hidden)
print(simple_network.weights_hidden_out)

ACTIVATION FUNCTIONS, SIGMOID AND RELU

Before we can program the run method, we have to deal with the activation function. We had the following
diagram in the introductory chapter on neural networks:

The input values of a perceptron are processed by the summation function and followed by an activation
function, transforming the output of the summation function into a desired and more suitable output. The
summation function means that we will have a matrix multiplication of the weight vectors and the input
values.

There are lots of different activation functions used in neural networks. One of the most comprehensive
overviews of possible activation functions can be found at Wikipedia.

The sigmoid function is one of the often used activation functions. The sigmoid function, which we are using,
is also known as the Logistic function.

It is defined as

σ(x) =
1

1 + e − x

Let us have a look at the graph of the sigmoid function. We use matplotlib to plot the sigmoid function:

import numpy as np

[[-0.3460287  -0.19427278 -0.19102916]
[ 0.56743476 -0.47164202 -0.06910573]
[ 0.53013469 -0.05117752 -0.430623  ]
[ 0.48414483  0.31263278 -0.08123676]]

[[-0.12645547  0.05260599 -0.36278102 -0.32649173]
[-0.20841352 -0.01456191 -0.13778649 -0.08920465]]
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import matplotlib.pyplot as plt
def sigma(x):

return 1 / (1 + np.exp(-x))

X = np.linspace(-5, 5, 100)

plt.plot(X, sigma(X),'b')
plt.xlabel('X Axis')
plt.ylabel('Y Axis')
plt.title('Sigmoid Function')

plt.grid()

plt.text(2.3, 0.84, r'$\sigma(x)=\frac{1}{1+e^{-x}}$', fontsize=1
6)

plt.show()

Looking at the graph, we can see that the sigmoid function maps a given number x into the range of numbers
between 0 and 1. 0 and 1 not included! As the value of x gets larger, the value of the sigmoid function gets
closer and closer to 1 and as x gets smaller, the value of the sigmoid function is approaching 0.

Instead of defining the sigmoid function ourselves, we can also use the expit function from
scipy.special , which is an implementation of the sigmoid function. It can be applied on various data

classes like int, float, list, numpy,ndarray and so on. The result is an ndarray of the same shape as the input
data x.
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from scipy.special import expit
print(expit(3.4))
print(expit([3, 4, 1]))
print(expit(np.array([0.8, 2.3, 8])))

The logistic function is often often used in neural networks to introduce nonlinearity in the model and to map
signals into a specified range, i.e. 0 and 1. It is also well liked because the derivative - needed in
backpropagation - is simple.

σ(x) =
1

1 + e − x

and its derivative:

σ ′ (x) = σ(x)(1 − σ(x))

import numpy as np
import matplotlib.pyplot as plt
def sigma(x):

return 1 / (1 + np.exp(-x))

X = np.linspace(-5, 5, 100)

plt.plot(X, sigma(X))
plt.plot(X, sigma(X) * (1 - sigma(X)))

plt.xlabel('X Axis')
plt.ylabel('Y Axis')
plt.title('Sigmoid Function')

plt.grid()

plt.text(2.3, 0.84, r'$\sigma(x)=\frac{1}{1+e^{-x}}$', fontsize=1
6)
plt.text(0.3, 0.1, r'$\sigma\'(x) = \sigma(x)(1 - \sigma(x))$', fo
ntsize=16)

plt.show()

0.9677045353015494
[0.95257413 0.98201379 0.73105858]
[0.68997448 0.90887704 0.99966465]
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We can also define our own sigmoid function with the decorator vectorize from numpy:

@np.vectorize
def sigmoid(x):

return 1 / (1 + np.e ** -x)

#sigmoid = np.vectorize(sigmoid)
sigmoid([3, 4, 5])

Another easy to use activation function is the ReLU function. ReLU stands for rectified linear unit. It is also
known as the ramp function. It is defined as the positve part of its argument, i.e. y = max (0, x). This is

"currently, the most successful and widely-used activation function is the Rectified Linear Unit (ReLU)"1 The
ReLu function is computationally more efficient than Sigmoid like functions, because Relu means only
choosing the maximum between 0 and the argument x . Whereas Sigmoids need to perform expensive
exponential operations.

# alternative activation function
def ReLU(x):

return np.maximum(0.0, x)

# derivation of relu
def ReLU_derivation(x):

if x <= 0:
return 0

else:
return 1

Output:: array([0.95257413, 0.98201379, 0.99330715])
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import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-5, 6, 100)
plt.plot(X, ReLU(X),'b')
plt.xlabel('X Axis')
plt.ylabel('Y Axis')
plt.title('ReLU Function')
plt.grid()
plt.text(0.8, 0.4, r'$ReLU(x)=max(0, x)$', fontsize=14)
plt.show()

ADDING A RUN METHOD

We have everything together now to implement the run (or predict ) method of our neural network
class. We will use scipy.special as the activation function and rename it to
activation_function :

from scipy.special import expit as activation_function

All we have to do in the run method consists of the following.

1. Matrix multiplication of the input vector and the weights_in_hidden matrix.
2. Applying the activation function to the result of step 1
3. Matrix multiplication of the result vector of step 2 and the weights_in_hidden matrix.
4. To get the final result: Applying the activation function to the result of 3

import numpy as np
from scipy.special import expit as activation_function
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from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(

(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
self.create_weight_matrices()

def create_weight_matrices(self):
""" A method to initialize the weight matrices of the neur

al network"""
rad = 1 / np.sqrt(self.no_of_in_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_in_hidden = X.rvs((self.no_of_hidden_nodes,

self.no_of_in_nodes))
rad = 1 / np.sqrt(self.no_of_hidden_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_hidden_out = X.rvs((self.no_of_out_nodes,

self.no_of_hidden_nodes))

def train(self, input_vector, target_vector):
pass

def run(self, input_vector):
"""
running the network with an input vector 'input_vector'.
'input_vector' can be tuple, list or ndarray
"""
# turning the input vector into a column vector
input_vector = np.array(input_vector, ndmin=2).T
input_hidden = activation_function(self.weights_in_hidden
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@ input_vector)
output_vector = activation_function(self.weights_hidden_ou

t @ input_hidden)
return output_vector

We can instantiate an instance of this class, which will be a neural network. In the following example we
create a network with two input nodes, four hidden nodes, and two output nodes.

simple_network = NeuralNetwork(no_of_in_nodes=2,
no_of_out_nodes=2,
no_of_hidden_nodes=4,
learning_rate=0.6)

We can apply the run method to all arrays with a shape of (2,), also lists and tuples with two numerical
elements. The result of the call is defined by the random values of the weights:

simple_network.run([(3, 4)])

FOOTNOTES

1 Ramachandran, Prajit; Barret, Zoph; Quoc, V. Le (October 16, 2017). "Searching for Activation Functions".

Output:: array([[0.54558831],
[0.6834667 ]])
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B A C K P R O P A G A T I O N  I N  N E U R A L
N E T W O R K S

INTRODUCTION

We already wrote in the previous chapters of our
tutorial on Neural Networks in Python. The networks
from our chapter Running Neural Networks lack the
capabilty of learning. They can only be run with
randomly set weight values. So we cannot solve any
classification problems with them. However, the
networks in Chapter Simple Neural Networks were
capable of learning, but we only used linear networks
for linearly separable classes.

Of course, we want to write general ANNs, which are
capable of learning. To do so, we will have to
understand backpropagation. Backpropagation is a
commonly used method for training artificial neural
networks, especially deep neural networks.
Backpropagation is needed to calculate the gradient,
which we need to adapt the weights of the weight matrices. The weight of the neuron (nodes) of our network
are adjusted by calculating the gradient of the loss function. For this purpose a gradient descent optimization
algorithm is used. It is also called backward propagation of errors.

Quite often people are frightened away by the mathematics used in it. We try to explain it in simple terms.

Explaining gradient descent starts in many articles or tutorials with mountains. Imagine you are put on a
mountain, not necessarily the top, by a helicopter at night or heavy fog. Let's further imagine that this
mountain is on an island and you want to reach sea level. You have to go down, but you hardly see anything,
maybe just a few metres. Your task is to find your way down, but you cannot see the path. You can use the
method of gradient descent. This means that you are examining the steepness at your current position. You
will proceed in the direction with the steepest descent. You take only a few steps and then you stop again to
reorientate yourself. This means you are applying again the previously described procedure, i.e. you are
looking for the steepest descend.

This procedure is depicted in the following diagram in a two-dimensional space.
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Going on like this you will arrive at a position, where there is no further descend.

Each direction goes upwards. You may have reached the deepest level - the global minimum -, but you might
as well be stuck in a basin. If you start at the position on the right side of our image, everything works out fine,
but from the leftside, you will be stuck in a local minimum.

BACKPROPAGATION IN DETAIL

Now, we have to go into the details, i.e. the mathematics.

We will start with the simpler case. We look at a linear network. Linear neural networks are networks where
the output signal is created by summing up all the weighted input signals. No activation function will be
applied to this sum, which is the reason for the linearity.

The will use the following simple network.

When we are training the network we have samples and corresponding labels. For each output value oi we

have a label ti, which is the target or the desired value. If the label is equal to the output, the result is correct
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and the neural network has not made an error. Principially, the error is the difference between the target and
the actual output:

ei = ti − oi

We will later use a squared error function, because it has better characteristics for the algorithm:

ei =
1

2
(ti − oi)

2

We want to clarify how the error backpropagates with the following example with values:

We will have a look at the output value o1, which is depending on the values w11, w12, w13 and w14. Let's

assume the calculated value (o1) is 0.92 and the desired value (t1) is 1. In this case the error is

e1 = t1 − o1 = 1 − 0.92 = 0.08

The eror e2 can be calculated like this:

e2 = t2 − o2 = 1 − 0.18 = 0.82
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Depending on this error, we have to change the weights from the incoming values accordingly. We have four
weights, so we could spread the error evenly. Yet, it makes more sense to to do it proportionally, according to
the weight values. The larger a weight is in relation to the other weights, the more it is responsible for the
error. This means that we can calculate the fraction of the error e1 in w11 as:

e1 ⋅
w11

∑4
i = 1

w1i

This means in our example:

0.08 ⋅
0.6

0.6 + 0.1 + 0.15 + 0.25
= 0.0343

The total error in our weight matrix between the hidden and the output layer - we called it in our previous
chapter 'who' - looks like this
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ewho = [
w11

∑4
i = 1

w1i

w21

∑4
i = 1

w2i

w31

∑4
i = 1

w3i

w12

∑4
i = 1

w1i

w22

∑4
i = 1

w2i

w32

∑4
i = 1

w3i

w13

∑4
i = 1

w1i

w23

∑4
i = 1

w2i

w33

∑4
i = 1

w3i

w14

∑4
i = 1

w1i

w24

∑4
i = 1

w2i

w34

∑4
i = 1

w3i

] ⋅ [e1

e2

e3
]

You can see that the denominator in the left matrix is always the same. It functions like a scaling factor. We
can drop it so that the calculation gets a lot simpler:

ewho = [
w11 w21 w31

w12 w22 w32

w13 w23 w33

w14 w24 w34
] ⋅ [e1

e2

e3
]

If you compare the matrix on the right side with the 'who' matrix of our chapter Neuronal Network Using
Python and Numpy, you will notice that it is the transpose of 'who'.

ewho = who. T ⋅ e

So, this has been the easy part for linear neural networks. We haven't taken into account the activation function
until now.

We want to calculate the error in a network with an activation function, i.e. a non-linear network. The
derivation of the error function describes the slope. As we mentioned in the beginning of the this chapter, we
want to descend. The derivation describes how the error E changes as the weight wkj changes:
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∂E

∂wkj

The error function E over all the output nodes oi (i = 1, . . . n) where n is the total number of output nodes:

E =

n

∑
i = 1

1

2
(ti − oi)

2

Now, we can insert this in our derivation:

∂E

∂wkj
=

∂

∂wkj

1

2

n

∑
i = 1

(ti − oi)
2

If you have a look at our example network, you will see that an output node ok only depends on the input

signals created with the weights wki with i = 1, …m and m the number of hidden nodes.

The following diagram further illuminates this:

This means that we can calculate the error for every output node independently of each other. This means that
we can remove all expressions ti − oi with i ≠ k from our summation. So the calculation of the error for a node

k looks a lot simpler now:

∂E

∂wkj
=

∂

∂wkj

1

2
(tk − ok)

2

The target value tk is a constant, because it is not depending on any input signals or weights. We can apply the

chain rule for the differentiation of the previous term to simplify things:
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∂E

∂wkj
=

∂E

∂ok
⋅

∂ok

∂wkj

In the previous chapter of our tutorial, we used the sigmoid function as the activation function:

σ(x) =
1

1 + e − x

The output node ok is calculated by applying the sigmoid function to the sum of the weighted input signals.

This means that we can further transform our derivative term by replacing ok by this function:

∂E

∂wkj
= (tk − ok) ⋅

∂

∂wkj
σ(

m

∑
i = 1

wkihi)

where m is the number of hidden nodes.

The sigmoid function is easy to differentiate:

∂σ(x)

∂x
= σ(x) ⋅ (1 − σ(x))

The complete differentiation looks like this now:

∂E

∂wkj
= (tk − ok) ⋅ σ(

m

∑
i = 1

wkihi) ⋅ (1 − σ(

m

∑
i = 1

wkihi))
∂

∂wkj

m

∑
i = 1

wkihi

The last part has to be differentiated with respect to wkj. This means that the derivation of all the products will

be 0 except the the term wkjhj) which has the derivative hj with respect to wkj:

∂E

∂wkj
= (tk − ok) ⋅ σ(

m

∑
i = 1

wkihi) ⋅ (1 − σ(

m

∑
i = 1

wkihi)) ⋅ hj

This is what we need to implement the method 'train' of our NeuralNetwork class in the following chapter.

In [ ]:
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T R A I N I N G  A  N E U R A L  N E T W O R K
W I T H  P Y T H O N

INTRODUCTION

In the chapter "Running Neural
Networks", we programmed a class in
Python code called 'NeuralNetwork'. The
instances of this class are networks with
three layers. When we instantiate an ANN
of this class, the weight matrices between
the layers are automatically and randomly
chosen. It is even possible to run such a
ANN on some input, but naturally it
doesn't make a lot of sense exept for
testing purposes. Such an ANN cannot
provide correct classification results. In
fact, the classification results are in no
way adapted to the expected results. The
values of the weight matrices have to be
set according the the classification task.
We need to improve the weight values,
which means that we have to train our network. To train it we have to implement backpropagation in the
train method. If you don't understand backpropagation and want to understand it, we recommend to go

back to the chapter Backpropagation in Neural Networks.

After knowing und hopefully understanding backpropagation, you are ready to fully understand the train
method.

The train method is called with an input vector and a target vector. The shape of the vectors can be one-
dimensional, but they will be automatically turned into the correct two-dimensional shape, i.e.
reshape(input_vector.size, 1) and reshape(target_vector.size, 1) . After this

we call the run method to get the result of the network output_vector_network =
self.run(input_vector) . This output may differ from the target_vector . We calculate the
output_error by subtracting the output of the network output_vector_network from the
target_vector .

import numpy as np
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from scipy.special import expit as activation_function
from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(

(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
self.create_weight_matrices()

def create_weight_matrices(self):
""" A method to initialize the weight matrices of the neur

al network"""
rad = 1 / np.sqrt(self.no_of_in_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_in_hidden = X.rvs((self.no_of_hidden_nodes,

self.no_of_in_nodes))
rad = 1 / np.sqrt(self.no_of_hidden_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_hidden_out = X.rvs((self.no_of_out_nodes,

self.no_of_hidden_nodes))

def train(self, input_vector, target_vector):
"""
input_vector and target_vector can be tuples, lists or nda

rrays
"""
# make sure that the vectors have the right shape
input_vector = np.array(input_vector)
input_vector = input_vector.reshape(input_vector.size, 1)
target_vector = np.array(target_vector).reshape(target_vec

tor.size, 1)

output_vector_hidden = activation_function(self.weights_i
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n_hidden @ input_vector)
output_vector_network = activation_function(self.weights_h

idden_out @ output_vector_hidden)

output_error = target_vector - output_vector_network
tmp = output_error * output_vector_network * (1.0 - outpu

t_vector_network)
self.weights_hidden_out += self.learning_rate * (tmp @ ou

tput_vector_hidden.T)

# calculate hidden errors:
hidden_errors = self.weights_hidden_out.T @ output_error
# update the weights:
tmp = hidden_errors * output_vector_hidden * (1.0 - outpu

t_vector_hidden)
self.weights_in_hidden += self.learning_rate * (tmp @ inpu

t_vector.T)

def run(self, input_vector):
"""
running the network with an input vector 'input_vector'.
'input_vector' can be tuple, list or ndarray
"""
# make sure that input_vector is a column vector:
input_vector = np.array(input_vector)
input_vector = input_vector.reshape(input_vector.size, 1)
input4hidden = activation_function(self.weights_in_hidden

@ input_vector)
output_vector_network = activation_function(self.weights_h

idden_out @ input4hidden)
return output_vector_network

def evaluate(self, data, labels):
"""
Counts how often the actual result corresponds to the
target result.
A result is considered to be correct, if the index of
the maximal value corresponds to the index with the "1"
in the one-hot representation,
e.g.
res = [0.1, 0.132, 0.875]
labels[i] = [0, 0, 1]
"""
corrects, wrongs = 0, 0
for i in range(len(data)):
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res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i].argmax():

corrects += 1
else:

wrongs += 1
return corrects, wrongs

We assume that you save the previous code in a file called neural_networks1.py . We will use it under
this name in the coming examples.

To test this neural network class we need train and test data. We create the data with make_blobs from
sklearn.datasets .

from sklearn.datasets import make_blobs

n_samples = 500
blob_centers = ([2, 6], [6, 2], [7, 7])
n_classes = len(blob_centers)
data, labels = make_blobs(n_samples=n_samples,

centers=blob_centers,
random_state=7)

Let us visualize the previously created data:

import matplotlib.pyplot as plt
colours = ('green', 'red', "yellow")
fig, ax = plt.subplots()

for n_class in range(n_classes):
ax.scatter(data[labels==n_class][:, 0],

data[labels==n_class][:, 1],
c=colours[n_class],
s=40,
label=str(n_class))
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The labels are wrongly represented. They are in a one-dimensional vector:

labels[:7]

We need a one-hot representation for each label. So the labels are represented as

Label One-Hot Representation

0 (1, 0, 0)

1 (0, 1, 0)

2 (0, 0, 1)

We can easily change the labels with the following commands:

import numpy as np
labels = np.arange(n_classes) == labels.reshape(labels.size, 1)
labels = labels.astype(np.float)
labels[:7]

Output: array([2, 2, 1, 0, 2, 0, 1])
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We are ready now to create a train and a test data set:

from sklearn.model_selection import train_test_split

res = train_test_split(data, labels,
train_size=0.8,
test_size=0.2,
random_state=42)

train_data, test_data, train_labels, test_labels = res
train_labels[:10]

We create a neural network with two input nodes, and three output nodes. One output node for each class:

from neural_networks1 import NeuralNetwork

simple_network = NeuralNetwork(no_of_in_nodes=2,
no_of_out_nodes=3,
no_of_hidden_nodes=5,
learning_rate=0.3)

The next step consists in training our network with the data and labels from our training samples:

for i in range(len(train_data)):
simple_network.train(train_data[i], train_labels[i])

Output: array([[0., 0., 1.],
[0., 0., 1.],
[0., 1., 0.],
[1., 0., 0.],
[0., 0., 1.],
[1., 0., 0.],
[0., 1., 0.]])

Output: array([[0., 0., 1.],
[0., 1., 0.],
[1., 0., 0.],
[0., 0., 1.],
[0., 0., 1.],
[1., 0., 0.],
[0., 1., 0.],
[1., 0., 0.],
[1., 0., 0.],
[0., 0., 1.]])
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We now have to check how well our network has learned. For this purpose, we will use the evaluate function:

simple_network.evaluate(train_data, train_labels)

NEURAL NETWORK WITH BIAS NODES

We already introduced the basic idea and necessity of bias nodes in the chapter "Simple Neural Network", in
which we focussed on very simple linearly separable data sets. We learned that a bias node is a node that is
always returning the same output. In other words: It is a node which is not depending on some input and it
does not have any input. The value of a bias node is often set to one, but it can be set to other values as well.
Except for zero, which makes no sense for obvious reasons. If a neural network does not have a bias node in a
given layer, it will not be able to produce output in the next layer that differs from 0 when the feature values
are 0. Generally speaking, we can say that bias nodes are used to increase the flexibility of the network to fit
the data. Usually, there will be not more than one bias node per layer. The only exception is the output layer,
because it makes no sense to add a bias node to this layer.

The following diagram shows the first two layers of our previously used three-layered neural network:

We can see from this diagram that our weight matrix needs one additional column and the bias value has to be
added to the input vector:

Output: (390, 10)
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Again, the situation for the weight matrix between the hidden and the output layer is similar:

The same is true for the corresponding matrix:

The following is a complete Python class implementing our network with bias nodes:

import numpy as np
from scipy.stats import truncnorm
from scipy.special import expit as activation_function

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(

(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)
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class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate,
bias=None):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.no_of_out_nodes = no_of_out_nodes
self.learning_rate = learning_rate
self.bias = bias
self.create_weight_matrices()

def create_weight_matrices(self):
""" A method to initialize the weight matrices of the neur

al
network with optional bias nodes"""
bias_node = 1 if self.bias else 0
rad = 1 / np.sqrt(self.no_of_in_nodes + bias_node)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_in_hidden = X.rvs((self.no_of_hidden_nodes,

self.no_of_in_nodes + bia
s_node))

rad = 1 / np.sqrt(self.no_of_hidden_nodes + bias_node)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_hidden_out = X.rvs((self.no_of_out_nodes,

self.no_of_hidden_nodes
+ bias_node))

def train(self, input_vector, target_vector):
""" input_vector and target_vector can be tuple, list or n

darray """

# make sure that the vectors have the right shap
input_vector = np.array(input_vector)
input_vector = input_vector.reshape(input_vector.size,

1)
if self.bias:

# adding bias node to the end of the input_vector
input_vector = np.concatenate( (input_vector, [[self.b
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ias]]) )
target_vector = np.array(target_vector).reshape(target_vec

tor.size, 1)

output_vector_hidden = activation_function(self.weights_i
n_hidden @ input_vector)

if self.bias:
output_vector_hidden = np.concatenate( (output_vecto

r_hidden, [[self.bias]]) )
output_vector_network = activation_function(self.weights_h

idden_out @ output_vector_hidden)

output_error = target_vector - output_vector_network
# update the weights:
tmp = output_error * output_vector_network * (1.0 - outpu

t_vector_network)
self.weights_hidden_out += self.learning_rate * (tmp @ ou

tput_vector_hidden.T)

# calculate hidden errors:
hidden_errors = self.weights_hidden_out.T @ output_error
# update the weights:
tmp = hidden_errors * output_vector_hidden * (1.0 - outpu

t_vector_hidden)
if self.bias:

x = (tmp @input_vector.T)[:-1,:] # last row cut of
f,

else:
x = tmp @ input_vector.T

self.weights_in_hidden += self.learning_rate * x

def run(self, input_vector):
"""
running the network with an input vector 'input_vector'.
'input_vector' can be tuple, list or ndarray
"""
# make sure that input_vector is a column vector:
input_vector = np.array(input_vector)
input_vector = input_vector.reshape(input_vector.size, 1)
if self.bias:

# adding bias node to the end of the inpuy_vector
input_vector = np.concatenate( (input_vector, [[1]]) )

input4hidden = activation_function(self.weights_in_hidden
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@ input_vector)
if self.bias:

input4hidden = np.concatenate( (input4hidden, [[1]]) )
output_vector_network = activation_function(self.weights_h

idden_out @ input4hidden)
return output_vector_network

def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i].argmax():

corrects += 1
else:

wrongs += 1
return corrects, wrongs

We can use again our previously created classes to test our classifier:

from neural_networks2 import NeuralNetwork

simple_network = NeuralNetwork(no_of_in_nodes=2,
no_of_out_nodes=3,
no_of_hidden_nodes=5,
learning_rate=0.1,
bias=1)

for i in range(len(train_data)):
simple_network.train(train_data[i], train_labels[i])

simple_network.evaluate(train_data, train_labels)

EXERCISE

We created in the chapter "Data Creation" a file strange_flowers.txt in the folder data . Create a
Neural Network to classify the 'flowers':

The data looks like this:

0.000,240.000,100.000,3.020

Output: (382, 18)
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253.000,99.000,13.000,3.875
202.000,107.000,6.000,4.1
186.000,84.000,6.000,4.068
0.000,244.000,103.000,3.386
0.000,246.000,98.000,2.955
241.000,103.000,3.000,4.049
236.000,104.000,12.000,3.087
244.000,109.000,1.000,3.111
253.000,97.000,8.000,3.752
231.000,92.000,1.000,3.488
0.000,250.000,103.000,3.379

SOLUTION:
c = np.loadtxt("data/strange_flowers.txt", delimiter=" ")

data = c[:, :-1]
n_classes = data.shape[1]
labels = c[:, -1]
data[:5]

labels = np.arange(n_classes) == labels.reshape(labels.size, 1)
labels = labels.astype(np.float)
labels[:3]

We need to scale our data, because unscaled input data can result in a slow or unstable learning process. We
will use the function scale from sklearn/preprocessing . It standardizes a dataset along any axis.
It centers to the mean and component wise scale to unit variance.

from sklearn import preprocessing

data = preprocessing.scale(data)
data[:5]
data.shape
labels.shape

Output: array([[242.  , 117.  ,   1.  ,   3.87],
[236.  , 104.  ,   6.  ,   4.11],
[238.  , 116.  ,   5.  ,   3.9 ],
[248.  ,  96.  ,   6.  ,   3.91],
[252.  , 104.  ,   4.  ,   3.75]])

Output: array([[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.]])
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from sklearn.model_selection import train_test_split

res = train_test_split(data, labels,
train_size=0.8,
test_size=0.2,
random_state=42)

train_data, test_data, train_labels, test_labels = res
train_labels[:10]

from neural_networks2 import NeuralNetwork

simple_network = NeuralNetwork(no_of_in_nodes=4,
no_of_out_nodes=4,
no_of_hidden_nodes=20,
learning_rate=0.3)

for i in range(len(train_data)):
simple_network.train(train_data[i], train_labels[i])

simple_network.evaluate(train_data, train_labels)

In [ ]:

Output: (795, 4)

Output: array([[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 1., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[0., 0., 1., 0.]])

Output: (492, 144)
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S O F T M A X  A S  A C T I V A T I O N
F U N C T I O N

SOFTMAX

The previous implementations of neural networks in our tutorial
returned float values in the open interval (0, 1). To make a final
decision we had to interprete the results of the output neurons.
The one with the highest value is a likely candidate but we also
have to see it in relation to the other results. It should be obvious
that in a two classes case (c1 and c2) a result (0.013, 0.95) is a

clear vote for the class c2 but (0.73, 0.89) on the other hand is a

different thing. We could say in this situation 'c2 is more likely

than c1, but c1 has still a high likelihood'. Talking about

likelihoods: The return values are not probabilities. It would be
a lot better to have a normalized output with a probability
function. Here comes the softmax function into the picture. The
softmax function, also known as softargmax or normalized
exponential function, is a function that takes as input a vector of
n real numbers, and normalizes it into a probability distribution
consisting of n probabilities proportional to the exponentials of
the input vector. A probability distribution implies that the result
vector sums up to 1. Needless to say, if some components of the
input vector are negative or greater than one, they will be in the
range (0, 1) after applying Softmax . The Softmax function is
often used in neural networks, to map the results of the output
layer, which is non-normalized, to a probability distribution over
predicted output classes.

The softmax function σ is defined by the following formula:

σ(oi) =
eoi

∑n
j = 1

eoj

where the index i is in (0, ..., n-1) and o is the output vector of the network

o = (o0, o1, …, on − 1)

We can implement the softmax function like this:
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import numpy as np
def softmax(x):

""" applies softmax to an input x"""
e_x = np.exp(x)
return e_x / e_x.sum()

x = np.array([1, 0, 3, 5])
y = softmax(x)
y, x / x.sum()

Avoiding underflow or overflow errors due to floating point instability:

import numpy as np
def softmax(x):

""" applies softmax to an input x"""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()

softmax(x)

x = np.array([0.3, 0.4, 0.00005], np.float64) print(softmax(x)) print(x / x.sum())

DERIVATE OF SOFTMAX FUNCTION

The softmax function can be written as

S(o) : [
o1

o2

⋯

on
] ? [

s1

s2

⋯

sn
]

Per element it looks like this:

Output:: (array([0.01578405, 0.00580663, 0.11662925, 0.86178007]),
array([0.11111111, 0.        , 0.33333333, 0.55555556]))

Output:: array([0.01578405, 0.00580663, 0.11662925, 0.86178007])
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sj(o) =
eoj

n

∑
k = 1

eok

, ∀k = 1,⋯, n

The derivative of softmax can be calculated like this:

∂S

∂O
= [

∂s1

∂o1
⋯

∂s1

∂on

⋯

∂sn

∂o1
⋯

∂sn

∂on

]
The partial derivatives can be solved for every i and j:

∂si

∂oj
=

∂
eoi

∑n
k = 1

eok

∂oj

We will use the quotien rule, i.e.

the derivative of

f(x) =
g(x)

h(x)

is

f ′ (x) =
g ′ (x) ⋅ h(x) − g(x) ⋅ h ′ (x)

(h(x)2

We can set g(x) to eoi and h(x) to ∑n
k = 1

eok

The derivative of g(x) is

g ′ (x) = {eoi, if i = j

0, otherwise

and the derivative of h(x) is
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h ′ (x) = eoj, ∀k = 1,⋯, n

Let's apply the quotient rule by case differentiation now:

1. case: i = j:

eoi ⋅ ∑n
k = 1

eok − eoi ⋅ eoj

(∑n
k = 1

eok)2

We can rewrite this expression as

eoi

∑n
k = 1

eok
⋅

∑n
k = 1

eok − eoj

∑n
k = 1

eok

Now we can reduce the second quotient:

eoi

∑n
k = 1

eok
⋅ (1 −

eoj

∑n
k = 1

eok
)

If we compare this expression with the Definition of si, we can rewrite it to:

si ⋅ (1 − sj)

which is the same as

si ⋅ (1 − si)

because i = j.

1. case: i ≠ j:

0 ⋅ ∑n
k = 1

eok − eoi ⋅ eoj

(∑n
k = 1

eok)2

this can be rewritten as:

−
eoi

∑n
k = 1

eok
⋅

eoj

∑n
k = 1

eok

this gives us finally:
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−si ⋅ sj

We can summarize these two cases and write the derivative as:

g ′ (x) = { si ⋅ (1 − si), if i = j

−si ⋅ sj, otherwise

If we use the Kronecker delta function1, we can get rid of the case differentiation, i.e. we "let the Kronecker
delta do this work":

∂si

∂oj
= si(δij − sj)

Finally we can calculate the derivative of softmax:

∂S

∂O
= [

s1(δ11 − s1) s1(δ12 − s2) ⋯ s1(δ1n − sn)

s2(δ21 − s1) s2(δ22 − s2) ⋯ s2(δ2n − sn)

⋯

sn(δn1 − s1) sn(δn2 − s2) ⋯ sn(δnn − sn)
]

import numpy as np
def softmax(x):

e_x = np.exp(x)
return e_x / e_x.sum()

s = softmax(np.array([0, 4, 5]))

si_sj = - s * s.reshape(3, 1)
print(s)
print(si_sj)
s_der = np.diag(s) + si_sj
s_der
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import numpy as np
from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(

(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

@np.vectorize
def sigmoid(x):

return 1 / (1 + np.e ** -x)

def softmax(x):
e_x = np.exp(x)
return e_x / e_x.sum()

class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate,
softmax=True):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
self.softmax = softmax
self.create_weight_matrices()

def create_weight_matrices(self):
""" A method to initialize the weight matrices of the neur

al network"""
rad = 1 / np.sqrt(self.no_of_in_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)

[0.00490169 0.26762315 0.72747516]
[[-2.40265555e-05 -1.31180548e-03 -3.56585701e-03]
[-1.31180548e-03 -7.16221526e-02 -1.94689196e-01]
[-3.56585701e-03 -1.94689196e-01 -5.29220104e-01]]

Output:: array([[ 0.00487766, -0.00131181, -0.00356586],
[-0.00131181,  0.196001  , -0.1946892 ],
[-0.00356586, -0.1946892 ,  0.19825505]])
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self.weights_in_hidden = X.rvs((self.no_of_hidden_nodes,
self.no_of_in_nodes))

rad = 1 / np.sqrt(self.no_of_hidden_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.weights_hidden_out = X.rvs((self.no_of_out_nodes,

self.no_of_hidden_nodes))

def train(self, input_vector, target_vector):
"""
input_vector and target_vector can be tuples, lists or nda

rrays
"""
# make sure that the vectors have the right shape
input_vector = np.array(input_vector)
input_vector = input_vector.reshape(input_vector.size, 1)
target_vector = np.array(target_vector).reshape(target_vec

tor.size, 1)

output_vector_hidden = sigmoid(self.weights_in_hidden @ in
put_vector)

if self.softmax:
output_vector_network = softmax(self.weights_hidden_ou

t @ output_vector_hidden)
else:

output_vector_network = sigmoid(self.weights_hidden_ou
t @ output_vector_hidden)

output_error = target_vector - output_vector_network
if self.softmax:

ovn = output_vector_network.reshape(output_vector_netw
ork.size,)

si_sj = - ovn * ovn.reshape(self.no_of_out_nodes, 1)
s_der = np.diag(ovn) + si_sj
tmp = s_der @ output_error
self.weights_hidden_out += self.learning_rate * (tmp

@ output_vector_hidden.T)
else:

tmp = output_error * output_vector_network * (1.0 - ou
tput_vector_network)

self.weights_hidden_out += self.learning_rate * (tmp
@ output_vector_hidden.T)
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# calculate hidden errors:
hidden_errors = self.weights_hidden_out.T @ output_error
# update the weights:
tmp = hidden_errors * output_vector_hidden * (1.0 - outpu

t_vector_hidden)
self.weights_in_hidden += self.learning_rate * (tmp @ inpu

t_vector.T)

def run(self, input_vector):
"""
running the network with an input vector 'input_vector'.
'input_vector' can be tuple, list or ndarray
"""
# make sure that input_vector is a column vector:
input_vector = np.array(input_vector)
input_vector = input_vector.reshape(input_vector.size, 1)
input4hidden = sigmoid(self.weights_in_hidden @ input_vect

or)
if self.softmax:

output_vector_network = softmax(self.weights_hidden_ou
t @ input4hidden)

else:
output_vector_network = sigmoid(self.weights_hidden_ou

t @ input4hidden)

return output_vector_network

def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i]:

corrects += 1
else:

wrongs += 1
return corrects, wrongs

from sklearn.datasets import make_blobs

n_samples = 300
samples, labels = make_blobs(n_samples=n_samples,

centers=([2, 6], [6, 2]),
random_state=0)
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import matplotlib.pyplot as plt

colours = ('green', 'red', 'blue', 'magenta', 'yellow', 'cyan')
fig, ax = plt.subplots()

for n_class in range(2):
ax.scatter(samples[labels==n_class][:, 0], samples[labels==n_c

lass][:, 1],
c=colours[n_class], s=40, label=str(n_class))

size_of_learn_sample = int(n_samples * 0.8)
learn_data = samples[:size_of_learn_sample]
test_data = samples[-size_of_learn_sample:]
from neural_networks_softmax import NeuralNetwork

simple_network = NeuralNetwork(no_of_in_nodes=2,
no_of_out_nodes=2,
no_of_hidden_nodes=5,
learning_rate=0.3,
softmax=True)

for x in [(1, 4), (2, 6), (3, 3), (6, 2)]:
y = simple_network.run(x)
print(x, y, s.sum())

labels_one_hot = (np.arange(2) == labels.reshape(labels.size, 1))
labels_one_hot = labels_one_hot.astype(np.float)

for i in range(size_of_learn_sample):
#print(learn_data[i], labels[i], labels_one_hot[i])
simple_network.train(learn_data[i],

labels_one_hot[i])

from collections import Counter

(1, 4) [[0.53325729]
[0.46674271]] 1.0

(2, 6) [[0.50669849]
[0.49330151]] 1.0

(3, 3) [[0.53050147]
[0.46949853]] 1.0

(6, 2) [[0.52530293]
[0.47469707]] 1.0
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evaluation = Counter()
simple_network.evaluate(learn_data, labels)

FOOTNOTES
1 Kronecker delta:

δij = {1, if i = j

0, if i ≠ j

Output:: (236, 4)
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C O N F U S I O N  M A T R I X

In the previous chapters of our Machine
Learning tutorial (Neural Networks with
Python and Numpy and Neural Networks
from Scratch ) we implemented various
algorithms, but we didn't properly
measure the quality of the output. The
main reason was that we used very simple
and small datasets to learn and test. In the
chapter Neural Network: Testing with
MNIST, we will work with large datasets
and ten classes, so we need proper
evaluations tools. We will introduce in
this chapter the concepts of the confusion
matrix:

A confusion matrix is a matrix (table) that can be used to measure the performance of an machine learning
algorithm, usually a supervised learning one. Each row of the confusion matrix represents the instances of an
actual class and each column represents the instances of a predicted class. This is the way we keep it in this
chapter of our tutorial, but it can be the other way around as well, i.e. rows for predicted classes and columns
for actual classes. The name confusion matrix reflects the fact that it makes it easy for us to see what kind of
confusions occur in our classification algorithms. For example the algorithms should have predicted a sample
as ci because the actual class is ci, but the algorithm came out with cj. In this case of mislabelling the element

cm[i, j] will be incremented by one, when the confusion matrix is constructed.

We will define methods to calculate the confusion matrix, precision and recall in the following class.

2-CLASS CASE

In a 2-class case, i.e. "negative" and "positive", the confusion matrix may look like this:

predicted

actual negative positive

negative 11 0

positive 1 12
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The fields of the matrix mean the following:

predicted

actual negative positive

negative TN
True positive

FP
False Positive

positive FN
False negative

TP
True positive

We can define now some important performance measures used in machine learning:

Accuracy:

AC =
TN + TP

TN + FP + FN + TP

The accuracy is not always an adequate performance measure. Let us assume we have 1000 samples. 995 of
these are negative and 5 are positive cases. Let us further assume we have a classifier, which classifies
whatever it will be presented as negative. The accuracy will be a surprising 99.5%, even though the classifier
could not recognize any positive samples.

Recall aka. True Positive Rate:

recall =
TP

FN + TP

True Negative Rate:

TNR =
FP

TN + FP

Precision:

precision :
TP

FP + TP
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MULTI-CLASS CASE

To measure the results of machine learning algorithms, the previous confusion matrix will not be sufficient.
We will need a generalization for the multi-class case.

Let us assume that we have a sample of 25 animals, e.g. 7 cats, 8 dogs, and 10 snakes, most probably Python
snakes. The confusion matrix of our recognition algorithm may look like the following table:

predicted

actual dog cat snake

dog 6 2 0

cat 1 6 0

snake 1 1 8

In this confusion matrix, the system correctly predicted six of the eight actual dogs, but in two cases it took a
dog for a cat. The seven acutal cats were correctly recognized in six cases but in one case a cat was taken to be
a dog. Usually, it is hard to take a snake for a dog or a cat, but this is what happened to our classifier in two
cases. Yet, eight out of ten snakes had been correctly recognized. (Most probably this machine learning
algorithm was not written in a Python program, because Python should properly recognize its own species :-) )

You can see that all correct predictions are located in the diagonal of the table, so prediction errors can be
easily found in the table, as they will be represented by values outside the diagonal.

We can generalize this to the multi-class case. To do this we summarize over the rows and columns of the
confusion matrix. Given that the matrix is oriented as above, i.e., that a given row of the matrix corresponds to
specific value for the "truth", we have:

Precisioni =
Mii

∑jMji

Recalli =
Mii

∑jMij

This means, precision is the fraction of cases where the algorithm correctly predicted class i out of all
instances where the algorithm predicted i (correctly and incorrectly). recall on the other hand is the fraction of
cases where the algorithm correctly predicted i out of all of the cases which are labelled as i.

Let us apply this to our example:
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The precision for our animals can be calculated as

precisiondogs = 6/ (6 + 1 + 1) = 3/4 = 0.75

precisioncats = 6/ (2 + 6 + 1) = 6/9 = 0.67

precisionsnakes = 8/ (0 + 0 + 8) = 1

The recall is calculated like this:

recalldogs = 6/ (6 + 2 + 0) = 3/4 = 0.75

recallcats = 6/ (1 + 6 + 0) = 6/7 = 0.86

recallsnakes = 8/ (1 + 1 + 8) = 4/5 = 0.8

EXAMPLE

We are ready now to code this into Python. The following code shows a confusion matrix for a multi-class
machine learning problem with ten labels, so for example an algorithms for recognizing the ten digits from
handwritten characters.

If you are not familiar with Numpy and Numpy arrays, we recommend our tutorial on Numpy.

import numpy as np
cm = np.array(
[[5825, 1, 49, 23, 7, 46, 30, 12, 21, 26],
[ 1, 6654, 48, 25, 10, 32, 19, 62, 111, 10],
[ 2, 20, 5561, 69, 13, 10, 2, 45, 18, 2],
[ 6, 26, 99, 5786, 5, 111, 1, 41, 110, 79],
[ 4, 10, 43, 6, 5533, 32, 11, 53, 34, 79],
[ 3, 1, 2, 56, 0, 4954, 23, 0, 12, 5],
[ 31, 4, 42, 22, 45, 103, 5806, 3, 34, 3],
[ 0, 4, 30, 29, 5, 6, 0, 5817, 2, 28],
[ 35, 6, 63, 58, 8, 59, 26, 13, 5394, 24],
[ 16, 16, 21, 57, 216, 68, 0, 219, 115, 5693]])

The functions 'precision' and 'recall' calculate values for a label, whereas the function
'precision_macro_average' the precision for the whole classification problem calculates.

def precision(label, confusion_matrix):
col = confusion_matrix[:, label]
return confusion_matrix[label, label] / col.sum()
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def recall(label, confusion_matrix):
row = confusion_matrix[label, :]
return confusion_matrix[label, label] / row.sum()

def precision_macro_average(confusion_matrix):
rows, columns = confusion_matrix.shape
sum_of_precisions = 0
for label in range(rows):

sum_of_precisions += precision(label, confusion_matrix)
return sum_of_precisions / rows

def recall_macro_average(confusion_matrix):
rows, columns = confusion_matrix.shape
sum_of_recalls = 0
for label in range(columns):

sum_of_recalls += recall(label, confusion_matrix)
return sum_of_recalls / columns

print("label precision recall")
for label in range(10):

print(f"{label:5d} {precision(label, cm):9.3f} {recall(label,
cm):6.3f}")

print("precision total:", precision_macro_average(cm))

print("recall total:", recall_macro_average(cm))

def accuracy(confusion_matrix):
diagonal_sum = confusion_matrix.trace()
sum_of_all_elements = confusion_matrix.sum()

label precision recall
0     0.983  0.964
1     0.987  0.954
2     0.933  0.968
3     0.944  0.924
4     0.947  0.953
5     0.914  0.980
6     0.981  0.953
7     0.928  0.982
8     0.922  0.949
9     0.957  0.887

precision total: 0.949688556405
recall total: 0.951453154788
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return diagonal_sum / sum_of_all_elements
accuracy(cm)

Output: : 0.95038333333333336
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N E U R A L  N E T W O R K

USING MNIST

The MNIST database (Modified National Institute of
Standards and Technology database) of handwritten
digits consists of a training set of 60,000 examples,
and a test set of 10,000 examples. It is a subset of a
larger set available from NIST. Additionally, the
black and white images from NIST were size-
normalized and centered to fit into a 28x28 pixel
bounding box and anti-aliased, which introduced
grayscale levels.

This database is well liked for training and testing in
the field of machine learning and image processing.
It is a remixed subset of the original NIST datasets.
One half of the 60,000 training images consist of
images from NIST's testing dataset and the other half
from Nist's training set. The 10,000 images from the
testing set are similarly assembled.

The MNIST dataset is used by researchers to test and
compare their research results with others. The
lowest error rates in literature are as low as 0.21

percent.1

READING THE MNIST DATA SET

The images from the data set have the size 28 x 28. They are saved in the csv data files mnist_train.csv and
mnist_test.csv.

Every line of these files consists of an image, i.e. 785 numbers between 0 and 255.

The first number of each line is the label, i.e. the digit which is depicted in the image. The following 784
numbers are the pixels of the 28 x 28 image.

import numpy as np
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import matplotlib.pyplot as plt
image_size = 28 # width and length
no_of_different_labels = 10 #  i.e. 0, 1, 2, 3, ..., 9
image_pixels = image_size * image_size
data_path = "data/mnist/"
train_data = np.loadtxt(data_path + "mnist_train.csv",

delimiter=",")
test_data = np.loadtxt(data_path + "mnist_test.csv",

delimiter=",")
test_data[:10]

test_data[test_data==255]
test_data.shape

The images of the MNIST dataset are greyscale and the pixels range between 0 and 255 including both
bounding values. We will map these values into an interval from [0.01, 1] by multiplying each pixel by 0.99 /
255 and adding 0.01 to the result. This way, we avoid 0 values as inputs, which are capable of preventing
weight updates, as we we seen in the introductory chapter.

fac = 0.99 / 255
train_imgs = np.asfarray(train_data[:, 1:]) * fac + 0.01
test_imgs = np.asfarray(test_data[:, 1:]) * fac + 0.01

train_labels = np.asfarray(train_data[:, :1])
test_labels = np.asfarray(test_data[:, :1])

We need the labels in our calculations in a one-hot representation. We have 10 digits from 0 to 9, i.e. lr =
np.arange(10).

Turning a label into one-hot representation can be achieved with the command: (lr==label).astype(np.int)

We demonstrate this in the following:

import numpy as np

Output: : array([[7., 0., 0., ..., 0., 0., 0.],
[2., 0., 0., ..., 0., 0., 0.],
[1., 0., 0., ..., 0., 0., 0.],
...,
[9., 0., 0., ..., 0., 0., 0.],
[5., 0., 0., ..., 0., 0., 0.],
[9., 0., 0., ..., 0., 0., 0.]])

Output: : (10000, 785)
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lr = np.arange(10)

for label in range(10):
one_hot = (lr==label).astype(np.int)
print("label: ", label, " in one-hot representation: ", one_ho

t)

We are ready now to turn our labelled images into one-hot representations. Instead of zeroes and one, we
create 0.01 and 0.99, which will be better for our calculations:

lr = np.arange(no_of_different_labels)

# transform labels into one hot representation
train_labels_one_hot = (lr==train_labels).astype(np.float)
test_labels_one_hot = (lr==test_labels).astype(np.float)

# we don't want zeroes and ones in the labels neither:
train_labels_one_hot[train_labels_one_hot==0] = 0.01
train_labels_one_hot[train_labels_one_hot==1] = 0.99
test_labels_one_hot[test_labels_one_hot==0] = 0.01
test_labels_one_hot[test_labels_one_hot==1] = 0.99

Before we start using the MNIST data sets with our neural network, we will have a look at some images:

for i in range(10):
img = train_imgs[i].reshape((28,28))
plt.imshow(img, cmap="Greys")
plt.show()

label:  0  in one-hot representation:  [1 0 0 0 0 0 0 0 0 0]
label:  1  in one-hot representation:  [0 1 0 0 0 0 0 0 0 0]
label:  2  in one-hot representation:  [0 0 1 0 0 0 0 0 0 0]
label:  3  in one-hot representation:  [0 0 0 1 0 0 0 0 0 0]
label:  4  in one-hot representation:  [0 0 0 0 1 0 0 0 0 0]
label:  5  in one-hot representation:  [0 0 0 0 0 1 0 0 0 0]
label:  6  in one-hot representation:  [0 0 0 0 0 0 1 0 0 0]
label:  7  in one-hot representation:  [0 0 0 0 0 0 0 1 0 0]
label:  8  in one-hot representation:  [0 0 0 0 0 0 0 0 1 0]
label:  9  in one-hot representation:  [0 0 0 0 0 0 0 0 0 1]
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DUMPING THE DATA FOR FASTER RELOAD

You may have noticed that it is quite slow to read in the data from the csv files.

We will save the data in binary format with the dump function from the pickle module:

import pickle
with open("data/mnist/pickled_mnist.pkl", "bw") as fh:

data = (train_imgs,
test_imgs,
train_labels,
test_labels,
train_labels_one_hot,
test_labels_one_hot)

pickle.dump(data, fh)

We are able now to read in the data by using pickle.load. This is a lot faster than using loadtxt on the csv files:

import pickle
with open("data/mnist/pickled_mnist.pkl", "br") as fh:

data = pickle.load(fh)

train_imgs = data[0]
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test_imgs = data[1]
train_labels = data[2]
test_labels = data[3]
train_labels_one_hot = data[4]
test_labels_one_hot = data[5]

image_size = 28 # width and length
no_of_different_labels = 10 #  i.e. 0, 1, 2, 3, ..., 9
image_pixels = image_size * image_size

CLASSIFYING THE DATA

We will use the following neuronal network class for our first classification:

import numpy as np
@np.vectorize
def sigmoid(x):

return 1 / (1 + np.e ** -x)
activation_function = sigmoid

from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm((low - mean) / sd,

(upp - mean) / sd,
loc=mean,
scale=sd)

class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
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self.create_weight_matrices()

def create_weight_matrices(self):
"""
A method to initialize the weight
matrices of the neural network
"""
rad = 1 / np.sqrt(self.no_of_in_nodes)
X = truncated_normal(mean=0,

sd=1,
low=-rad,
upp=rad)

self.wih = X.rvs((self.no_of_hidden_nodes,
self.no_of_in_nodes))

rad = 1 / np.sqrt(self.no_of_hidden_nodes)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.who = X.rvs((self.no_of_out_nodes,

self.no_of_hidden_nodes))

def train(self, input_vector, target_vector):
"""
input_vector and target_vector can
be tuple, list or ndarray
"""

input_vector = np.array(input_vector, ndmin=2).T
target_vector = np.array(target_vector, ndmin=2).T

output_vector1 = np.dot(self.wih,
input_vector)

output_hidden = activation_function(output_vector1)

output_vector2 = np.dot(self.who,
output_hidden)

output_network = activation_function(output_vector2)

output_errors = target_vector - output_network
# update the weights:
tmp = output_errors * output_network \

* (1.0 - output_network)
tmp = self.learning_rate * np.dot(tmp,

output_hidden.T)
self.who += tmp
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# calculate hidden errors:
hidden_errors = np.dot(self.who.T,

output_errors)
# update the weights:
tmp = hidden_errors * output_hidden * \

(1.0 - output_hidden)
self.wih += self.learning_rate \

* np.dot(tmp, input_vector.T)

def run(self, input_vector):
# input_vector can be tuple, list or ndarray
input_vector = np.array(input_vector, ndmin=2).T

output_vector = np.dot(self.wih,
input_vector)

output_vector = activation_function(output_vector)

output_vector = np.dot(self.who,
output_vector)

output_vector = activation_function(output_vector)

return output_vector

def confusion_matrix(self, data_array, labels):
cm = np.zeros((10, 10), int)
for i in range(len(data_array)):

res = self.run(data_array[i])
res_max = res.argmax()
target = labels[i][0]
cm[res_max, int(target)] += 1

return cm

def precision(self, label, confusion_matrix):
col = confusion_matrix[:, label]
return confusion_matrix[label, label] / col.sum()

def recall(self, label, confusion_matrix):
row = confusion_matrix[label, :]
return confusion_matrix[label, label] / row.sum()
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def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i]:

corrects += 1
else:

wrongs += 1
return corrects, wrongs

ANN = NeuralNetwork(no_of_in_nodes = image_pixels,
no_of_out_nodes = 10,
no_of_hidden_nodes = 100,
learning_rate = 0.1)

for i in range(len(train_imgs)):
ANN.train(train_imgs[i], train_labels_one_hot[i])

for i in range(20):
res = ANN.run(test_imgs[i])
print(test_labels[i], np.argmax(res), np.max(res))

[7.] 7 0.9829245583409039
[2.] 2 0.7372766887508578
[1.] 1 0.9881823673106839
[0.] 0 0.9873289971465894
[4.] 4 0.9456335245615916
[1.] 1 0.9880120617106172
[4.] 4 0.976550583573903
[9.] 9 0.964909168118122
[5.] 6 0.36615932726182665
[9.] 9 0.9848677489827125
[0.] 0 0.9204097234781773
[6.] 6 0.8897871402453337
[9.] 9 0.9936811621891628
[0.] 0 0.9832119513084644
[1.] 1 0.988750833073612
[5.] 5 0.9156741221523511
[9.] 9 0.9812577974620423
[7.] 7 0.9888560485875889
[3.] 3 0.8772868556722897
[4.] 4 0.9900030761222965
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corrects, wrongs = ANN.evaluate(train_imgs, train_labels)
print("accuracy train: ", corrects / ( corrects + wrongs))
corrects, wrongs = ANN.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))

cm = ANN.confusion_matrix(train_imgs, train_labels)
print(cm)

for i in range(10):
print("digit: ", i, "precision: ", ANN.precision(i, cm), "reca

ll: ", ANN.recall(i, cm))
accuracy train:  0.9469166666666666
accuracy: test 0.9459
[[5802    0   53   21    9   42   35    8   14   20]
[   1 6620   45   22    6   29   14   50   75    7]
[   5   22 5486   51   10   11    5   53   11    3]
[   6   36  114 5788    2  114    1   35   76   72]
[   8   16   54    8 5439   41   10   52   25   90]
[   5    2    3   44    0 4922   20    3    5   11]
[  37    4   54   19   71   72 5789    3   41    4]
[   0    5   31   38    7    4    0 5762    1   32]
[  52   20  103   83    9  102   43   21 5535   38]
[   7   17   15   57  289   84    1  278   68 5672]]

digit:  0 precision:  0.9795711632618606 recall:  0.96635576282478
35
digit:  1 precision:  0.9819044793829724 recall:  0.96375018197699
81
digit:  2 precision:  0.9207787848271232 recall:  0.96977196393848
33
digit:  3 precision:  0.9440548034578372 recall:  0.92696989109545
16
digit:  4 precision:  0.9310167750770284 recall:  0.94706599338324
91
digit:  5 precision:  0.9079505626268216 recall:  0.98145563310069
79
digit:  6 precision:  0.978202095302467 recall:  0.949950771250410
3
digit:  7 precision:  0.9197126895450918 recall:  0.97993197278911
57
digit:  8 precision:  0.945992138096052 recall:  0.921578421578421
6
digit:  9 precision:  0.953437552529837 recall:  0.87422934648582

NEURAL NETWORK 202



M U L T I P L E  R U N S

We can repeat the training multiple times. Each run is called an "epoch".

epochs = 3

NN = NeuralNetwork(no_of_in_nodes = image_pixels,
no_of_out_nodes = 10,
no_of_hidden_nodes = 100,
learning_rate = 0.1)

for epoch in range(epochs):
print("epoch: ", epoch)
for i in range(len(train_imgs)):

NN.train(train_imgs[i],
train_labels_one_hot[i])

corrects, wrongs = NN.evaluate(train_imgs, train_labels)
print("accuracy train: ", corrects / ( corrects + wrongs))
corrects, wrongs = NN.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))

We want to do the multiple training of the training set inside of our network. To this purpose we rewrite the
method train and add a method train_single. train_single is more or less what we called 'train' before. Whereas
the new 'train' method is doing the epoch counting. For testing purposes, we save the weight matrices after
each epoch in
the list intermediate_weights. This list is returned as the output of train:

import numpy as np
@np.vectorize
def sigmoid(x):

epoch:  0
accruracy train:  0.94515
accruracy: test 0.9459
epoch:  1
accruracy train:  0.9626833333333333
accruracy: test 0.9582
epoch:  2
accruracy train:  0.96995
accruracy: test 0.9626
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return 1 / (1 + np.e ** -x)
activation_function = sigmoid

from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm((low - mean) / sd,

(upp - mean) / sd,
loc=mean,
scale=sd)

class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
self.create_weight_matrices()

def create_weight_matrices(self):
""" A method to initialize the weight matrices of the neur

al network"""
rad = 1 / np.sqrt(self.no_of_in_nodes)
X = truncated_normal(mean=0,

sd=1,
low=-rad,
upp=rad)

self.wih = X.rvs((self.no_of_hidden_nodes,
self.no_of_in_nodes))

rad = 1 / np.sqrt(self.no_of_hidden_nodes)
X = truncated_normal(mean=0,

sd=1,
low=-rad,
upp=rad)

self.who = X.rvs((self.no_of_out_nodes,
self.no_of_hidden_nodes))

def train_single(self, input_vector, target_vector):
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"""
input_vector and target_vector can be tuple,
list or ndarray
"""

output_vectors = []
input_vector = np.array(input_vector, ndmin=2).T
target_vector = np.array(target_vector, ndmin=2).T

output_vector1 = np.dot(self.wih,
input_vector)

output_hidden = activation_function(output_vector1)

output_vector2 = np.dot(self.who,
output_hidden)

output_network = activation_function(output_vector2)

output_errors = target_vector - output_network
# update the weights:
tmp = output_errors * output_network * \

(1.0 - output_network)
tmp = self.learning_rate * np.dot(tmp,

output_hidden.T)
self.who += tmp

# calculate hidden errors:
hidden_errors = np.dot(self.who.T,

output_errors)
# update the weights:
tmp = hidden_errors * output_hidden * (1.0 - output_hidde

n)
self.wih += self.learning_rate * np.dot(tmp, input_vecto

r.T)

def train(self, data_array,
labels_one_hot_array,
epochs=1,
intermediate_results=False):

intermediate_weights = []
for epoch in range(epochs):

print("*", end="")
for i in range(len(data_array)):
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self.train_single(data_array[i],
labels_one_hot_array[i])

if intermediate_results:
intermediate_weights.append((self.wih.copy(),

self.who.copy()))
return intermediate_weights

def confusion_matrix(self, data_array, labels):
cm = {}
for i in range(len(data_array)):

res = self.run(data_array[i])
res_max = res.argmax()
target = labels[i][0]
if (target, res_max) in cm:

cm[(target, res_max)] += 1
else:

cm[(target, res_max)] = 1
return cm

def run(self, input_vector):
""" input_vector can be tuple, list or ndarray """

input_vector = np.array(input_vector, ndmin=2).T

output_vector = np.dot(self.wih,
input_vector)

output_vector = activation_function(output_vector)

output_vector = np.dot(self.who,
output_vector)

output_vector = activation_function(output_vector)

return output_vector

def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i]:

corrects += 1
else:

wrongs += 1
return corrects, wrongs
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epochs = 10

ANN = NeuralNetwork(no_of_in_nodes = image_pixels,
no_of_out_nodes = 10,
no_of_hidden_nodes = 100,
learning_rate = 0.15)

weights = ANN.train(train_imgs,
train_labels_one_hot,
epochs=epochs,
intermediate_results=True)

cm = ANN.confusion_matrix(train_imgs, train_labels)

print(ANN.run(train_imgs[i]))

cm = list(cm.items())
print(sorted(cm))

**********

[[2.60149245e-03]
[2.52542556e-03]
[6.57990628e-03]
[1.32663729e-03]
[1.34985384e-03]
[2.63840265e-04]
[2.18329159e-04]
[1.32693720e-04]
[9.84326084e-01]
[4.34559417e-02]]
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In [ ]:

for i in range(epochs):
print("epoch: ", i)
ANN.wih = weights[i][0]
ANN.who = weights[i][1]

corrects, wrongs = ANN.evaluate(train_imgs, train_labels)
print("accuracy train: ", corrects / ( corrects + wrongs))
corrects, wrongs = ANN.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))

[((0.0, 0), 5853), ((0.0, 1), 1), ((0.0, 2), 3), ((0.0, 4), 8),
((0.0, 5), 2), ((0.0, 6), 12), ((0.0, 7), 7), ((0.0, 8), 27),
((0.0, 9), 10), ((1.0, 0), 1), ((1.0, 1), 6674), ((1.0, 2), 17),
((1.0, 3), 5), ((1.0, 4), 14), ((1.0, 5), 2), ((1.0, 6), 1),
((1.0, 7), 6), ((1.0, 8), 15), ((1.0, 9), 7), ((2.0, 0), 37),
((2.0, 1), 14), ((2.0, 2), 5791), ((2.0, 3), 17), ((2.0, 4), 11),
((2.0, 5), 2), ((2.0, 6), 10), ((2.0, 7), 15), ((2.0, 8), 51),
((2.0, 9), 10), ((3.0, 0), 16), ((3.0, 1), 5), ((3.0, 2), 34),
((3.0, 3), 5869), ((3.0, 4), 8), ((3.0, 5), 57), ((3.0, 6), 4),
((3.0, 7), 20), ((3.0, 8), 58), ((3.0, 9), 60), ((4.0, 0), 14),
((4.0, 1), 6), ((4.0, 2), 8), ((4.0, 3), 1), ((4.0, 4), 5678),
((4.0, 5), 1), ((4.0, 6), 14), ((4.0, 7), 5), ((4.0, 8), 11),
((4.0, 9), 104), ((5.0, 0), 7), ((5.0, 1), 2), ((5.0, 2), 6),
((5.0, 3), 27), ((5.0, 4), 5), ((5.0, 5), 5312), ((5.0, 6), 12),
((5.0, 7), 5), ((5.0, 8), 20), ((5.0, 9), 25), ((6.0, 0), 32),
((6.0, 1), 5), ((6.0, 2), 1), ((6.0, 4), 10), ((6.0, 5), 52),
((6.0, 6), 5791), ((6.0, 8), 26), ((6.0, 9), 1), ((7.0, 0), 5),
((7.0, 1), 11), ((7.0, 2), 22), ((7.0, 3), 2), ((7.0, 4), 17),
((7.0, 5), 3), ((7.0, 6), 2), ((7.0, 7), 6074), ((7.0, 8), 26),
((7.0, 9), 103), ((8.0, 0), 20), ((8.0, 1), 18), ((8.0, 2), 9),
((8.0, 3), 14), ((8.0, 4), 27), ((8.0, 5), 24), ((8.0, 6), 9),
((8.0, 7), 8), ((8.0, 8), 5668), ((8.0, 9), 54), ((9.0, 0), 26),
((9.0, 1), 2), ((9.0, 2), 2), ((9.0, 3), 16), ((9.0, 4), 69),
((9.0, 5), 14), ((9.0, 6), 7), ((9.0, 7), 19), ((9.0, 8), 15),
((9.0, 9), 5779)]
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W I T H  B I A S  N O D E S

import numpy as np
@np.vectorize
def sigmoid(x):

return 1 / (1 + np.e ** -x)
activation_function = sigmoid

from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm((low - mean) / sd,

(upp - mean) / sd,
loc=mean,
scale=sd)

class NeuralNetwork:

def __init__(self,
no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate,
bias=None

):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
self.bias = bias
self.create_weight_matrices()

def create_weight_matrices(self):
"""
A method to initialize the weight
matrices of the neural network with
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optional bias nodes
"""

bias_node = 1 if self.bias else 0

rad = 1 / np.sqrt(self.no_of_in_nodes + bias_node)
X = truncated_normal(mean=0,

sd=1,
low=-rad,
upp=rad)

self.wih = X.rvs((self.no_of_hidden_nodes,
self.no_of_in_nodes + bias_node))

rad = 1 / np.sqrt(self.no_of_hidden_nodes + bias_node)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.who = X.rvs((self.no_of_out_nodes,

self.no_of_hidden_nodes + bias_node))

def train(self, input_vector, target_vector):
"""
input_vector and target_vector can
be tuple, list or ndarray
"""

bias_node = 1 if self.bias else 0
if self.bias:

# adding bias node to the end of the inpuy_vector
input_vector = np.concatenate((input_vector,

[self.bias]) )

input_vector = np.array(input_vector, ndmin=2).T
target_vector = np.array(target_vector, ndmin=2).T

output_vector1 = np.dot(self.wih,
input_vector)

output_hidden = activation_function(output_vector1)

if self.bias:
output_hidden = np.concatenate((output_hidden,

[[self.bias]]) )
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output_vector2 = np.dot(self.who,
output_hidden)

output_network = activation_function(output_vector2)

output_errors = target_vector - output_network
# update the weights:
tmp = output_errors * output_network * (1.0 - output_netwo

rk)
tmp = self.learning_rate * np.dot(tmp, output_hidden.T)
self.who += tmp

# calculate hidden errors:
hidden_errors = np.dot(self.who.T,

output_errors)
# update the weights:
tmp = hidden_errors * output_hidden * (1.0 - output_hidde

n)
if self.bias:

x = np.dot(tmp, input_vector.T)[:-1,:]
else:

x = np.dot(tmp, input_vector.T)
self.wih += self.learning_rate * x

def run(self, input_vector):
"""
input_vector can be tuple, list or ndarray
"""

if self.bias:
# adding bias node to the end of the inpuy_vector
input_vector = np.concatenate((input_vector, [1]) )

input_vector = np.array(input_vector, ndmin=2).T

output_vector = np.dot(self.wih,
input_vector)

output_vector = activation_function(output_vector)

if self.bias:
output_vector = np.concatenate( (output_vector,

[[1]]) )
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output_vector = np.dot(self.who,
output_vector)

output_vector = activation_function(output_vector)
return output_vector

def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i]:

corrects += 1
else:

wrongs += 1
return corrects, wrongs

ANN = NeuralNetwork(no_of_in_nodes=image_pixels,
no_of_out_nodes=10,
no_of_hidden_nodes=200,
learning_rate=0.1,
bias=None)

for i in range(len(train_imgs)):
ANN.train(train_imgs[i], train_labels_one_hot[i])

for i in range(20):
res = ANN.run(test_imgs[i])
print(test_labels[i], np.argmax(res), np.max(res))
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corrects, wrongs = ANN.evaluate(train_imgs, train_labels)
print("accuracy train: ", corrects / ( corrects + wrongs))
corrects, wrongs = ANN.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))

VERSION WITH BIAS AND EPOCHS:
import numpy as np
@np.vectorize
def sigmoid(x):

return 1 / (1 + np.e ** -x)
activation_function = sigmoid

from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm((low - mean) / sd,

[7.] 7 0.9951478957895473
[2.] 2 0.9167137305226186
[1.] 1 0.9930670538508068
[0.] 0 0.9729093609525741
[4.] 4 0.9475097483176407
[1.] 1 0.9919906877733081
[4.] 4 0.9390079959736829
[9.] 9 0.9815469745110644
[5.] 5 0.23871278844097427
[9.] 9 0.9863859218561386
[0.] 0 0.9667234471027278
[6.] 6 0.8856024953669486
[9.] 9 0.9928943830319253
[0.] 0 0.96922568081586
[1.] 1 0.9899747475376088
[5.] 5 0.9595147911735664
[9.] 9 0.9958119066147573
[7.] 7 0.9883146384365381
[3.] 3 0.8706223167904136
[4.] 4 0.9912284156702522

accruracy train:  0.9555666666666667
accruracy: test 0.9544
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(upp - mean) / sd,
loc=mean,
scale=sd)

class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate,
bias=None

):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes

self.no_of_hidden_nodes = no_of_hidden_nodes

self.learning_rate = learning_rate
self.bias = bias
self.create_weight_matrices()

def create_weight_matrices(self):
"""
A method to initialize the weight matrices
of the neural network with optional
bias nodes"""

bias_node = 1 if self.bias else 0

rad = 1 / np.sqrt(self.no_of_in_nodes + bias_node)
X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
self.wih = X.rvs((self.no_of_hidden_nodes,

self.no_of_in_nodes + bias_node))

rad = 1 / np.sqrt(self.no_of_hidden_nodes + bias_node)
X = truncated_normal(mean=0,

sd=1,
low=-rad,
upp=rad)

self.who = X.rvs((self.no_of_out_nodes,
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self.no_of_hidden_nodes + bias_node))

def train_single(self, input_vector, target_vector):
"""
input_vector and target_vector can be tuple,
list or ndarray
"""

bias_node = 1 if self.bias else 0
if self.bias:

# adding bias node to the end of the inpuy_vector
input_vector = np.concatenate( (input_vector,

[self.bias]) )

output_vectors = []
input_vector = np.array(input_vector, ndmin=2).T
target_vector = np.array(target_vector, ndmin=2).T

output_vector1 = np.dot(self.wih,
input_vector)

output_hidden = activation_function(output_vector1)

if self.bias:
output_hidden = np.concatenate((output_hidden,

[[self.bias]]) )

output_vector2 = np.dot(self.who,
output_hidden)

output_network = activation_function(output_vector2)

output_errors = target_vector - output_network
# update the weights:
tmp = output_errors * output_network * (1.0 - output_netwo

rk)
tmp = self.learning_rate * np.dot(tmp,

output_hidden.T)
self.who += tmp

# calculate hidden errors:
hidden_errors = np.dot(self.who.T,

output_errors)
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# update the weights:
tmp = hidden_errors * output_hidden * (1.0 - output_hidde

n)
if self.bias:

x = np.dot(tmp, input_vector.T)[:-1,:]
else:

x = np.dot(tmp, input_vector.T)
self.wih += self.learning_rate * x

def train(self, data_array,
labels_one_hot_array,
epochs=1,
intermediate_results=False):

intermediate_weights = []
for epoch in range(epochs):

for i in range(len(data_array)):
self.train_single(data_array[i],

labels_one_hot_array[i])
if intermediate_results:

intermediate_weights.append((self.wih.copy(),
self.who.copy()))

return intermediate_weights

def run(self, input_vector):
# input_vector can be tuple, list or ndarray

if self.bias:
# adding bias node to the end of the inpuy_vector
input_vector = np.concatenate( (input_vector,

[self.bias]) )
input_vector = np.array(input_vector, ndmin=2).T

output_vector = np.dot(self.wih,
input_vector)

output_vector = activation_function(output_vector)

if self.bias:
output_vector = np.concatenate( (output_vector,

[[self.bias]]) )
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output_vector = np.dot(self.who,
output_vector)

output_vector = activation_function(output_vector)

return output_vector

def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i]:

corrects += 1
else:

wrongs += 1
return corrects, wrongs

epochs = 12

network = NeuralNetwork(no_of_in_nodes=image_pixels,
no_of_out_nodes=10,
no_of_hidden_nodes=100,
learning_rate=0.1,
bias=None)

weights = network.train(train_imgs,
train_labels_one_hot,
epochs=epochs,
intermediate_results=True)

for epoch in range(epochs):
print("epoch: ", epoch)
network.wih = weights[epoch][0]
network.who = weights[epoch][1]
corrects, wrongs = network.evaluate(train_imgs,

train_labels)
print("accuracy train: ", corrects / ( corrects + wrong

s))
corrects, wrongs = network.evaluate(test_imgs,

test_labels)
print("accuracy test: ", corrects / ( corrects + wrongs))
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In [ ]:

epochs = 12

with open("nist_tests.csv", "w") as fh_out:
for hidden_nodes in [20, 50, 100, 120, 150]:

for learning_rate in [0.01, 0.05, 0.1, 0.2]:
for bias in [None, 0.5]:

network = NeuralNetwork(no_of_in_nodes=image_pixel

epoch:  0
accruracy train:  0.9428166666666666
accruracy test:  0.9415
epoch:  1
accruracy train:  0.9596666666666667
accruracy test:  0.9548
epoch:  2
accruracy train:  0.9673166666666667
accruracy test:  0.9599
epoch:  3
accruracy train:  0.9693
accruracy test:  0.9601
epoch:  4
accruracy train:  0.97195
accruracy test:  0.9631
epoch:  5
accruracy train:  0.9750666666666666
accruracy test:  0.9659
epoch:  6
accruracy train:  0.97705
accruracy test:  0.9662
epoch:  7
accruracy train:  0.9767666666666667
accruracy test:  0.9644
epoch:  8
accruracy train:  0.9765666666666667
accruracy test:  0.9643
epoch:  9
accruracy train:  0.9771
accruracy test:  0.9643
epoch:  10
accruracy train:  0.9780333333333333
accruracy test:  0.9627
epoch:  11
accruracy train:  0.97875
accruracy test:  0.9638
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s,
no_of_out_nodes=10,
no_of_hidden_nodes=hidden_n

odes,
learning_rate=learning_rat

e,
bias=bias)

weights = network.train(train_imgs,
train_labels_one_hot,
epochs=epochs,
intermediate_results=True)

for epoch in range(epochs):
print("*", end="")
network.wih = weights[epoch][0]
network.who = weights[epoch][1]
train_corrects, train_wrongs = network.evaluat

e(train_imgs,

train_labels)

test_corrects, test_wrongs = network.evaluat
e(test_imgs,

test_labels)
outstr = str(hidden_nodes) + " " + str(learnin

g_rate) + " " + str(bias)
outstr += " " + str(epoch) + " "
outstr += str(train_corrects / (train_correct

s + train_wrongs)) + " "
outstr += str(train_wrongs / (train_corrects

+ train_wrongs)) + " "
outstr += str(test_corrects / (test_corrects

+ test_wrongs)) + " "
outstr += str(test_wrongs / (test_corrects + t

est_wrongs))

fh_out.write(outstr + "\n" )
fh_out.flush()

The file nist_tests_20_50_100_120_150.csv contains the results from a run of the previous program.

************************************************************************************************************************************************************
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N E T W O R K S  W I T H  M U L T I P L E
H I D D E N  L A Y E R S

We will write a new neural network class, in which we can define an arbitrary number of hidden layers. The
code is also improved, because the weight matrices are now build inside of a loop instead redundant code:

In [ ]:

import numpy as np
from scipy.special import expit as activation_function
from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm((low - mean) / sd,

(upp - mean) / sd,
loc=mean,
scale=sd)

class NeuralNetwork:

def __init__(self,
network_structure, # ie. [input_nodes, hidden1_no

des, ... , hidden_n_nodes, output_nodes]
learning_rate,
bias=None

):

self.structure = network_structure
self.learning_rate = learning_rate
self.bias = bias
self.create_weight_matrices()

def create_weight_matrices(self):

bias_node = 1 if self.bias else 0
self.weights_matrices = []

layer_index = 1
no_of_layers = len(self.structure)
while layer_index < no_of_layers:
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nodes_in = self.structure[layer_index-1]
nodes_out = self.structure[layer_index]
n = (nodes_in + bias_node) * nodes_out
rad = 1 / np.sqrt(nodes_in)
X = truncated_normal(mean=2,

sd=1,
low=-rad,
upp=rad)

wm = X.rvs(n).reshape((nodes_out, nodes_in + bias_nod
e))

self.weights_matrices.append(wm)
layer_index += 1

def train(self, input_vector, target_vector):
"""
input_vector and target_vector can be tuple,
list or ndarray
"""

no_of_layers = len(self.structure)
input_vector = np.array(input_vector, ndmin=2).T
layer_index = 0
# The output/input vectors of the various layers:
res_vectors = [input_vector]
while layer_index < no_of_layers - 1:

in_vector = res_vectors[-1]
if self.bias:

# adding bias node to the end of the 'input'_vecto
r

in_vector = np.concatenate( (in_vector,
[[self.bias]]) )

res_vectors[-1] = in_vector
x = np.dot(self.weights_matrices[layer_index],

in_vector)
out_vector = activation_function(x)
# the output of one layer is the input of the next on

e:
res_vectors.append(out_vector)
layer_index += 1

layer_index = no_of_layers - 1
target_vector = np.array(target_vector, ndmin=2).T
# The input vectors to the various layers
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output_errors = target_vector - out_vector
while layer_index > 0:

out_vector = res_vectors[layer_index]
in_vector = res_vectors[layer_index-1]

if self.bias and not layer_index==(no_of_layers-1):
out_vector = out_vector[:-1,:].copy()

tmp = output_errors * out_vector * (1.0 - out_vecto
r)

tmp = np.dot(tmp, in_vector.T)

#if self.bias:
#    tmp = tmp[:-1,:]

self.weights_matrices[layer_index-1] += self.learnin
g_rate * tmp

output_errors = np.dot(self.weights_matrices[layer_ind
ex-1].T,

output_errors)
if self.bias:

output_errors = output_errors[:-1,:]
layer_index -= 1

def run(self, input_vector):
# input_vector can be tuple, list or ndarray

no_of_layers = len(self.structure)
if self.bias:

# adding bias node to the end of the inpuy_vector
input_vector = np.concatenate( (input_vector,

[self.bias]) )
in_vector = np.array(input_vector, ndmin=2).T

layer_index = 1
# The input vectors to the various layers
while layer_index < no_of_layers:

x = np.dot(self.weights_matrices[layer_index-1],
in_vector)

out_vector = activation_function(x)
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# input vector for next layer
in_vector = out_vector
if self.bias:

in_vector = np.concatenate( (in_vector,
[[self.bias]])

)

layer_index += 1

return out_vector

def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i]:

corrects += 1
else:

wrongs += 1
return corrects, wrongs

In [ ]:

ANN = NeuralNetwork(network_structure=[image_pixels, 50, 50, 10],
learning_rate=0.1,
bias=None)

for i in range(len(train_imgs)):
ANN.train(train_imgs[i], train_labels_one_hot[i])

In [ ]:

corrects, wrongs = ANN.evaluate(train_imgs, train_labels)
print("accuracy train: ", corrects / ( corrects + wrongs))
corrects, wrongs = ANN.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))
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N E T W O R K S  W I T H  M U L T I P L E
H I D D E N  L A Y E R S  A N D  E P O C H S

In [ ]:

import numpy as np
from scipy.special import expit as activation_function
from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm((low - mean) / sd,

(upp - mean) / sd,
loc=mean,
scale=sd)

class NeuralNetwork:

def __init__(self,
network_structure, # ie. [input_nodes, hidden1_no

des, ... , hidden_n_nodes, output_nodes]
learning_rate,
bias=None

):

self.structure = network_structure
self.learning_rate = learning_rate
self.bias = bias
self.create_weight_matrices()

def create_weight_matrices(self):
X = truncated_normal(mean=2, sd=1, low=-0.5, upp=0.5)

bias_node = 1 if self.bias else 0
self.weights_matrices = []
layer_index = 1
no_of_layers = len(self.structure)
while layer_index < no_of_layers:

nodes_in = self.structure[layer_index-1]
nodes_out = self.structure[layer_index]
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n = (nodes_in + bias_node) * nodes_out
rad = 1 / np.sqrt(nodes_in)
X = truncated_normal(mean=2, sd=1, low=-rad, upp=rad)
wm = X.rvs(n).reshape((nodes_out, nodes_in + bias_nod

e))
self.weights_matrices.append(wm)
layer_index += 1

def train_single(self, input_vector, target_vector):
# input_vector and target_vector can be tuple, list or nda

rray

no_of_layers = len(self.structure)
input_vector = np.array(input_vector, ndmin=2).T

layer_index = 0
# The output/input vectors of the various layers:
res_vectors = [input_vector]
while layer_index < no_of_layers - 1:

in_vector = res_vectors[-1]
if self.bias:

# adding bias node to the end of the 'input'_vecto
r

in_vector = np.concatenate( (in_vector,
[[self.bias]]) )

res_vectors[-1] = in_vector
x = np.dot(self.weights_matrices[layer_index], in_vect

or)
out_vector = activation_function(x)
res_vectors.append(out_vector)
layer_index += 1

layer_index = no_of_layers - 1
target_vector = np.array(target_vector, ndmin=2).T
# The input vectors to the various layers

output_errors = target_vector - out_vector
while layer_index > 0:

out_vector = res_vectors[layer_index]
in_vector = res_vectors[layer_index-1]

if self.bias and not layer_index==(no_of_layers-1):
out_vector = out_vector[:-1,:].copy()
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tmp = output_errors * out_vector * (1.0 - out_vecto
r)

tmp = np.dot(tmp, in_vector.T)

#if self.bias:
#    tmp = tmp[:-1,:]

self.weights_matrices[layer_index-1] += self.learnin
g_rate * tmp

output_errors = np.dot(self.weights_matrices[layer_ind
ex-1].T,

output_errors)
if self.bias:

output_errors = output_errors[:-1,:]
layer_index -= 1

def train(self, data_array,
labels_one_hot_array,
epochs=1,
intermediate_results=False):

intermediate_weights = []
for epoch in range(epochs):

for i in range(len(data_array)):
self.train_single(data_array[i], labels_one_hot_ar

ray[i])
if intermediate_results:

intermediate_weights.append((self.wih.copy(),
self.who.copy()))

return intermediate_weights

def run(self, input_vector):
# input_vector can be tuple, list or ndarray

no_of_layers = len(self.structure)
if self.bias:

# adding bias node to the end of the inpuy_vector
input_vector = np.concatenate( (input_vector, [self.bi

as]) )
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in_vector = np.array(input_vector, ndmin=2).T

layer_index = 1
# The input vectors to the various layers
while layer_index < no_of_layers:

x = np.dot(self.weights_matrices[layer_index-1],
in_vector)

out_vector = activation_function(x)

# input vector for next layer
in_vector = out_vector
if self.bias:

in_vector = np.concatenate( (in_vector,
[[self.bias]])

)

layer_index += 1

return out_vector

def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i]:

corrects += 1
else:

wrongs += 1
return corrects, wrongs

In [ ]:

epochs = 3

ANN = NeuralNetwork(network_structure=[image_pixels, 80, 80, 10],
learning_rate=0.01,
bias=None)

ANN.train(train_imgs, train_labels_one_hot, epochs=epochs)
In [ ]:
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corrects, wrongs = ANN.evaluate(train_imgs, train_labels)
print("accuracy train: ", corrects / ( corrects + wrongs))
corrects, wrongs = ANN.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))

FOOTNOTES

1 Wan, Li; Matthew Zeiler; Sixin Zhang; Yann LeCun; Rob Fergus (2013). Regularization of Neural Network
using DropConnect. International Conference on Machine Learning(ICML).
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D R O P O U T  N E U R A L  N E T W O R K S

INTRODUCTION

The term "dropout" is used for a technique which
drops out some nodes of the network. Dropping out
can be seen as temporarily deactivating or ignoring
neurons of the network. This technique is applied in
the training phase to reduce overfitting effects.
Overfitting is an error which occurs when a network
is too closely fit to a limited set of input samples.

The basic idea behind dropout neural networks is to
dropout nodes so that the network can concentrate on
other features. Think about it like this. You watch
lots of films from your favourite actor. At some point
you listen to the radio and here somebody in an
interview. You don't recognize your favourite actor,
because you have seen only movies and your are a
visual type. Now, imagine that you can only listen to
the audio tracks of the films. In this case you will
have to learn to differentiate the voices of the
actresses and actors. So by dropping out the visual part you are forced tp focus on the sound features!

This technique has been first proposed in a paper "Dropout: A Simple Way to Prevent Neural Networks from
Overfitting" by Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan
Salakhutdinov in 2014

We will implement in our tutorial on machine learning in Python a Python class which is capable of dropout.

MODIFYING THE WEIGHT ARRAYS

If we deactivate a node, we have to modify the weight arrays accordingly. To demonstrate how this can be
accomplished, we will use a network with three input nodes, four hidden and two output nodes:
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At first, we will have a look at the weight array between the input and the hidden layer. We called this array
'wih' (weights between input and hidden layer).

Let's deactivate (drop out) the node i2. We can see in the following diagram what's happening:
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This means that we have to take out every second product of the summation, which means that we have to
delete the whole second column of the matrix. The second element from the input vector has to be deleted as
well.

Now we will examine what happens if we take out a hidden node. We take out the first hidden node, i.e. h1.

In this case, we can remove the complete first line of our weight matrix:

Taking out a hidden node affects the next weight matrix as well. Let's have a look at what is happening in the
network graph:
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It is easy to see that the first column of the who weight matrix has to be removed again:

So far we have arbitrarily chosen one node to deactivate. The dropout approach means that we randomly
choose a certain number of nodes from the input and the hidden layers, which remain active and turn off the
other nodes of these layers. After this we can train a part of our learn set with this network. The next step
consists in activating all the nodes again and randomly chose other nodes. It is also possible to train the whole
training set with the randomly created dropout networks.

We present three possible randomly chosen dropout networks in the following three diagrams:
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Now it is time to think about a possible Python implementation.

We will start with the weight matrix between input and hidden layer. We will randomly create a weight matrix
for 10 input nodes and 5 hidden nodes. We fill our matrix with random numbers between -10 and 10, which
are not proper weight values, but this way we can see better what is going on:

import numpy as np
import random
input_nodes = 10
hidden_nodes = 5
output_nodes = 7

wih = np.random.randint(-10, 10, (hidden_nodes, input_nodes))
wih
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We will choose now the active nodes for the input layer. We calculate random indices for the active nodes:

active_input_percentage = 0.7
active_input_nodes = int(input_nodes * active_input_percentage)
active_input_indices = sorted(random.sample(range(0, input_node
s),

active_input_nodes))
active_input_indices

We learned above that we have to remove the column j, if the node ij is removed. We can easily accomplish

this for all deactived nodes by using the slicing operator with the active nodes:

wih_old = wih.copy()
wih = wih[:, active_input_indices]
wih

As we have mentioned before, we will have to modify both the 'wih' and the 'who' matrix:

who = np.random.randint(-10, 10, (output_nodes, hidden_nodes))

print(who)
active_hidden_percentage = 0.7
active_hidden_nodes = int(hidden_nodes * active_hidden_percentage)
active_hidden_indices = sorted(random.sample(range(0, hidden_node
s),

active_hidden_nodes))
print(active_hidden_indices)

who_old = who.copy()
who = who[:, active_hidden_indices]

Output:: array([[ -6,  -8,  -3,  -7,   2,  -9,  -3,  -5,  -6,   4],
[  5,   3,   7,  -4,   4,   8,  -2,  -4,   7,   7],
[  9,  -7,   4,   0,   4,   0,  -3,  -6,  -2,   7],
[ -8,  -9,  -4,  -5,  -9,   8,  -8,  -8,  -2,  -3],
[  3, -10,   0,  -3,   4,   0,   0,   2,  -7,  -9]])

Output:: [0, 1, 2, 5, 7, 8, 9]

Output:: array([[ -6,  -8,  -3,  -9,  -5,  -6,   4],
[  5,   3,   7,   8,  -4,   7,   7],
[  9,  -7,   4,   0,  -6,  -2,   7],
[ -8,  -9,  -4,   8,  -8,  -2,  -3],
[  3, -10,   0,   0,   2,  -7,  -9]])
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print(who)

We have to change wih accordingly:

wih = wih[active_hidden_indices]
wih

The following Python code summarizes the sniplets from above:

import numpy as np
import random
input_nodes = 10
hidden_nodes = 5
output_nodes = 7

wih = np.random.randint(-10, 10, (hidden_nodes, input_nodes))
print("wih: \n", wih)
who = np.random.randint(-10, 10, (output_nodes, hidden_nodes))
print("who:\n", who)

active_input_percentage = 0.7
active_hidden_percentage = 0.7

active_input_nodes = int(input_nodes * active_input_percentage)

[[  3   6  -3  -9   4]
[-10   1   2   5   7]
[ -8   1  -3   6   3]
[ -3  -3   6  -5  -3]
[ -4  -9   8  -3   5]
[  8   4  -8   2   7]
[ -2   2   3  -8  -5]]

[0, 2, 3]
[[  3  -3  -9]
[-10   2   5]
[ -8  -3   6]
[ -3   6  -5]
[ -4   8  -3]
[  8  -8   2]
[ -2   3  -8]]

Output:: array([[-6, -8, -3, -9, -5, -6,  4],
[ 9, -7,  4,  0, -6, -2,  7],
[-8, -9, -4,  8, -8, -2, -3]])

DROPOUT NEURAL NETWORKS 235



active_input_indices = sorted(random.sample(range(0, input_node
s),

active_input_nodes))
print("\nactive input indices: ", active_input_indices)
active_hidden_nodes = int(hidden_nodes * active_hidden_percentage)
active_hidden_indices = sorted(random.sample(range(0, hidden_node
s),

active_hidden_nodes))
print("active hidden indices: ", active_hidden_indices)

wih_old = wih.copy()
wih = wih[:, active_input_indices]
print("\nwih after deactivating input nodes:\n", wih)
wih = wih[active_hidden_indices]
print("\nwih after deactivating hidden nodes:\n", wih)

who_old = who.copy()
who = who[:, active_hidden_indices]
print("\nwih after deactivating hidden nodes:\n", who)
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import numpy as np
import random
from scipy.special import expit as activation_function
from scipy.stats import truncnorm

def truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(

wih:
[[ -4   9   3   5  -9   5  -3   0   9   1]
[  4   7  -7   3  -4   7   4  -5   6   2]
[  5   8   1 -10  -8  -6   7  -4  -6   8]
[  6  -3   7   4  -7  -4   0   8   9   1]
[  6  -1   4  -3   5  -5  -5   5   4  -7]]

who:
[[ -6   2  -2   4   0]
[ -5  -3   3  -4 -10]
[  4   6  -7  -7  -1]
[ -4  -1 -10   0  -8]
[  8  -2   9  -8  -9]
[ -6   0  -2   1  -8]
[  1  -4  -2  -6  -5]]

active input indices:  [1, 3, 4, 5, 7, 8, 9]
active hidden indices:  [0, 1, 2]

wih after deactivating input nodes:
[[  9   5  -9   5   0   9   1]
[  7   3  -4   7  -5   6   2]
[  8 -10  -8  -6  -4  -6   8]
[ -3   4  -7  -4   8   9   1]
[ -1  -3   5  -5   5   4  -7]]

wih after deactivating hidden nodes:
[[  9   5  -9   5   0   9   1]
[  7   3  -4   7  -5   6   2]
[  8 -10  -8  -6  -4  -6   8]]

wih after deactivating hidden nodes:
[[ -6   2  -2]
[ -5  -3   3]
[  4   6  -7]
[ -4  -1 -10]
[  8  -2   9]
[ -6   0  -2]
[  1  -4  -2]]

DROPOUT NEURAL NETWORKS 237



(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

class NeuralNetwork:
def __init__(self,

no_of_in_nodes,
no_of_out_nodes,
no_of_hidden_nodes,
learning_rate,
bias=None

):

self.no_of_in_nodes = no_of_in_nodes
self.no_of_out_nodes = no_of_out_nodes
self.no_of_hidden_nodes = no_of_hidden_nodes
self.learning_rate = learning_rate
self.bias = bias
self.create_weight_matrices()

def create_weight_matrices(self):
X = truncated_normal(mean=2, sd=1, low=-0.5, upp=0.5)

bias_node = 1 if self.bias else 0

n = (self.no_of_in_nodes + bias_node) * self.no_of_hidde
n_nodes

X = truncated_normal(mean=2, sd=1, low=-0.5, upp=0.5)
self.wih = X.rvs(n).reshape((self.no_of_hidden_nodes,

self.no_of_in_n
odes + bias_node))

n = (self.no_of_hidden_nodes + bias_node) * self.no_of_ou
t_nodes

X = truncated_normal(mean=2, sd=1, low=-0.5, upp=0.5)
self.who = X.rvs(n).reshape((self.no_of_out_nodes,

(self.no_of_hi
dden_nodes + bias_node)))

def dropout_weight_matrices(self,
active_input_percentage=0.70,
active_hidden_percentage=0.70):

# restore wih array, if it had been used for dropout
self.wih_orig = self.wih.copy()
self.no_of_in_nodes_orig = self.no_of_in_nodes
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self.no_of_hidden_nodes_orig = self.no_of_hidden_nodes
self.who_orig = self.who.copy()

active_input_nodes = int(self.no_of_in_nodes * active_inpu
t_percentage)

active_input_indices = sorted(random.sample(range(0, sel
f.no_of_in_nodes),

active_input_nodes))
active_hidden_nodes = int(self.no_of_hidden_nodes * activ

e_hidden_percentage)
active_hidden_indices = sorted(random.sample(range(0, sel

f.no_of_hidden_nodes),
active_hidden_nodes))

self.wih = self.wih[:, active_input_indices][active_hidde
n_indices]

self.who = self.who[:, active_hidden_indices]

self.no_of_hidden_nodes = active_hidden_nodes
self.no_of_in_nodes = active_input_nodes
return active_input_indices, active_hidden_indices

def weight_matrices_reset(self,
active_input_indices,
active_hidden_indices):

"""
self.wih and self.who contain the newly adapted values fro

m the active nodes.
We have to reconstruct the original weight matrices by ass

igning the new values
from the active nodes
"""

temp = self.wih_orig.copy()[:,active_input_indices]
temp[active_hidden_indices] = self.wih
self.wih_orig[:, active_input_indices] = temp
self.wih = self.wih_orig.copy()

self.who_orig[:, active_hidden_indices] = self.who
self.who = self.who_orig.copy()
self.no_of_in_nodes = self.no_of_in_nodes_orig
self.no_of_hidden_nodes = self.no_of_hidden_nodes_orig
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def train_single(self, input_vector, target_vector):
"""
input_vector and target_vector can be tuple, list or ndarr

ay
"""

if self.bias:
# adding bias node to the end of the input_vector
input_vector = np.concatenate( (input_vector, [self.bi

as]) )

input_vector = np.array(input_vector, ndmin=2).T
target_vector = np.array(target_vector, ndmin=2).T

output_vector1 = np.dot(self.wih, input_vector)
output_vector_hidden = activation_function(output_vector1)

if self.bias:
output_vector_hidden = np.concatenate( (output_vecto

r_hidden, [[self.bias]]) )

output_vector2 = np.dot(self.who, output_vector_hidden)
output_vector_network = activation_function(output_vector

2)

output_errors = target_vector - output_vector_network
# update the weights:
tmp = output_errors * output_vector_network * (1.0 - outpu

t_vector_network)
tmp = self.learning_rate * np.dot(tmp, output_vector_hidd

en.T)
self.who += tmp

# calculate hidden errors:
hidden_errors = np.dot(self.who.T, output_errors)
# update the weights:
tmp = hidden_errors * output_vector_hidden * (1.0 - outpu

t_vector_hidden)
if self.bias:

x = np.dot(tmp, input_vector.T)[:-1,:]
else:

x = np.dot(tmp, input_vector.T)
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self.wih += self.learning_rate * x

def train(self, data_array,
labels_one_hot_array,
epochs=1,
active_input_percentage=0.70,
active_hidden_percentage=0.70,
no_of_dropout_tests = 10):

partition_length = int(len(data_array) / no_of_dropout_tes
ts)

for epoch in range(epochs):
print("epoch: ", epoch)
for start in range(0, len(data_array), partition_lengt

h):
active_in_indices, active_hidden_indices = \

self.dropout_weight_matrices(active_inp
ut_percentage,

active_hid
den_percentage)

for i in range(start, start + partition_length):
self.train_single(data_array[i][active_in_indi

ces],
labels_one_hot_array[i])

self.weight_matrices_reset(active_in_indices, acti
ve_hidden_indices)

def confusion_matrix(self, data_array, labels):
cm = {}
for i in range(len(data_array)):

res = self.run(data_array[i])
res_max = res.argmax()
target = labels[i][0]
if (target, res_max) in cm:

cm[(target, res_max)] += 1
else:

cm[(target, res_max)] = 1
return cm
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def run(self, input_vector):
# input_vector can be tuple, list or ndarray

if self.bias:
# adding bias node to the end of the input_vector
input_vector = np.concatenate( (input_vector, [self.bi

as]) )
input_vector = np.array(input_vector, ndmin=2).T

output_vector = np.dot(self.wih, input_vector)
output_vector = activation_function(output_vector)

if self.bias:
output_vector = np.concatenate( (output_vector, [[sel

f.bias]]) )

output_vector = np.dot(self.who, output_vector)
output_vector = activation_function(output_vector)

return output_vector

def evaluate(self, data, labels):
corrects, wrongs = 0, 0
for i in range(len(data)):

res = self.run(data[i])
res_max = res.argmax()
if res_max == labels[i]:

corrects += 1
else:

wrongs += 1
return corrects, wrongs

import pickle
with open("data/mnist/pickled_mnist.pkl", "br") as fh:

data = pickle.load(fh)

train_imgs = data[0]
test_imgs = data[1]
train_labels = data[2]
test_labels = data[3]
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train_labels_one_hot = data[4]
test_labels_one_hot = data[5]

image_size = 28 # width and length
no_of_different_labels = 10 #  i.e. 0, 1, 2, 3, ..., 9
image_pixels = image_size * image_size
parts = 10
partition_length = int(len(train_imgs) / parts)
print(partition_length)

start = 0
for start in range(0, len(train_imgs), partition_length):

print(start, start + partition_length)

epochs = 3

simple_network = NeuralNetwork(no_of_in_nodes = image_pixels,
no_of_out_nodes = 10,
no_of_hidden_nodes = 100,
learning_rate = 0.1)

simple_network.train(train_imgs,
train_labels_one_hot,
active_input_percentage=1,
active_hidden_percentage=1,
no_of_dropout_tests = 100,
epochs=epochs)

6000
0 6000
6000 12000
12000 18000
18000 24000
24000 30000
30000 36000
36000 42000
42000 48000
48000 54000
54000 60000

epoch:  0
epoch:  1
epoch:  2
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corrects, wrongs = simple_network.evaluate(train_imgs, train_label
s)
print("accuracy train: ", corrects / ( corrects + wrongs))
corrects, wrongs = simple_network.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))
accruracy train:  0.9317833333333333
accruracy: test 0.9296
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N E U R A L  N E T W O R K S  W I T H  S C I K I T  /
S K L E A R N

INTRODUCTION

In the previous chapters of our tutorial, we
manually created Neural Networks. This
was necessary to get a deep understanding
of how Neural networks can be
implemented. This understanding is very
useful to use the classifiers provided by
the sklearn module of Python. In this
chapter we will use the multilayer
perceptron classifier MLPClassifier
contained in
sklearn.neural_network

We will use again the Iris dataset, which
we had used already multiple times in our
Machine Learning tutorial with Python, to
introduce this classifier.

MLPCLASSIFIER
CLASSIFIER

We will continue with examples using the multilayer perceptron (MLP). The multilayer perceptron (MLP) is a
feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs. An
MLP consists of multiple layers and each layer is fully connected to the following one. The nodes of the layers
are neurons using nonlinear activation functions, except for the nodes of the input layer. There can be one or
more non-linear hidden layers between the input and the output layer.

MULTILABEL EXAMPLE

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

n_samples = 200
blob_centers = ([1, 1], [3, 4], [1, 3.3], [3.5, 1.8])
data, labels = make_blobs(n_samples=n_samples,

centers=blob_centers,
cluster_std=0.5,
random_state=0)
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colours = ('green', 'orange', "blue", "magenta")
fig, ax = plt.subplots()

for n_class in range(len(blob_centers)):
ax.scatter(data[labels==n_class][:, 0],

data[labels==n_class][:, 1],
c=colours[n_class],
s=30,
label=str(n_class))

from sklearn.model_selection import train_test_split
datasets = train_test_split(data,

labels,
test_size=0.2)

train_data, test_data, train_labels, test_labels = datasets

We will create now a MLPClassifier .

A few notes on the used parameters:

• hidden_layer_sizes: tuple, length = n_layers - 2, default=(100,)
The ith element represents the number of neurons in the ith hidden layer.
(6,) means one hidden layer with 6 neurons

• solver:
The weight optimization can be influenced with the solver parameter. Three solver modes
are available

▪ 'lbfgs'
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is an optimizer in the family of quasi-Newton methods.
▪ 'sgd'

refers to stochastic gradient descent.
▪ 'adam' refers to a stochastic gradient-based optimizer proposed by Kingma,

Diederik, and Jimmy Ba

Without understanding in the details of the solvers, you should know the following: 'adam'
works pretty well - both training time and validation score - on relatively large datasets, i.e.
thousands of training samples or more. For small datasets, however, 'lbfgs' can converge faster
and perform better.

• 'alpha'
This parameter can be used to control possible 'overfitting' and 'underfitting'. We will cover it in
detail further down in this chapter.

from sklearn.neural_network import MLPClassifier

clf = MLPClassifier(solver='lbfgs',
alpha=1e-5,
hidden_layer_sizes=(6,),
random_state=1)

clf.fit(train_data, train_labels)

clf.score(train_data, train_labels)

from sklearn.metrics import accuracy_score

predictions_train = clf.predict(train_data)
predictions_test = clf.predict(test_data)
train_score = accuracy_score(predictions_train, train_labels)
print("score on train data: ", train_score)
test_score = accuracy_score(predictions_test, test_labels)
print("score on train data: ", test_score)

predictions_train[:20]

Output: MLPClassifier(alpha=1e-05, hidden_layer_sizes=(6,), random_st
ate=1,

solver='lbfgs')

Output: 1.0

score on train data:  1.0
score on train data:  0.95
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MULTI-LAYER PERCEPTRON
from sklearn.neural_network import MLPClassifier
X = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]]
y = [0, 0, 0, 1]
clf = MLPClassifier(solver='lbfgs', alpha=1e-5,

hidden_layer_sizes=(5, 2), random_state=1)

print(clf.fit(X, y))

The following diagram depicts the neural network, that we have trained for our classifier clf. We have two
input nodes X0 and X1, called the input layer, and one output neuron 'Out'. We have two hidden layers the first

one with the neurons H00 ... H04 and the second hidden layer consisting of H10 and H11. Each neuron of the

hidden layers and the output neuron possesses a corresponding Bias, i.e. B00 is the corresponding Bias to the

neuron H00, B01 is the corresponding Bias to the neuron H01 and so on.

Each neuron of the hidden layers receives the output from every neuron of the previous layers and transforms
these values with a weighted linear summation

n − 1

∑
i = 0

wixi = w0x0 + w1x1 + . . . + wn − 1xn − 1

into an output value, where n is the number of neurons of the layer and wi corresponds to the ith component of

the weight vector. The output layer receives the values from the last hidden layer. It also performs a linear
summation, but a non-linear activation function

g( ⋅ ) : R → R

like the hyperbolic tan function will be applied to the summation result.

Output: array([2, 0, 1, 0, 2, 1, 3, 0, 3, 0, 2, 2, 1, 1, 0, 0, 1, 2,
2, 3])

MLPClassifier(alpha=1e-05, hidden_layer_sizes=(5, 2), random_stat
e=1,

solver='lbfgs')
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The attribute coefs_ contains a list of
weight matrices for every layer. The
weight matrix at index i holds the weights
between the layer i and layer i + 1.

In [ ]:

print("weights between in
put and first hidden laye
r:")
print(clf.coefs_[0])
print("\nweights between
first hidden and second h
idden layer:")
print(clf.coefs_[1])

The summation formula of the neuron H00 is defined by:

n − 1

∑
i = 0

wixi = w0x0 + w1x1 + wB11
∗ B11

which can be written as

n − 1

∑
i = 0

wixi = w0x0 + w1x1 + wB11

because B11 = 1.

We can get the values for w0 and w1 from clf.coefs_ like this:

w0 = clf.coefs_[0][0][0] and w1 = clf.coefs_[0][1][0]

In [ ]:

print("w0 = ", clf.coefs_[0][0][0])
print("w1 = ", clf.coefs_[0][1][0])

The weight vector of H00 can be accessed with

In [ ]:

clf.coefs_[0][:,0]
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We can generalize the above to access a neuron Hij in the following way:

In [ ]:

for i in range(len(clf.coefs_)):
number_neurons_in_layer = clf.coefs_[i].shape[1]
for j in range(number_neurons_in_layer):

weights = clf.coefs_[i][:,j]
print(i, j, weights, end=", ")
print()

print()

intercepts_ is a list of bias vectors, where the vector at index i represents the bias values added to layer i+1.

In [ ]:

print("Bias values for first hidden layer:")
print(clf.intercepts_[0])
print("\nBias values for second hidden layer:")
print(clf.intercepts_[1])

The main reason, why we train a classifier is to predict results for new samples. We can do this with the
predict method. The method returns a predicted class for a sample, in our case a "0" or a "1" :

In [ ]:

result = clf.predict([[0, 0], [0, 1],
[1, 0], [0, 1],
[1, 1], [2., 2.],
[1.3, 1.3], [2, 4.8]])

Instead of just looking at the class results, we can also use the predict_proba method to get the probability
estimates.

In [ ]:

prob_results = clf.predict_proba([[0, 0], [0, 1],
[1, 0], [0, 1],
[1, 1], [2., 2.],
[1.3, 1.3], [2, 4.8]])

print(prob_results)

prob_results[i][0] gives us the probability for the class0, i.e. a "0" and results[i][1] the probabilty for a "1". i

corresponds to the ith sample.

COMPLETE IRIS DATASET EXAMPLE
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from sklearn.datasets import load_iris

iris = load_iris()
# splitting into train and test datasets

from sklearn.model_selection import train_test_split
datasets = train_test_split(iris.data, iris.target,

test_size=0.2)

train_data, test_data, train_labels, test_labels = datasets
# scaling the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

# we fit the train data
scaler.fit(train_data)

# scaling the train data
train_data = scaler.transform(train_data)
test_data = scaler.transform(test_data)

print(train_data[:3])

# Training the Model
from sklearn.neural_network import MLPClassifier
# creating an classifier from the model:
mlp = MLPClassifier(hidden_layer_sizes=(10, 5), max_iter=1000)

# let's fit the training data to our model
mlp.fit(train_data, train_labels)

from sklearn.metrics import accuracy_score

predictions_train = mlp.predict(train_data)
print(accuracy_score(predictions_train, train_labels))
predictions_test = mlp.predict(test_data)
print(accuracy_score(predictions_test, test_labels))

[[ 1.91343191 -0.6013337   1.31398787  0.89583493]
[-0.93504278  1.48689909 -1.31208492 -1.08512683]
[ 0.4272712  -0.36930784  0.28639417  0.10345022]]

Output: MLPClassifier(hidden_layer_sizes=(10, 5), max_iter=1000)
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from sklearn.metrics import confusion_matrix

confusion_matrix(predictions_train, train_labels)

confusion_matrix(predictions_test, test_labels)

from sklearn.metrics import classification_report

print(classification_report(predictions_test, test_labels))

MNIST DATASET

We have already used the MNIST dataset in the chapter Testing with MNIST of our tutorial. You will also find
some explanations about this dataset.

We want to apply the MLPClassifier on the MNIST data. We can load in the data with pickle:

import pickle
with open("data/mnist/pickled_mnist.pkl", "br") as fh:

data = pickle.load(fh)

train_imgs = data[0]
test_imgs = data[1]
train_labels = data[2]

0.975
0.9666666666666667

Output: array([[42,  0,  0],
[ 0, 37,  1],
[ 0,  2, 38]])

Output: array([[ 8,  0,  0],
[ 0, 10,  0],
[ 0,  1, 11]])

precision    recall  f1-score   support

0       1.00      1.00      1.00         8
1       0.91      1.00      0.95        10
2       1.00      0.92      0.96        12

accuracy                           0.97        30
macro avg       0.97      0.97      0.97        30

weighted avg       0.97      0.97      0.97        30
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test_labels = data[3]
train_labels_one_hot = data[4]
test_labels_one_hot = data[5]

image_size = 28 # width and length
no_of_different_labels = 10 #  i.e. 0, 1, 2, 3, ..., 9
image_pixels = image_size * image_size
mlp = MLPClassifier(hidden_layer_sizes=(100, ),

max_iter=480, alpha=1e-4,
solver='sgd', verbose=10,
tol=1e-4, random_state=1,
learning_rate_init=.1)

train_labels = train_labels.reshape(train_labels.shape[0],)
print(train_imgs.shape, train_labels.shape)

mlp.fit(train_imgs, train_labels)
print("Training set score: %f" % mlp.score(train_imgs, train_label
s))
print("Test set score: %f" % mlp.score(test_imgs, test_labels))
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(60000, 784) (60000,)
Iteration 1, loss = 0.29753549
Iteration 2, loss = 0.12369769
Iteration 3, loss = 0.08872688
Iteration 4, loss = 0.07084598
Iteration 5, loss = 0.05874947
Iteration 6, loss = 0.04876359
Iteration 7, loss = 0.04203350
Iteration 8, loss = 0.03525624
Iteration 9, loss = 0.02995642
Iteration 10, loss = 0.02526208
Iteration 11, loss = 0.02195436
Iteration 12, loss = 0.01825246
Iteration 13, loss = 0.01543440
Iteration 14, loss = 0.01320164
Iteration 15, loss = 0.01057486
Iteration 16, loss = 0.00984482
Iteration 17, loss = 0.00776886
Iteration 18, loss = 0.00655891
Iteration 19, loss = 0.00539189
Iteration 20, loss = 0.00460981
Iteration 21, loss = 0.00396910
Iteration 22, loss = 0.00350800
Iteration 23, loss = 0.00328115
Iteration 24, loss = 0.00294118
Iteration 25, loss = 0.00265852
Iteration 26, loss = 0.00241809
Iteration 27, loss = 0.00234944
Iteration 28, loss = 0.00215147
Iteration 29, loss = 0.00201855
Iteration 30, loss = 0.00187808
Iteration 31, loss = 0.00183098
Iteration 32, loss = 0.00172363
Iteration 33, loss = 0.00169482
Iteration 34, loss = 0.00159811
Iteration 35, loss = 0.00152427
Iteration 36, loss = 0.00148731
Iteration 37, loss = 0.00144202
Iteration 38, loss = 0.00138101
Iteration 39, loss = 0.00133767
Iteration 40, loss = 0.00130437
Iteration 41, loss = 0.00126314
Iteration 42, loss = 0.00122969
Iteration 43, loss = 0.00119848
Training loss did not improve more than tol=0.000100 for 10 consec
utive epochs. Stopping.
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fig, axes = plt.subplots(4, 4)
# use global min / max to ensure all weights are shown on the sam
e scale
vmin, vmax = mlp.coefs_[0].min(), mlp.coefs_[0].max()
for coef, ax in zip(mlp.coefs_[0].T, axes.ravel()):

ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * v
min,

vmax=.5 * vmax)
ax.set_xticks(())
ax.set_yticks(())

plt.show()

Training set score: 1.000000
Test set score: 0.977900
Help on method fit in module sklearn.neural_network._multilayer_pe
rceptron:

fit(X, y) method of sklearn.neural_network._multilayer_perceptro
n.MLPClassifier instance

Fit the model to data matrix X and target(s) y.

Parameters
----------
X : ndarray or sparse matrix of shape (n_samples, n_features)

The input data.

y : ndarray, shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels in classification, real nu

mbers in
regression).

Returns
-------
self : returns a trained MLP model.
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THE PARAMETER ALPHA

A comparison of different values for regularization parameter ‘alpha’ on synthetic datasets. The plot shows
that different alphas yield different decision functions.

Alpha is a parameter for regularization term, aka penalty term, that combats overfitting by constraining the
size of the weights. Increasing alpha may fix high variance (a sign of overfitting) by encouraging smaller
weights, resulting in a decision boundary plot that appears with lesser curvatures. Similarly, decreasing alpha
may fix high bias (a sign of underfitting) by encouraging larger weights, potentially resulting in a more
complicated decision boundary.

# Author: Issam H. Laradji
# License: BSD 3 clause
# code from: https://scikit-learn.org/stable/auto_examples/neura
l_networks/plot_mlp_alpha.html

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classi
fication
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import make_pipeline

h = .02 # step size in the mesh

alphas = np.logspace(-1, 1, 5)

classifiers = []
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names = []
for alpha in alphas:

classifiers.append(make_pipeline(
StandardScaler(),
MLPClassifier(

solver='lbfgs', alpha=alpha, random_state=1, max_ite
r=2000,

early_stopping=True, hidden_layer_sizes=[100, 100],
)

))
names.append(f"alpha {alpha:.2f}")

X, y = make_classification(n_features=2, n_redundant=0, n_informat
ive=2,

random_state=0, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable]

figure = plt.figure(figsize=(17, 9))
i = 1
# iterate over datasets
for X, y in datasets:

# split into training and test part
X_train, X_test, y_train, y_test = train_test_split(X, y, tes

t_size=.4)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_br

ight)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_brigh
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t, alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1

# iterate over classifiers
for name, clf in zip(names, classifiers):

ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)

# Plot the decision boundary. For that, we will assign a c
olor to each

# point in the mesh [x_min, x_max] x [y_min, y_max].
if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.rave
l()])

else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.rave

l()])[:, 1]

# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

# Plot also the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=c

m_bright,
edgecolors='black', s=25)

# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_b

right,
alpha=0.6, edgecolors='black', s=25)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lst

rip('0'),
size=15, horizontalalignment='right')

i += 1
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figure.subplots_adjust(left=.02, right=.98)
plt.show()

EXERCISES

EXERCISE 1

Classify the data in "strange_flowers.txt" with a k nearest neighbor classifier.

SOLUTIONS

SOLUTION TO EXERCISE 1

We use read_csv of the pandas module to read in the strange_flowers.txt file:

import pandas as pd
dataset = pd.read_csv("data/strange_flowers.txt",

header=None,
names=["red", "green", "blue", "size", "labe

l"],
sep=" ")

dataset
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The first four columns contain the data and the last column contains the labels:

data = dataset.drop('label', axis=1)
labels = dataset.label
X_train, X_test, y_train, y_test = train_test_split(data,

labels,
random_stat

e=0,
test_siz

e=0.2)

We have to scale the data now to reduce the biases between the data:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

Output:

red green blue size label

0 238.0 104.0 8.0 3.65 1.0

1 235.0 114.0 9.0 4.00 1.0

2 252.0 93.0 9.0 3.71 1.0

3 242.0 116.0 9.0 3.67 1.0

4 251.0 117.0 15.0 3.49 1.0

... ... ... ... ... ...

790 0.0 248.0 98.0 3.03 4.0

791 0.0 253.0 106.0 2.85 4.0

792 0.0 250.0 91.0 3.39 4.0

793 0.0 248.0 99.0 3.10 4.0

794 0.0 244.0 109.0 2.96 4.0

795 rows × 5 columns
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X_train = scaler.fit_transform(X_train) #  transform
X_test = scaler.transform(X_test) #  transform

from sklearn.neural_network import MLPClassifier

mlp = MLPClassifier(hidden_layer_sizes=(100, ),
max_iter=480,
alpha=1e-4,
solver='sgd',
tol=1e-4,
random_state=1,
learning_rate_init=.1)

mlp.fit(X_train, y_train)
print("Training set score: %f" % mlp.score(X_train, y_train))
print("Test set score: %f" % mlp.score(X_test, y_test))

S c i k i t
Scikit-learn is a Python module merging classic
machine learning algorithms with the world of
scientific Python packages (NumPy, SciPy,
matplotlib).

Training set score: 0.971698
Test set score: 0.981132
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O U R  L E A R N I N G  S E T :  " D I G I T S "

%matplotlib inline
import numpy as np
from sklearn import datasets
#iris = datasets.load_iris()
digits = datasets.load_digits()
print(type(digits))

The digits dataset is a dictionary-like objects, containing the actual data and some metadata.

print(digits.data)

digits.data contains the features, i.e. images of handwritten images of digits, which can be used for
classification.

digits.target

len(digits.data), len(digits.target)

digits.target contain the labels, i.e. digits from 0 to 9 for the digits of digits.data. The data "digits" is a 2 D
array with the shape (number of samples, number of features). In our case, a sample is an image of shape (8,
8):

print(digits.target[0], digits.data[0])
print(digits.images[0])

<class 'sklearn.datasets.base.Bunch'>

[[  0.   0.   5. ...,   0.   0.   0.]
[  0.   0.   0. ...,  10.   0.   0.]
[  0.   0.   0. ...,  16.   9.   0.]
...,
[  0.   0.   1. ...,   6.   0.   0.]
[  0.   0.   2. ...,  12.   0.   0.]
[  0.   0.  10. ...,  12.   1.   0.]]

Output: : array([0, 1, 2, ..., 8, 9, 8])

Output: : (1797, 1797)
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0 [  0.   0.   5.  13.   9.   1.   0.   0.   0.   0.  13.  15.  1
0.  15.   5.

0.   0.   3.  15.   2.   0.  11.   8.   0.   0.   4.  12.
0.   0.   8.

8.   0.   0.   5.   8.   0.   0.   9.   8.   0.   0.   4.  1
1.   0.   1.

12.   7.   0.   0.   2.  14.   5.  10.  12.   0.   0.   0.
0.   6.  13.

10.   0.   0.   0.]
[[  0.   0.   5.  13.   9.   1.   0.   0.]
[  0.   0.  13.  15.  10.  15.   5.   0.]
[  0.   3.  15.   2.   0.  11.   8.   0.]
[  0.   4.  12.   0.   0.   8.   8.   0.]
[  0.   5.   8.   0.   0.   9.   8.   0.]
[  0.   4.  11.   0.   1.  12.   7.   0.]
[  0.   2.  14.   5.  10.  12.   0.   0.]
[  0.   0.   6.  13.  10.   0.   0.   0.]]
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L E A R N I N G  A N D  P R E D I C T I N G

We want to predict for a given image, which digit it depicts. Our data set contains samples for the classes 0
(zero) to 9 (nine). We will use these samples to fit an estimator so that we can predict unseen samples as well.

In scikit-learn, an estimator for classification is a Python object that implements the methods fit(X,y) and
predict(T).

An example of an estimator is the class sklearn.svm.SVC that implements support vector classification. The
constructor of an estimator takes as arguments the parameters of the model, but for the time being, we will
consider the estimator as a black box:

from sklearn import svm # import support vector machine
classifier = svm.SVC(gamma=0.001, C=100.)

classifier.fit(digits.data[:-3], digits.target[:-3])

The classifier, which we have created with svm.SVC, is an estimator object. In general the scikit-learn API
provides estimator objects, which can be any object that can learn from data. Learning can be done by
classification, regression or clustering algorithm or a transformer that extracts/filters useful features from raw
data.

All estimator objects expose a fit method that takes a dataset (usually a 2-d array):

classifier.predict(digits.data[-3:])

digits.target[-3:]

digits.data[-3]

Output: : SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.001, kerne

l='rbf',
max_iter=-1, probability=False, random_state=None, shrinki

ng=True,
tol=0.001, verbose=False)

Output: : array([8, 9, 8])

Output: : array([8, 9, 8])
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import matplotlib.pyplot as plt
from PIL import Image
img = Image.fromarray(np.uint8(digits.images[-2]))

plt.gray()
plt.imshow(img)
plt.show()

plt.imshow(digits.images[-2], cmap=plt.cm.gray_r)

Output: : array([  0.,   0.,   1.,  11.,  15.,   1.,   0.,   0.,
0.,   0.,  13.,

16.,   8.,   2.,   1.,   0.,   0.,   0.,  16.,  1
5.,  10.,  16.,

5.,   0.,   0.,   0.,   8.,  16.,  16.,   7.,
0.,   0.,   0.,

0.,   9.,  16.,  16.,   4.,   0.,   0.,   0.,
0.,  16.,  14.,

16.,  15.,   0.,   0.,   0.,   0.,  15.,  15.,  1
5.,  16.,   0.,

0.,   0.,   0.,   2.,   9.,  13.,   6.,   0.,
0.])
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Output: : <matplotlib.image.AxesImage at 0x7f5ef7c42898>
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I R I S  D A T A S E T

The Iris flower data set is a multivariate data set introduced by Ronald Fisher in his 1936 paper "The use of
multiple measurements in taxonomic problems as an example of linear discriminant analysis."

The data set consists of 50 samples from each of three species of Iris

• Iris setosa,
• Iris virginica and
• Iris versicolor).

Four features were measured from each sample the length and the width of the sepals and petals, in
centimetres.

Based on the combination of these four features, Fisher developed a linear discriminant model to distinguish
the species from each other.
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S A V I N G  T R A I N E D  M O D E L S

It's possible to keep a trained model persistently with the pickle module.

In the following example, we want to demonstrate how to learn a classifier and save it for later usage with the
pickle module of Python:

from sklearn import svm, datasets
import pickle
iris = datasets.load_iris()

clf = svm.SVC()

X, y = iris.data, iris.target
clf.fit(X, y)

fname = open("classifiers/iris.pkl", "bw")
pickle.dump(clf, fname)

# load the saved classifier:
fname = open("classifiers/iris.pkl", "br")
clf2 = pickle.load(fname)
clf2.predict(iris.data[::5])

iris.target[::5]

Now, we will do the same with joblib package from sklearn.externals. joblib is more efficient on big data:

Output: : SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kern

el='rbf',
max_iter=-1, probability=False, random_state=None, shrinki

ng=True,
tol=0.001, verbose=False)

Output: : array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2])

Output: : array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2])
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from sklearn.externals import joblib
joblib.dump(clf, 'classifiers/iris2.pkl')

clf3 = joblib.load('classifiers/iris2.pkl')

clf3.predict(iris.data[::5])
Output: : array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2])
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S T A T I S T I C A L - L E A R N I N G  F O R
S C I E N T I F I C  D A T A  P R O C E S S I N G

We saw that the "iris dataset" consists of 150 observations of irises, i.e. the samples. Each oberservation is
described by four features (the length and the width of the sepals and petals).

In general, we can say that Scikit-learn deals with learning information from one or more datasets that are
represented as 2D arrays. Such an array can be seen as a list of multi-dimensional observations. The first axis
of such an array is the samples axis and the second one is the features axis.

SUPERVISED LEARNING

Supervised learning consists in the task of finding or deducing a function from labeled training data. The
training data consist of a set of training examples. In other words: We have the actual data X and the
corresponding "targets" y, also called "labels". Often y is a one dimensional array.

An estimator in scikit-learn provides a fit method to fit the model: fit(X, y). It also supplies a predict method
which returns predicted labels y for (unlabeled) observations X: predict(X) --> y.
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I N S T A N C E  B A S E D  L E A R N I N G  - -  - K -
N E A R E S T - N E I G H B O R

Instance based learning works directly on the learned samples, instead of creating rules compared to other
classification methods.

Way of working: Each new instance is compared with the already existing instances. The instances are
compared by using a distance metric. The instance with the closest distance value detwermines the class for
the new instance. This classification method is called nearest-neighbor classification.

In [ ]:

### k-nearest-neighbor from Scratch

In [ ]:

import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
print(iris_X[:8])

We create a learnsetfrom the sets above. We use permutation from np.random to split the data randomly:

np.random.seed(42)
indices = np.random.permutation(len(iris_X))
n_training_samples = 12
iris_X_train = iris_X[indices[:-n_training_samples]]
iris_y_train = iris_y[indices[:-n_training_samples]]
iris_X_test = iris_X[indices[-n_training_samples:]]
iris_y_test = iris_y[indices[-n_training_samples:]]
print(iris_X_test)
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To determine the similarity between to instances, we need a distance function. In our example, the Euclidean
distance is ideal:

def distance(instance1, instance2):
# just in case, if the instances are lists or tuples:
instance1 = np.array(instance1)
instance2 = np.array(instance2)

return np.linalg.norm(instance1 - instance2)

print(distance([4, 3, 2], [1, 1,1]))

def get_neighbors(training_set, test_instance, k):
distances = []
for training_instance in training_set:

dist = distance(test_instance, training_instance[:-1])
distances.append((training_instance, dist))

distances.sort(key=lambda x: x[1])
neighbors = []
for i in range(k):

neighbors.append(distances[i][0])
return neighbors

train_set = [(1, 2, 2, 'apple'),
(-3, -2, 0, 'banana'),
(1, 1, 3, 'apple'),
(-3, -3, -1, 'banana')

]

k = 1

[[ 5.7  2.8  4.1  1.3]
[ 6.5  3.   5.5  1.8]
[ 6.3  2.3  4.4  1.3]
[ 6.4  2.9  4.3  1.3]
[ 5.6  2.8  4.9  2. ]
[ 5.9  3.   5.1  1.8]
[ 5.4  3.4  1.7  0.2]
[ 6.1  2.8  4.   1.3]
[ 4.9  2.5  4.5  1.7]
[ 5.8  4.   1.2  0.2]
[ 5.8  2.6  4.   1.2]
[ 7.1  3.   5.9  2.1]]

3.74165738677
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for test_instance in [(0, 0, 0), (2, 2, 2), (-3, -1, 0)]:
neighbors = get_neighbors(train_set, test_instance, 2)
print(test_instance, neighbors)

In [ ]:

(0, 0, 0) [(1, 2, 2, 'apple'), (1, 1, 3, 'apple')]
(2, 2, 2) [(1, 2, 2, 'apple'), (1, 1, 3, 'apple')]
(-3, -1, 0) [(-3, -2, 0, 'banana'), (-3, -3, -1, 'banana')]
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N A I V E  B A Y E S  C L A S S I F I E R

DEFINITION

In machine learning, a Bayes classifier is a simple probabilistic
classifier, which is based on applying Bayes' theorem. The
feature model used by a naive Bayes classifier makes strong
independence assumptions. This means that the existence of a
particular feature of a class is independent or unrelated to the
existence of every other feature.

Definition of independent events:

Two events E and F are independent, if both E and F have
positive probability and if P(E|F) = P(E) and P(F|E) = P(F)

As we have stated in our definition, the Naive Bayes Classifier
is based on the Bayes' theorem. The Bayes theorem is based on
the conditional probability, which we will define now:

CONDITIONAL PROBABILITY

P(A | B) stands for "the conditional probability of A given B", or "the probability of A under the condition B",
i.e. the probability of some event A under the assumption that the event B took place. When in a random
experiment the event B is known to have occurred, the possible outcomes of the experiment are reduced to B,
and hence the probability of the occurrence of A is changed from the unconditional probability into the
conditional probability given B. The Joint probability is the probability of two events in conjunction. That is, it
is the probability of both events together. There are three notations for the joint probability of A and B. It can
be written as

• P(A ∩ B)
• P(AB) or
• P(A, B)

The conditional probability is defined by

P(A | B) =
P(A ∩ B)

P(B)

EXAMPLES FOR CONDITIONAL PROBABILITY

GERMAN SWISS SPEAKER

There are about 8.4 million people living in Switzerland. About 64 % of them speak German. There are about
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7500 million people on earth.

If some aliens randomly beam up an earthling, what are the chances that he is a German speaking Swiss?

We have the events

S: being Swiss

GS: German Speaking

The probability for a randomly chosen person to be Swiss:

P(S) =
8.4

7500
= 0.00112

If we know that somebody is Swiss, the probability of speaking German is 0.64. This corresponds to the
conditional probability

P(GS | S) = 0.64

So the probability of the earthling being Swiss and speaking German, can be calculated by the formula:

P(GS | S) =
P(GS ∩ S)

P(S)

inserting the values from above gives us:

0.64 =
P(GS ∩ S)

0.00112

and

P(GS ∩ S) = 0.0007168

So our aliens end up with a chance of 0.07168 % of getting a German speaking Swiss person.

FALSE POSITIVES AND FALSE NEGATIVES

A medical research lab proposes a screening to test a large group of people for a disease. An argument against
such screenings is the problem of false positive screening results.

Suppose 0,1% of the group suffer from the disease, and the rest is well:

P( " sick " ) = 0, 1

and
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Sick Healthy Totals

Test result positive 99 999 1098

Test result
negative

1 98901 98902

Totals 100 99900 100000

P( " well " ) = 99, 9

The following is true for a screening test:

If you have the disease, the test will be positive 99% of the time, and if you don't have it, the test will be
negative 99% of the time:

P("test positive" | "well") = 1 %

and

P("test negative" | "well") = 99 %.

Finally, suppose that when the test is applied to a person having the disease, there is a 1% chance of a false
negative result (and 99% chance of getting a true positive result), i.e.

P("test negative" | "sick") = 1 %

and

P("test positive" | "sick") = 99 %

There are 999 False Positives and 1 False Negative.

Problem:

In many cases even medical professionals assume that "if you have this sickness, the test will be positive in 99
% of the time and if you don't have it, the test will be negative 99 % of the time. Out of the 1098 cases that
report positive results only 99 (9 %) cases are correct and 999 cases are false positives (91 %), i.e. if a person
gets a positive test result, the probability that he or she actually has the disease is just about 9 %. P("sick" |
"test positive") = 99 / 1098 = 9.02 %

BAYES' THEOREM

We calculated the conditional probability P(GS | S), which was the probability that a person speaks German, if
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he or she is known to be Swiss. To calculate this we used the following equation:

P(GS | S) =
P(GS, S)

P(S)

What about calculating the probability P(S | GS), i.e. the probability that somebody is Swiss under the
assumption that the person speeks German?

The equation looks like this:

P(S | GS) =
P(GS, S)

P(GS)

Let's isolate on both equations P(GS, S):

P(GS, S) = P(GS | S)P(S)

P(GS, S) = P(S | GS)P(GS)

As the left sides are equal, the right sides have to be equal as well:

P(GS | S) ∗ P(S) = P(S | GS)P(GS)

This equation can be transformed into:

P(S | GS) =
P(GS | S)P(S)

P(GS)

The result corresponts to Bayes' theorem

To solve our problem, - i.e. the probability that a person is Swiss, if we know that he or she speaks German -
all we have to do is calculate the right side. We know already from our previous exercise that

P(GS | S) = 0.64

and

P(S) = 0.00112

The number of German native speakers in the world corresponds to 101 millions, so we know that

P(GS) =
101

7500
= 0.0134667

Finally, we can calculate P(S | GS) by substituting the values in our equation:

P(S | GS) =
P(GS | S)P(S)

P(GS)
=

0.64 ∗ 0.00112

0.0134667
= 0.0532276
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There are about 8.4 million people living in Switzerland. About 64 % of them speak German. There are about
7500 million people on earth.

If the some aliens randomly beam up an earthling, what are the chances that he is a German speaking Swiss?

We have the events

S: being Swiss GS: German Speaking

P(S) =
8.4

7500
= 0.00112

P(A | B) =
P(B | A)P(A)

P(B)

P(A | B) is the conditional probability of A, given B (posterior probability), P(B) is the prior probability of B
and P(A) the prior probability of A. P(B | A) is the conditional probability of B given A, called the likely-hood.

An advantage of the naive Bayes classifier is that it requires only a small amount of training data to estimate
the parameters necessary for classification. Because independent variables are assumed, only the variances of
the variables for each class need to be determined and not the entire covariance matrix.
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N A I V E  B A Y E S  C L A S S I F I E R

INTRODUCTORY EXERCISE

Let's set out on a journey by train to create our first
very simple Naive Bayes Classifier. Let us assume
we are in the city of Hamburg and we want to travel
to Munich. We will have to change trains in
Frankfurt am Main. We know from previous train
journeys that our train from Hamburg might be
delayed and the we will not catch our connecting
train in Frankfurt. The probability that we will not be
in time for our connecting train depends on how high
our possible delay will be. The connecting train will
not wait for more than five minutes. Sometimes the
other train is delayed as well.

The following lists 'in_time' (the train from Hamburg arrived in time to catch the connecting train to Munich)
and 'too_late' (connecting train is missed) are data showing the situation over some weeks. The first
component of each tuple shows the minutes the train was late and the second component shows the number of
time this occurred.

# the tuples consist of (delay time of train1, number of times)

# tuples are (minutes, number of times)
in_time = [(0, 22), (1, 19), (2, 17), (3, 18),

(4, 16), (5, 15), (6, 9), (7, 7),
(8, 4), (9, 3), (10, 3), (11, 2)]

too_late = [(6, 6), (7, 9), (8, 12), (9, 17),
(10, 18), (11, 15), (12,16), (13, 7),
(14, 8), (15, 5)]

%matplotlib inline

import matplotlib.pyplot as plt
X, Y = zip(*in_time)

X2, Y2 = zip(*too_late)

bar_width = 0.9
plt.bar(X, Y, bar_width, color="blue", alpha=0.75, label="in tim
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e")
bar_width = 0.8
plt.bar(X2, Y2, bar_width, color="red", alpha=0.75, label="too la
te")
plt.legend(loc='upper right')
plt.show()

From this data we can deduce that the probability of catching the connecting train if we are one minute late is
1, because we had 19 successful cases experienced and no misses, i.e. there is no tuple with 1 as the first
component in 'too_late'.

We will denote the event "train arrived in time to catch the connecting train" with S (success) and the 'unlucky'
event "train arrived too late to catch the connecting train" with M (miss)

We can now define the probability "catching the train given that we are 1 minute late" formally:

P(S | 1) = 19/19 = 1

We used the fact that the tuple (1, 19) is in 'in_time' and there is no tuple with the first component 1 in
'too_late'

It's getting critical for catching the connecting train to Munich, if we are 6 minutes late. Yet, the chances are
still 60 %:

P(S | 6) = 9/9 + 6 = 0.6

Accordingly, the probability for missing the train knowing that we are 6 minutes late is:

P(M | 6) = 6/9 + 6 = 0.4

We can write a 'classifier' function, which will give the probability for catching the connecting train:

in_time_dict = dict(in_time)
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too_late_dict = dict(too_late)

def catch_the_train(min):
s = in_time_dict.get(min, 0)
if s == 0:

return 0
else:

m = too_late_dict.get(min, 0)
return s / (s + m)

for minutes in range(-1, 13):
print(minutes, catch_the_train(minutes))

A NAIVE BAYES CLASSIFIER EXAMPLE

GETTING THE DATA READY

We will use a file called 'person_data.txt'. It contains 100 random person data, male and female, with body
sizes, weights and gender tags.

import numpy as np
genders = ["male", "female"]
persons = []
with open("data/person_data.txt") as fh:

for line in fh:
persons.append(line.strip().split())

-1 0
0 1.0
1 1.0
2 1.0
3 1.0
4 1.0
5 1.0
6 0.6
7 0.4375
8 0.25
9 0.15
10 0.14285714285714285
11 0.11764705882352941
12 0
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firstnames = {}
heights = {}
for gender in genders:

firstnames[gender] = [ x[0] for x in persons if x[4]==gender]
heights[gender] = [ x[2] for x in persons if x[4]==gender]
heights[gender] = np.array(heights[gender], np.int)

for gender in ("female", "male"):
print(gender + ":")
print(firstnames[gender][:10])
print(heights[gender][:10])

Warning: There might be some confusion between a Python class and a Naive Bayes class. We try to avoid it
by saying explicitly what is meant, whenever possible!

DESIGNING A FEATURE CLASS

We will now define a Python class "Feature" for the features, which we will use for classification later.

The Feature class needs a label, e.g. "heights" or "firstnames". If the feature values are numerical we may
want to "bin" them to reduce the number of possible feature values. The heights from our persons have a huge
range and we have only 50 measured values for our Naive Bayes classes "male" and "female". We will bin
them into ranges "130 to 134", "135 to 139", "140 to 144" and so on by setting bin_width to 5. There is no
way of binning the first names, so bin_width will be set to None.

The method frequency returns the number of occurrencies for a certain feature value or a binned range.

from collections import Counter
import numpy as np
class Feature:

def __init__(self, data, name=None, bin_width=None):
self.name = name
self.bin_width = bin_width
if bin_width:

female:
['Stephanie', 'Cynthia', 'Katherine', 'Elizabeth', 'Carol', 'Chris
tina', 'Beverly', 'Sharon', 'Denise', 'Rebecca']
[149 174 183 138 145 161 179 162 148 196]
male:
['Randy', 'Jessie', 'David', 'Stephen', 'Jerry', 'Billy', 'Earl',
'Todd', 'Martin', 'Kenneth']
[184 175 187 192 204 180 184 174 177 200]
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self.min, self.max = min(data), max(data)
bins = np.arange((self.min // bin_width) * bin_width,

(self.max // bin_width) * bin_widt
h,

bin_width)
freq, bins = np.histogram(data, bins)
self.freq_dict = dict(zip(bins, freq))
self.freq_sum = sum(freq)

else:
self.freq_dict = dict(Counter(data))
self.freq_sum = sum(self.freq_dict.values())

def frequency(self, value):
if self.bin_width:

value = (value // self.bin_width) * self.bin_width
if value in self.freq_dict:

return self.freq_dict[value]
else:

return 0

We will create now two feature classes Feature for the height values of the person data set. One Feature class
contains the height for the Naive Bayes class "male" and one the heights for the class "female":

fts = {}
for gender in genders:

fts[gender] = Feature(heights[gender], name=gender, bin_widt
h=5)

print(gender, fts[gender].freq_dict)

BAR CHART OF FREQUENCY DISTRIBUTION

We printed out the frequencies of our bins, but it is a lot better to see these values dipicted in a bar chart. We
will do this with the following code:

for gender in genders:
frequencies = list(fts[gender].freq_dict.items())
frequencies.sort(key=lambda x: x[1])

male {160: 5, 195: 2, 180: 5, 165: 4, 200: 3, 185: 8, 170: 6, 15
5: 1, 190: 8, 175: 7}
female {160: 8, 130: 1, 165: 11, 135: 1, 170: 7, 140: 0, 175: 2, 1
45: 3, 180: 4, 150: 5, 185: 0, 155: 7}
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X, Y = zip(*frequencies)
color = "blue" if gender=="male" else "red"
bar_width = 4 if gender=="male" else 3
plt.bar(X, Y, bar_width, color=color, alpha=0.75, label=gende

r)

plt.legend(loc='upper right')
plt.show()

We have to design now a Naive Bayes class in Python. We will call it NBclass. An NBclass contains one or
more Feature classes. The name of the NBclass will be stored in self.name.

class NBclass:
def __init__(self, name, *features):

self.features = features
self.name = name

def probability_value_given_feature(self,
feature_value,
feature):

"""
p_value_given_feature returns the probability p
for a feature_value 'value' of the feature  to occurr
corresponds to P(d_i | p_j)
where d_i is a feature variable of the feature i
"""

if feature.freq_sum == 0:
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return 0
else:

return feature.frequency(feature_value) / featur
e.freq_sum

In the following code, we will create NBclasses with one feature, i.e. the height feature. We will use the
Feature classes of fts, which we have previously created:

cls = {}
for gender in genders:

cls[gender] = NBclass(gender, fts[gender])

The final step for creating a simple Naive Bayes classifier consists in writing a class 'Classifier', which will
use our classes 'NBclass' and 'Feature'.

class Classifier:
def __init__(self, *nbclasses):

self.nbclasses = nbclasses

def prob(self, *d, best_only=True):
nbclasses = self.nbclasses
probability_list = []
for nbclass in nbclasses:

ftrs = nbclass.features
prob = 1
for i in range(len(ftrs)):

prob *= nbclass.probability_value_given_featur
e(d[i], ftrs[i])

probability_list.append( (prob, nbclass.name) )

prob_values = [f[0] for f in probability_list]
prob_sum = sum(prob_values)
if prob_sum==0:

number_classes = len(self.nbclasses)
pl = []
for prob_element in probability_list:

pl.append( ((1 / number_classes), prob_elemen
t[1]))

probability_list = pl
else:
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probability_list = [ (p[0] / prob_sum, p[1]) for p i
n probability_list]

if best_only:
return max(probability_list)

else:
return probability_list

We will create a classifier with one feature class 'height'. We check it with values between 130 and 220 cm.

c = Classifier(cls["male"], cls["female"])

for i in range(130, 220, 5):
print(i, c.prob(i, best_only=False))

There are no persons - neither male nor female - in our learn set, with a body height between 140 and 144.
This is the reason, why our classifier can't base its result on learned data and therefore comes back with a fify-
fifty result.

We can also train a classifier with our firstnames:

fts = {}

130 [(0.0, 'male'), (1.0, 'female')]
135 [(0.0, 'male'), (1.0, 'female')]
140 [(0.5, 'male'), (0.5, 'female')]
145 [(0.0, 'male'), (1.0, 'female')]
150 [(0.0, 'male'), (1.0, 'female')]
155 [(0.125, 'male'), (0.875, 'female')]
160 [(0.38461538461538469, 'male'), (0.61538461538461542, 'femal
e')]
165 [(0.26666666666666666, 'male'), (0.73333333333333328, 'femal
e')]
170 [(0.46153846153846162, 'male'), (0.53846153846153855, 'femal
e')]
175 [(0.77777777777777779, 'male'), (0.22222222222222224, 'femal
e')]
180 [(0.55555555555555558, 'male'), (0.44444444444444448, 'femal
e')]
185 [(1.0, 'male'), (0.0, 'female')]
190 [(1.0, 'male'), (0.0, 'female')]
195 [(1.0, 'male'), (0.0, 'female')]
200 [(1.0, 'male'), (0.0, 'female')]
205 [(0.5, 'male'), (0.5, 'female')]
210 [(0.5, 'male'), (0.5, 'female')]
215 [(0.5, 'male'), (0.5, 'female')]
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cls = {}
for gender in genders:

fts_names = Feature(firstnames[gender], name=gender)
cls[gender] = NBclass(gender, fts_names)

c = Classifier(cls["male"], cls["female"])

testnames = ['Edgar', 'Benjamin', 'Fred', 'Albert', 'Laura',
'Maria', 'Paula', 'Sharon', 'Jessie']

for name in testnames:
print(name, c.prob(name))

The name "Jessie" is an ambiguous name. There are about 66 boys per 100 girls with this name. We can learn
from the previous classification results that the probability for the name "Jessie" being "female" is about two-
thirds, which is calculated from our data set "person":

[person for person in persons if person[0] == "Jessie"]

Jessie Washington is only 159 cm tall. If we have a look at the results of our Classifier, trained with heights,
we see that the likelihood for a person 159 cm tall of being "female" is 0.875. So what about an unknown
person called "Jessie" and being 159 cm tall? Is this person female or male?

To answer this question, we will train an Naive Bayes classifier with two feature classes, i.e. heights and
firstnames:

cls = {}
for gender in genders:

fts_heights = Feature(heights[gender], name="heights", bin_wid

Edgar (0.5, 'male')
Benjamin (1.0, 'male')
Fred (1.0, 'male')
Albert (1.0, 'male')
Laura (1.0, 'female')
Maria (1.0, 'female')
Paula (1.0, 'female')
Sharon (1.0, 'female')
Jessie (0.6666666666666667, 'female')

Output: [['Jessie', 'Morgan', '175', '67.0', 'male'],
['Jessie', 'Bell', '165', '65', 'female'],
['Jessie', 'Washington', '159', '56', 'female'],
['Jessie', 'Davis', '174', '45', 'female'],
['Jessie', 'Johnson', '165', '30.0', 'male'],
['Jessie', 'Thomas', '168', '69', 'female']]
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th=5)
fts_names = Feature(firstnames[gender], name="names")

cls[gender] = NBclass(gender, fts_names, fts_heights)

c = Classifier(cls["male"], cls["female"])

for d in [("Maria", 140), ("Anthony", 200), ("Anthony", 153),
("Jessie", 188) , ("Jessie", 159), ("Jessie", 160) ]:

print(d, c.prob(*d, best_only=False))

THE UNDERLYING THEORY

Our classifier from the previous example is based on the Bayes theorem:

P(cj | d) =
P(d | cj)P(cj)

P(d)

where

• P(cj | d) is the probability of instance d being in class c_j, it is the result we want to calculate

with our classifier

• P(d | cj) is the probability of generating the instance d, if the class cj is given

• P(cj) is the probability for the occurrence of class cj We didn't use it in our classifiers, because

both classes in our example have been equally likely.

• P(d) is the probability for the occurrence of an instance d It's not needed in the calculation,
because it is the same for all classes.

We had used only one feature in our previous examples, i.e. the 'height' or the name.

It's possible to define a Bayes Classifier with multiple features, e.g. d = (d1, d2, . . . , dn)

('Maria', 140) [(0.5, 'male'), (0.5, 'female')]
('Anthony', 200) [(1.0, 'male'), (0.0, 'female')]
('Anthony', 153) [(0.5, 'male'), (0.5, 'female')]
('Jessie', 188) [(1.0, 'male'), (0.0, 'female')]
('Jessie', 159) [(0.066666666666666666, 'male'), (0.93333333333333
335, 'female')]
('Jessie', 160) [(0.23809523809523817, 'male'), (0.761904761904761
97, 'female')]
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We get the following formula:

P(cj | d) =
1

P(d)

n

∏
i = 1

P(di | cj)P(cj)

1

P ( d )
is only depending on the values of d1, d2, . . . dn. This means that it is a constant as the values of the

feature variables are known.

In [ ]:

NAIVE BAYES CLASSIFIER 289



N A I V E  B A Y E S  C L A S S I F I E R  W I T H
S C I K I T

We have written Naive Bayes Classifiers
from scratch in our previous chapter of
our tutorial. In this part of the tutorial on
Machine Learning with Python, we want
to show you how to use ready-made
classifiers. The module Scikit provides
naive Bayes classifiers "off the rack".

Our first example uses the "iris dataset"
contained in the model to train and test the
classifier

# Gaussian Naive Bayes
from sklearn import datas
ets
from sklearn import metri
cs
from sklearn.naive_bayes
import GaussianNB
# load the iris datasets
dataset = datasets.load_i
ris()
# fit a Naive Bayes mode
l to the data
model = GaussianNB()

model.fit(dataset.data, dataset.target)
print(model)
# make predictions
expected = dataset.target
predicted = model.predict(dataset.data)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
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We use our person data from the previous chapter of our tutorial to train another classifier in the next example:

import numpy as np
def prepare_person_dataset(fname):

genders = ["male", "female"]
persons = []
with open(fname) as fh:

for line in fh:
persons.append(line.strip().split())

firstnames = []
dataset = [] # weight and height

for person in persons:
firstnames.append( (person[0], person[4]) )
height_weight = (float(person[2]), float(person[3]))
dataset.append( (height_weight, person[4]))

return dataset

learnset = prepare_person_dataset("data/person_data.txt")
testset = prepare_person_dataset("data/person_data_testset.txt")
print(learnset)

GaussianNB()
precision    recall  f1-score   support

0       1.00      1.00      1.00        50
1       0.94      0.94      0.94        50
2       0.94      0.94      0.94        50

avg / total       0.96      0.96      0.96       150

[[50  0  0]
[ 0 47  3]
[ 0  3 47]]
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# Gaussian Naive Bayes
from sklearn import datasets
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB

[((184.0, 73.0), 'male'), ((149.0, 52.0), 'female'), ((174.0, 6
3.0), 'female'), ((175.0, 67.0), 'male'), ((183.0, 81.0), 'femal
e'), ((187.0, 60.0), 'male'), ((192.0, 96.0), 'male'), ((204.0, 9
1.0), 'male'), ((180.0, 66.0), 'male'), ((184.0, 52.0), 'male'),
((174.0, 53.0), 'male'), ((177.0, 91.0), 'male'), ((138.0, 37.0),
'female'), ((200.0, 82.0), 'male'), ((193.0, 79.0), 'male'), ((18
9.0, 79.0), 'male'), ((145.0, 59.0), 'female'), ((188.0, 53.0), 'm
ale'), ((187.0, 81.0), 'male'), ((187.0, 99.0), 'male'), ((190.0,
81.0), 'male'), ((161.0, 48.0), 'female'), ((179.0, 75.0), 'femal
e'), ((180.0, 67.0), 'male'), ((155.0, 48.0), 'male'), ((201.0, 12
2.0), 'male'), ((162.0, 62.0), 'female'), ((148.0, 49.0), 'femal
e'), ((171.0, 50.0), 'male'), ((196.0, 86.0), 'female'), ((163.0,
46.0), 'female'), ((159.0, 37.0), 'female'), ((163.0, 53.0), 'mal
e'), ((150.0, 39.0), 'female'), ((170.0, 56.0), 'female'), ((19
1.0, 55.0), 'male'), ((175.0, 37.0), 'male'), ((169.0, 78.0), 'fem
ale'), ((167.0, 59.0), 'female'), ((170.0, 78.0), 'male'), ((17
8.0, 79.0), 'male'), ((168.0, 71.0), 'female'), ((170.0, 37.0), 'f
emale'), ((167.0, 58.0), 'female'), ((152.0, 43.0), 'female'), ((1
91.0, 81.0), 'male'), ((155.0, 48.0), 'female'), ((176.0, 61.0),
'male'), ((151.0, 41.0), 'female'), ((166.0, 59.0), 'female'), ((1
68.0, 46.0), 'male'), ((165.0, 65.0), 'female'), ((169.0, 67.0),
'male'), ((158.0, 43.0), 'female'), ((173.0, 61.0), 'male'), ((18
0.0, 74.0), 'male'), ((212.0, 59.0), 'male'), ((152.0, 62.0), 'fem
ale'), ((189.0, 67.0), 'male'), ((159.0, 56.0), 'female'), ((16
3.0, 58.0), 'female'), ((174.0, 45.0), 'female'), ((174.0, 69.0),
'male'), ((167.0, 47.0), 'male'), ((131.0, 37.0), 'female'), ((15
4.0, 74.0), 'female'), ((159.0, 59.0), 'female'), ((159.0, 58.0),
'female'), ((177.0, 83.0), 'female'), ((193.0, 96.0), 'male'), ((1
80.0, 83.0), 'female'), ((164.0, 54.0), 'male'), ((164.0, 64.0),
'female'), ((171.0, 52.0), 'male'), ((163.0, 41.0), 'female'), ((1
65.0, 30.0), 'male'), ((161.0, 61.0), 'female'), ((198.0, 75.0),
'male'), ((183.0, 70.0), 'female'), ((185.0, 71.0), 'male'), ((17
5.0, 58.0), 'male'), ((195.0, 89.0), 'male'), ((170.0, 66.0), 'fem
ale'), ((167.0, 61.0), 'female'), ((166.0, 65.0), 'female'), ((18
0.0, 88.0), 'female'), ((164.0, 55.0), 'male'), ((161.0, 53.0), 'f
emale'), ((187.0, 76.0), 'male'), ((170.0, 63.0), 'female'), ((19
2.0, 101.0), 'male'), ((175.0, 56.0), 'male'), ((190.0, 100.0), 'm
ale'), ((164.0, 63.0), 'male'), ((172.0, 61.0), 'female'), ((16
8.0, 69.0), 'female'), ((156.0, 51.0), 'female'), ((167.0, 40.0),
'female'), ((161.0, 18.0), 'male'), ((167.0, 56.0), 'female')]
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model = GaussianNB()
#print(dataset.data, dataset.target)
w, l = zip(*learnset)
w = np.array(w)
l = np.array(l)

model.fit(w, l)
print(model)

w, l = zip(*testset)
w = np.array(w)
l = np.array(l)
predicted = model.predict(w)
print(predicted)
print(l)
# summarize the fit of the model
print(metrics.classification_report(l, predicted))
print(metrics.confusion_matrix(l, predicted))
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GaussianNB()
['female' 'male' 'male' 'female' 'female' 'male' 'female' 'femal
e' 'female'
'female' 'female' 'female' 'female' 'female' 'male' 'female' 'mal

e'
'female' 'female' 'female' 'male' 'female' 'female' 'male' 'mal

e' 'female'
'female' 'male' 'male' 'male' 'female' 'female' 'male' 'male' 'ma

le'
'female' 'female' 'male' 'female' 'male' 'male' 'female' 'femal

e' 'male'
'female' 'male' 'male' 'female' 'male' 'female' 'female' 'femal

e' 'male'
'female' 'female' 'male' 'female' 'female' 'male' 'female' 'femal

e' 'male'
'female' 'female' 'female' 'female' 'male' 'female' 'female' 'fem

ale'
'female' 'female' 'male' 'male' 'female' 'female' 'male' 'male'

'female'
'female' 'male' 'male' 'female' 'male' 'male' 'male' 'female' 'ma

le'
'female' 'female' 'male' 'male' 'female' 'male' 'female' 'femal

e' 'female'
'male' 'female' 'male']

['female' 'male' 'male' 'female' 'female' 'male' 'male' 'male' 'fe
male'
'female' 'female' 'female' 'female' 'female' 'male' 'male' 'mal

e' 'female'
'female' 'female' 'male' 'female' 'female' 'male' 'male' 'femal

e' 'male'
'female' 'male' 'female' 'male' 'male' 'male' 'male' 'female' 'fe

male'
'female' 'male' 'male' 'female' 'male' 'female' 'male' 'male' 'fe

male'
'male' 'female' 'male' 'female' 'female' 'female' 'male' 'male'

'male'
'male' 'male' 'female' 'male' 'male' 'female' 'female' 'female'

'male'
'female' 'male' 'female' 'male' 'female' 'male' 'female' 'femal

e' 'female'
'male' 'male' 'male' 'female' 'male' 'male' 'female' 'female' 'ma

le'
'male' 'female' 'female' 'male' 'male' 'female' 'male' 'female'

'male'
'male' 'female' 'female' 'male' 'male' 'female' 'female' 'male'

'female'
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In [ ]:

In [ ]:

'female']
precision    recall  f1-score   support

female       0.68      0.80      0.73        50
male       0.76      0.62      0.68        50

avg / total       0.72      0.71      0.71       100

[[40 10]
[19 31]]
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T E X T  C A T E G O R I Z A T I O N  A N D
C L A S S I F I C A T I O N

INTRODUCTION

Document classification/categorization is a topic in information science, a
science dealing with the collection, analysis, classification, categorization,
manipulation, retrieval, storage and propagation of information.

This might sound very abstract, but there are lots of situations nowadays,
where companies are in need of automatic classification or categorization
of documents. Just think about a large company with thousands of
incoming mail pieces per day, both electronic or paper based. Lot's of these
mail pieces are without specific addressee names or departments.
Somebody has to read these texts and has to decide what kind of a letter it is ("change of address", "complaints
letter", "inquiry about products", and so on) and to whom the document should be proceeded. This
"somebody" can be an automated text classification system.

Automated text classification,
also called categorization of texts,
has a history, which dates back to
the beginning of the 1960s. But
the incredible increase in
available online documents in the
last two decades, due to the
expanding internet, has
intensified and renewed the
interest in automated document
classification and data mining. In
the beginning text classification
focussed on heuristic methods,
i.e. solving the task by applying a
set of rules based on expert
knowledge. This approach proved
to be highly inefficient, so
nowadays the focus has turned to
fully automatic learning and clustering methods.

The task of text classification consists in assigning a document to one or more categories, based on the
semantic content of the document. Document (or text) classification runs in two modes:

• The training phase and the
• prediction (or classification) phase.
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The training phase can be divided into three kinds:

• supervised document classification is performed by an external mechanism, usually human
feedback, which provides the necessary information for the correct classification of documents,

• semi-supervised document classification, a mixture between supervised and unsupervised
classification: some documents or parts of documents are labelled by external assistance,

• unsupervised document classification is entirely executed without reference to external
information.

We will implement a text classifier in Python using Naive Bayes. Naive Bayes is the most commonly used text
classifier and it is the focus of research in text classification. A Naive Bayes classifier is based on the
application of Bayes' theorem with strong independence assumptions. "Strong independence" means: the
presence or absence of a particular feature of a class is unrelated to the presence or absence of any other
feature. Naive Bayes is well suited for multiclass text classification.

FORMAL DEFINITION

Let C = { c1, c2, ... cm} be a set of categories (classes) and D = { d1, d2, ... dn} a set of documents.

The task of the text classification consists in assigning to each pair ( ci, dj ) of C x D (with 1 ≤ i ≤ m and 1 ≤ j
≤ n) a value of 0 or 1, i.e. the value 0, if the document dj doesn't belong to ci

This mapping is sometimes referred to as the decision matrix:

d1 ... dj ... dn

c1 a11 ... a1j ... a1n

... ... ... ... ... ...

ci ai1 ... aij ... ain

... ... ... ... ... ...

cm am1 ... amj ... amn

The main approaches to solve this task are:

• Naive Bayes
• Support Vector Machine

▪ Nearest Neighbour

TEXT CATEGORIZATION AND CLASSIFICATION 297



NAIVE BAYES CLASSIFIER

A Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong (naïve)
independence assumptions, i.e. an "independent feature model". In other words: A naive Bayes classifier
assumes that the presence (or absence) of a particular feature of a class is unrelated to the presence (or
absence) of any other feature.

FORMAL DERIVATION OF THE NAIVE BAYES CLASSIFIER:

Let C = { c1, c2, ... cm} be a set of classes or categories
and D = { d1, d2, ... dn} be a set of documents.
Each document is labeled with a class.
The set D of documents is used to train the classifier.
Classification consists in selecting the most probable class
for an unknown document.

The number of times a word wt occurs within a document

di will be denoted as Nit. Nt
C denotes the number of times

a word wt ocurs in all documents of a given class C.
P(di|cj) is 1, if di is labelled as cj, 0 otherwise

The probability for a word wt given a class cj:

The probability for a class cj is the quotient of the number of Documents of cj and the number of documents of
all classes, i.e. the learn set:

Finally, we come to the formula we need to classify an unknown document, i.e. the probability for a class cj
given a document di:
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Unfortunately, the formula of P(c|di) we have just given is numerically not stable, because the denominator
can be zero due to rounding errors. We change this by calculating the reciprocal and reformulate the
expression as a sum of stable quotients:

We can rewrite the previous formula into the following form, our final Naive Bayes classification formula, the
one we will use in our Python implementation in the following chapter:

FURTHER READING

There are lots of articles on text classification. We just name a few, which we have used for our work:

• Fabrizio Sebastiani. A tutorial on automated text categorisation. In Analia Amandi and
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Alejandro Zunino (eds.), Proceedings of the 1st Argentinian Symposium on Artificial
Intelligence (ASAI'99), Buenos Aires, AR, 1999, pp. 7-35.

• Lewis, David D., Naive (Bayes) at Forty: The independence assumption in informal retrieval,
Lecture Notes in Computer Science (1998), 1398, Issue: 1398, Publisher: Springer, Pages: 4-15

• K. Nigam, A. McCallum, S. Thrun and T. Mitchell, Text classification from labeled and
unlabeled documents using EM, Machine Learning 39 (2000) (2/3), pp. 103-134.
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T E X T  C L A S S I F I C A T I O N  I N
P Y T H O N

INTRODUCTION

In the previous chapter, we have deduced the formula for calculating the
probability that a document d belongs to a category or class c, denoted as
P(c|d).

We have transformed the standard formular for P(c|d), as it is used in many

treatises1, into a numerically stable form.

We use a Naive Bayes classifier for our implementation in Python. The
formal introduction into the Naive Bayes approach can be found in our
previous chapter.

Python is ideal for text classification, because of it's strong string class with
powerful methods. Furthermore the regular expression module re of Python
provides the user with tools, which are way beyond other programming
languages.

The only downside might be that this Python implementation is not tuned
for efficiency.

PYTHON IMPLEMENTATION OF PREVIOUS CHAPTER

DOCUMENT REPRESENTATION

The document representation, which is based on the bag of word model, is illustrated in the following
diagram:
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IMPORTS NEEDED

Our implementation needs the regular expression module re and the os module:

import re
import os

We will use in our implementation the function dict_merge_sum from the exercise 1 of our chapter on
dictionaries:

def dict_merge_sum(d1, d2):
""" Two dicionaries d1 and d2 with numerical values and
possibly disjoint keys are merged and the values are added if
the exist in both values, otherwise the missing value is take

n to
be 0"""

return { k: d1.get(k, 0) + d2.get(k, 0) for k in set(d1) | se
t(d2) }

d1 = dict(a=4, b=5, d=8)
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d2 = dict(a=1, d=10, e=9)

dict_merge_sum(d1, d2)

BAGOFWORDSCLASS

class BagOfWords(object):
""" Implementing a bag of words, words corresponding with thei

r
frequency of usages in a "document" for usage by the
Document class, Category class and the Pool class."""

def __init__(self):
self.__number_of_words = 0
self.__bag_of_words = {}

def __add__(self, other):
""" Overloading of the "+" operator to join two BagOfWord

s """

erg = BagOfWords()
erg.__bag_of_words = dict_merge_sum(self.__bag_of_words,

other.__bag_of_words)
return erg

def add_word(self,word):
""" A word is added in the dictionary __bag_of_words"""
self.__number_of_words += 1
if word in self.__bag_of_words:

self.__bag_of_words[word] += 1
else:

self.__bag_of_words[word] = 1

def len(self):
""" Returning the number of different words of an object

"""
return len(self.__bag_of_words)

def Words(self):
""" Returning a list of the words contained in the object

"""
return self.__bag_of_words.keys()

Output: : {'e': 9, 'd': 18, 'b': 5, 'a': 5}
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def BagOfWords(self):
""" Returning the dictionary, containing the words (keys)

with their frequency (values)"""
return self.__bag_of_words

def WordFreq(self,word):
""" Returning the frequency of a word """
if word in self.__bag_of_words:

return self.__bag_of_words[word]
else:

return 0

THE DOCUMENT CLASS

class Document(object):
""" Used both for learning (training) documents and for testin

g documents. The optional parameter lear
has to be set to True, if a classificator should be trained. I

f it is a test document learn has to be set to False. """
_vocabulary = BagOfWords()

def __init__(self, vocabulary):
self.__name = ""
self.__document_class = None
self._words_and_freq = BagOfWords()
Document._vocabulary = vocabulary

def read_document(self,filename, learn=False):
""" A document is read. It is assumed that the document i

s either encoded in utf-8 or in iso-8859... (latin-1).
The words of the document are stored in a Bag of Words,

i.e. self._words_and_freq = BagOfWords() """
try:

text = open(filename,"r", encoding='utf-8').read()
except UnicodeDecodeError:

text = open(filename,"r", encoding='latin-1').read()
text = text.lower()
words = re.split(r"\W",text)

self._number_of_words = 0
for word in words:

self._words_and_freq.add_word(word)
if learn:
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Document._vocabulary.add_word(word)

def __add__(self,other):
""" Overloading the "+" operator. Adding two documents con

sists in adding the BagOfWords of the Documents """
res = Document(Document._vocabulary)
res._words_and_freq = self._words_and_freq + other._word

s_and_freq
return res

def vocabulary_length(self):
""" Returning the length of the vocabulary """
return len(Document._vocabulary)

def WordsAndFreq(self):
""" Returning the dictionary, containing the words (keys)

with their frequency (values) as contained
in the BagOfWords attribute of the document"""
return self._words_and_freq.BagOfWords()

def Words(self):
""" Returning the words of the Document object """
d = self._words_and_freq.BagOfWords()
return d.keys()

def WordFreq(self,word):
""" Returning the number of times the word "word" appeare

d in the document """
bow = self._words_and_freq.BagOfWords()
if word in bow:

return bow[word]
else:

return 0

def __and__(self, other):
""" Intersection of two documents. A list of words occurin

g in both documents is returned """
intersection = []
words1 = self.Words()
for word in other.Words():

if word in words1:
intersection += [word]

return intersection
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CATEGORY / COLLECTIONS OF DOCUMENTS

This is the class consisting of the documents for one category /class. We use the term category instead of
"class" so that it will not be confused with Python classes:

class Category(Document):
def __init__(self, vocabulary):

Document.__init__(self, vocabulary)
self._number_of_docs = 0

def Probability(self,word):
""" returns the probabilty of the word "word" given the cl

ass "self" """
voc_len = Document._vocabulary.len()
SumN = 0
for i in range(voc_len):

SumN = Category._vocabulary.WordFreq(word)
N = self._words_and_freq.WordFreq(word)
erg = 1 + N
erg /= voc_len + SumN
return erg

def __add__(self,other):
""" Overloading the "+" operator. Adding two Category obje

cts consists in adding the
BagOfWords of the Category objects """
res = Category(self._vocabulary)
res._words_and_freq = self._words_and_freq + other._word

s_and_freq

return res

def SetNumberOfDocs(self, number):
self._number_of_docs = number

def NumberOfDocuments(self):
return self._number_of_docs

THE POOL CLASS

The pool is the class, where the document classes are trained and kept:

class Pool(object):
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def __init__(self):
self.__document_classes = {}
self.__vocabulary = BagOfWords()

def sum_words_in_class(self, dclass):
""" The number of times all different words of a dclass ap

pear in a class """
sum = 0
for word in self.__vocabulary.Words():

WaF = self.__document_classes[dclass].WordsAndFreq()
if word in WaF:

sum += WaF[word]
return sum

def learn(self, directory, dclass_name):
""" directory is a path, where the files of the class wit

h the name dclass_name can be found """
x = Category(self.__vocabulary)
dir = os.listdir(directory)
for file in dir:

d = Document(self.__vocabulary)
#print(directory + "/" + file)
d.read_document(directory + "/" + file, learn = True)
x = x + d

self.__document_classes[dclass_name] = x
x.SetNumberOfDocs(len(dir))

def Probability(self, doc, dclass = ""):
"""Calculates the probability for a class dclass given a d

ocument doc"""
if dclass:

sum_dclass = self.sum_words_in_class(dclass)
prob = 0

d = Document(self.__vocabulary)
d.read_document(doc)

for j in self.__document_classes:
sum_j = self.sum_words_in_class(j)
prod = 1
for i in d.Words():

wf_dclass = 1 + self.__document_classes[dclas
s].WordFreq(i)

wf = 1 + self.__document_classes[j].WordFre
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q(i)
r = wf * sum_dclass / (wf_dclass * sum_j)
prod *= r

prob += prod * self.__document_classes[j].NumberOf
Documents() / self.__document_classes[dclass].NumberOfDocuments()

if prob != 0:
return 1 / prob

else:
return -1

else:
prob_list = []
for dclass in self.__document_classes:

prob = self.Probability(doc, dclass)
prob_list.append([dclass,prob])

prob_list.sort(key = lambda x: x[1], reverse = True)
return prob_list

def DocumentIntersectionWithClasses(self, doc_name):
res = [doc_name]
for dc in self.__document_classes:

d = Document(self.__vocabulary)
d.read_document(doc_name, learn=False)
o = self.__document_classes[dc] & d
intersection_ratio = len(o) / len(d.Words())
res += (dc, intersection_ratio)

return res

USING THE CLASSIFIER

To be able to learn and test a classifier, we offer a "Learn and test set to Download". The module NaiveBayes
consists of the code we have provided so far, but it can be downloaded for convenience as NaiveBayes.py The
learn and test sets contain (old) jokes labelled in six categories: "clinton", "lawyer", "math", "medical",
"music", "sex".

import os
DClasses = ["clinton", "lawyer", "math", "medical", "music",
"sex"]

base = "data/jokes/learn/"
p = Pool()
for dclass in DClasses:

p.learn(base + dclass, dclass)
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base = "data/jokes/test/"
results = []
for dclass in DClasses:

dir = os.listdir(base + dclass)
for file in dir:

res = p.Probability(base + dclass + "/" + file)
results.append(f"{dclass}: {file}: {str(res)}")

print(results[:10])
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FOOTNOTES
1 Please see our "Further Reading" section of our previous chapter

["clinton: clinton13.txt: [['clinton', 0.9999999999994136], ['lawy
er', 4.836910173924097e-13], ['medical', 1.0275816932480502e-13],
['sex', 2.259655644772941e-20], ['music', 1.9461534629330693e-2
3], ['math', 1.555345744116502e-26]]", "clinton: clinton53.txt:
[['clinton', 1.0], ['medical', 9.188673872554947e-27], ['lawyer',
1.8427106994083583e-27], ['sex', 1.5230675259429155e-27], ['musi
c', 1.1695224390877453e-31], ['math', 1.1684669623309053e-33]]",
"clinton: clinton43.txt: [['clinton', 0.9999999931196475], ['lawye
r', 5.860057747465498e-09], ['medical', 9.607574904397297e-10],
['sex', 5.894524557321511e-11], ['music', 3.7727719397911977e-1
3], ['math', 2.147560501376133e-13]]", "clinton: clinton3.txt:
[['clinton', 0.9999999999999962], ['music', 2.2781994419060397e-1
5], ['medical', 1.1698375401225822e-15], ['lawyer', 4.527194012614
925e-16], ['sex', 1.5454131826930606e-17], ['math', 7.079852963638
893e-18]]", "clinton: clinton33.txt: [['clinton', 0.99999999999908
45], ['sex', 4.541025305456911e-13], ['lawyer', 3.126691883689181
e-13], ['medical', 1.3677618519146697e-13], ['music', 1.2066374685
712134e-14], ['math', 7.905002788169863e-19]]", "clinton: clinton2
3.txt: [['clinton', 0.9999999990044788], ['music', 9.9032976273754
97e-10], ['lawyer', 4.599127712898122e-12], ['math', 5.20451555225
3461e-13], ['sex', 6.840062626646056e-14], ['medical', 3.240001663
5923044e-15]]", "lawyer: lawyer203.txt: [['lawyer', 0.978618730763
5054], ['music', 0.009313838824293683], ['clinton', 0.007226994270
357742], ['sex', 0.004650195377700058], ['medical', 0.000190182036
62436446], ['math', 5.87275188878159e-08]]", "lawyer: lawyer233.tx
t: [['music', 0.7468245708838688], ['lawyer', 0.250581787936430
3], ['clinton', 0.0025913149343268467], ['medical', 1.713454378022
92e-06], ['sex', 6.081558428153343e-07], ['math', 4.63515305486914
6e-09]]", "lawyer: lawyer273.txt: [['clinton', 1.0], ['lawyer',
3.1987559043152286e-46], ['music', 1.3296257614591338e-54], ['mat
h', 9.431988300101994e-85], ['sex', 3.1890112632916554e-91], ['med
ical', 1.5171123775659174e-99]]", "lawyer: lawyer213.txt: [['lawye
r', 0.9915688655897351], ['music', 0.005065592126015617], ['clinto
n', 0.003206989396712446], ['math', 6.94882106646087e-05], ['medic
al', 6.923689581139796e-05], ['sex', 1.982778106069595e-05]]"]
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E N C O D I N G  T E X T  F O R  M A C H I N E
L E A R N I N G

INTRODUCTION

We mentioned in the introductory chapter of our tutorial that a
spam filter for emails is a typical example of machine learning.
Emails are based on text, which is why a classifier to classify
emails must be able to process text as input. If we look at the
previous examples with neural networks, they always run
directly with numerical values and have a fixed input length. In
the end, the characters of a text also consist of numerical values,
but it is obvious that we cannot simply use a text as it is as input
for a neural network. This means that the text have to be
converted into a numerical representation, e.g. vectors or arrays
of numbers.

We will learn in this tutorial how to encode text in a way which is suitable for machine processing.

BAG-OF-WORDS MODEL

If we want to use texts in machine learning, we need a representation of the text which is usable for Machine
Learning purposes. This means we need a numerical representation. We cannot use texts directly.

In natural language processing and information retrievel the bag-of-words model is of crucial importance. The
bag-of-words model can be used to represent text data in a way which is suitable for machine learning
algorithms. Furthermore, this model is easy and efficient to implement. In the bag-of-words model, a text
(such as a sentence or a document) is represented as the so-called bag (a set or multiset) of its words.
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Grammar and word order are ignored.

We will use in the following a list of three strings to demonstrate the bag-of-words approach. In linguistics, the
collection of texts used for the experiments or tests is usually called a corpus:

corpus = ["To be, or not to be, that is the question:",
"Whether 'tis nobler in the mind to suffer",
"The slings and arrows of outrageous fortune,"]

We will use the submodule text from sklearn.feature_extraction . This module contains
utilities to build feature vectors from text documents.

from sklearn.feature_extraction import text

CountVectorizer is a class in the module sklearn.feature_extraction.text . It's a class
useful for building a corpus vocabulary. In addition, it produces the numerical representation of text that we
need, i.e. Numpy vectors.

First we need an instance of this class. When we instantiate a CountVectorizer, we can pass some optional
parameters, but it is possible to call it with no arguments, as we will do in the following. Printing the
vectorizer gives us useful information about the default values used when the instance was created:

vectorizer = text.CountVectorizer()
print(vectorizer)

We have now an instance of CountVectorizer, but it has not seen any texts so far. We will use the method
fit to process our previously defined corpus. We learn a vocabulary dictionary of all the tokens (strings) of

the corpus:

vectorizer.fit(corpus)

fit created the vocabulary structure vocabulary_ . This contains the words of the text as keys and a
unique integer value for each word. As the default value for the parameter lowercase is set to True , the
To in the beginning of the text has been turned into to . You may also notice that the vocabulary contains

only words without any punctuation or special character. You can change this behaviour by assigning a regular
expression to the keyword parameter token_pattern of the fit method. The default is set to
(?u)\\b\\w\\w+\\b . The (?u) part of this regular expression is not necessary because it switches on

the re.U ( re.UNICODE ) flag for this expression, which is the default in Python anyway. The minimal
word length will be two characters:

CountVectorizer()

Output: CountVectorizer()
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print("Vocabulary: ", vectorizer.vocabulary_)

If you only want to see the words without the indices, you can your the method feature_names :

print(vectorizer.get_feature_names())

Alternatively, you can apply keys to the vocaulary to keep the ordering:

print(list(vectorizer.vocabulary_.keys()))

With the aid of transform we will extract the token counts out of the raw text documents. The call will
use the vocabulary which we created with fit :

token_count_matrix = vectorizer.transform(corpus)
print(token_count_matrix)

Vocabulary:  {'to': 18, 'be': 2, 'or': 10, 'not': 8, 'that': 15,
'is': 5, 'the': 16, 'question': 12, 'whether': 19, 'tis': 17, 'nob
ler': 7, 'in': 4, 'mind': 6, 'suffer': 14, 'slings': 13, 'and':
0, 'arrows': 1, 'of': 9, 'outrageous': 11, 'fortune': 3}

['and', 'arrows', 'be', 'fortune', 'in', 'is', 'mind', 'nobler',
'not', 'of', 'or', 'outrageous', 'question', 'slings', 'suffer',
'that', 'the', 'tis', 'to', 'whether']

['to', 'be', 'or', 'not', 'that', 'is', 'the', 'question', 'whethe
r', 'tis', 'nobler', 'in', 'mind', 'suffer', 'slings', 'and', 'arr
ows', 'of', 'outrageous', 'fortune']
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The connection between the corpus, the Vocabulary vocabulary_ and the vector created by
transform can be seen in the following image:

(0, 2)        2
(0, 5)        1
(0, 8)        1
(0, 10)        1
(0, 12)        1
(0, 15)        1
(0, 16)        1
(0, 18)        2
(1, 4)        1
(1, 6)        1
(1, 7)        1
(1, 14)        1
(1, 16)        1
(1, 17)        1
(1, 18)        1
(1, 19)        1
(2, 0)        1
(2, 1)        1
(2, 3)        1
(2, 9)        1
(2, 11)        1
(2, 13)        1
(2, 16)        1
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We will apply the method toarray on our object token_count_matrix . It will return a dense
ndarray representation of this matrix.

Just in case: You might see that people use sometimes todense instead of toarray .

Do not use todense!1

dense_tcm = token_count_matrix.toarray()
dense_tcm

The rows of this array correspond to the strings of our corpus. The length of a row corresponds to the length of
the vocabulary. The i'th value in a row corresponds to the i'th entry of the list returned by CountVectorizer

Output: array([[0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1,
0, 2, 0],

[0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1,
1, 1, 1],

[1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
0, 0, 0]])
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method get_feature_names. If the value of dense_tcm[i][j] is equal to k , we know the word with the
index j in the vocabulary occurs k times in the string with the index i in the corpus.

This is visualized in the following diagram:

feature_names = vectorizer.get_feature_names()
for el in vectorizer.vocabulary_:

print(el)

import pandas as pd
pd.DataFrame(data=dense_tcm,

index=['corpus_0', 'corpus_1', 'corpus_2'],

to
be
or
not
that
is
the
question
whether
tis
nobler
in
mind
suffer
slings
and
arrows
of
outrageous
fortune

ENCODING TEXT FOR MACHINE LEARNING 316



columns=vectorizer.get_feature_names())

word = "be"
i = 1
j = vectorizer.vocabulary_[word]
print("number of times '" + word + "' occurs in:")
for i in range(len(corpus)):

print("    '" + corpus[i] + "': " + str(dense_tcm[i][j]))

We will extract the token counts out of new text documents. Let's use a literally doubtful variation of Hamlet's
famous monologue and check what transform has to say about it. transform will use the vocabulary
which was previously fitted with fit.

txt = "That is the question and it is nobler in the mind."
vectorizer.transform([txt]).toarray()

print(vectorizer.get_feature_names())

print(vectorizer.vocabulary_)

Output:

and arrows be fortune in is mind nobler not of or outrageous question

corpus_0 0 0 2 0 0 1 0 0 1 0 1 0 1

corpus_1 0 0 0 0 1 0 1 1 0 0 0 0 0

corpus_2 1 1 0 1 0 0 0 0 0 1 0 1 0

number of times 'be' occurs in:
'To be, or not to be, that is the question:': 2
'Whether 'tis nobler in the mind to suffer': 0
'The slings and arrows of outrageous fortune,': 0

Output: array([[1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2,
0, 0, 0]])

['and', 'arrows', 'be', 'fortune', 'in', 'is', 'mind', 'nobler',
'not', 'of', 'or', 'outrageous', 'question', 'slings', 'suffer',
'that', 'the', 'tis', 'to', 'whether']

{'to': 18, 'be': 2, 'or': 10, 'not': 8, 'that': 15, 'is': 5, 'th
e': 16, 'question': 12, 'whether': 19, 'tis': 17, 'nobler': 7, 'i
n': 4, 'mind': 6, 'suffer': 14, 'slings': 13, 'and': 0, 'arrows':
1, 'of': 9, 'outrageous': 11, 'fortune': 3}
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WORD IMPORTANCE

If you look at words like "the", "and" or "of", you will see see that they will occur in nearly all English texts. If
you keep in mind that our ultimate goal will be to differentiate between texts and attribute them to classes,
words like the previously mentioned ones will bear hardly any meaning. If you look at the following corpus,
you can see words like "you", "I" or important words like "Python", "lottery" or "Programmer":

from sklearn.feature_extraction import text
corpus = ["It does not matter what you are doing, just do it!",

"Would you work if you won the lottery?",
"You like Python, he likes Python, we like Python, every

body loves Python!"
"You said: 'I wish I were a Python programmer'",
"You can stay here, if you want to. I would, if I were y

ou."
]

vectorizer = text.CountVectorizer()
vectorizer.fit(corpus)

token_count_matrix = vectorizer.transform(corpus)
print(token_count_matrix)
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tf_idf = text.TfidfTransformer()
tf_idf.fit(token_count_matrix)

tf_idf.idf_

(0, 0)        1
(0, 2)        1
(0, 3)        1
(0, 4)        1
(0, 9)        2
(0, 10)        1
(0, 15)        1
(0, 16)        1
(0, 26)        1
(0, 31)        1
(1, 8)        1
(1, 13)        1
(1, 21)        1
(1, 28)        1
(1, 29)        1
(1, 30)        1
(1, 31)        2
(2, 5)        1
(2, 6)        1
(2, 11)        2
(2, 12)        1
(2, 14)        1
(2, 17)        1
(2, 18)        5
(2, 19)        1
(2, 24)        1
(2, 25)        1
(2, 27)        1
(2, 31)        2
(3, 1)        1
(3, 7)        1
(3, 8)        2
(3, 20)        1
(3, 22)        1
(3, 23)        1
(3, 25)        1
(3, 30)        1
(3, 31)        3
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tf_idf.idf_[vectorizer.vocabulary_['python']]

da = vectorizer.transform(corpus).toarray()
i = 0

# check how often the word 'would' occurs in the the i'th sentenc
e:
#vectorizer.vocabulary_['would']
word_ind = vectorizer.vocabulary_['would']
da[i][word_ind]
da[:,word_ind]

word_weight_list = list(zip(vectorizer.get_feature_names(), tf_id
f.idf_))

word_weight_list.sort(key=lambda x:x[1]) # sort list by the weigh
ts (2nd component)
for word, idf_weight in word_weight_list:

print(f"{word:15s}: {idf_weight:4.3f}")

Output: array([1.91629073, 1.91629073, 1.91629073, 1.91629073, 1.9162
9073,

1.91629073, 1.91629073, 1.91629073, 1.51082562, 1.9162
9073,

1.91629073, 1.91629073, 1.91629073, 1.91629073, 1.9162
9073,

1.91629073, 1.91629073, 1.91629073, 1.91629073, 1.9162
9073,

1.91629073, 1.91629073, 1.91629073, 1.91629073, 1.9162
9073,

1.51082562, 1.91629073, 1.91629073, 1.91629073, 1.9162
9073,

1.51082562, 1.        ])

Output: 1.916290731874155

Output: array([0, 1, 0, 1])
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from numpy import log
from sklearn.feature_extraction import text

corpus = ["It does not matter what you are doing, just do it!",
"Would you work if you won the lottery?",
"You like Python, he likes Python, we like Python, every

body loves Python!"
"You said: 'I wish I were a Python programmer'",
"You can stay here, if you want to. I would, if I were y

ou."
]

n = len(corpus)

you            : 1.000
if             : 1.511
were           : 1.511
would          : 1.511
are            : 1.916
can            : 1.916
do             : 1.916
does           : 1.916
doing          : 1.916
everybody      : 1.916
he             : 1.916
here           : 1.916
it             : 1.916
just           : 1.916
like           : 1.916
likes          : 1.916
lottery        : 1.916
loves          : 1.916
matter         : 1.916
not            : 1.916
programmer     : 1.916
python         : 1.916
said           : 1.916
stay           : 1.916
the            : 1.916
to             : 1.916
want           : 1.916
we             : 1.916
what           : 1.916
wish           : 1.916
won            : 1.916
work           : 1.916

ENCODING TEXT FOR MACHINE LEARNING 321



# the following variables are used globally (as free variables) i
n the functions :-(
vectorizer = text.CountVectorizer()
vectorizer.fit(corpus)
da = vectorizer.transform(corpus).toarray()

TERM FREQUENCY

We will first define a function for the term frequency.

Some notations:

• ft , d denotes the number of times that a term t occurs in document d

• wcd denotes the number of words in a document d

The simplest choice to define tf(t,d) is to use the raw count of a term in a document, i.e., the number of times
that term t occurs in document d, which we can denote as ft , d

We can define tf(t, d) in different ways:

• raw count of a term: tf(t, d) = ft , d

• term frequency adjusted for document length: tf(t, d) =
ft , d

wcd

• logarithmically scaled frequency: tf(t, d) = log(1 + ft , d)

• augmented frequency, to prevent a bias towards longer documents, e.g. raw frequency of the
term divided by the raw frequency of the most occurring term in the document:

tf(t, d) = 0.5 + 0.5 ⋅
ft , d

maxt ′ ∈ d { ft ′ , d }

def tf(t, d, mode="raw"):
""" The Term Frequency 'tf' calculates how often a term 't'

occurs in a document 'd'.  ('d': document index)
If t_in_d =  Number of times a term t appears in a documen

t d
and no_terms_d = Total number of terms in the document,
tf(t, d) = t_in_d / no_terms_d

"""

if t in vectorizer.vocabulary_:
word_ind = vectorizer.vocabulary_[t]
t_occurences = da[d, word_ind] # 'd' is the document in
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dex
else:

t_occurences = 0
if mode == "raw":

result = t_occurences
elif mode == "length":

all_terms = (da[d] > 0).sum() # calculate number of diffe
rent terms in d

result = t_occurences / all_terms
elif mode == "log":

result = log(1 + t_occurences)
elif mode == "augfreq":

result = 0.5 + 0.5 * t_occurences / da[d].max()

return result

We will check the word frequencies for some words:

print("   raw    length log   augmented freq")
for term in ['matter', 'python', 'would']:

for docu_index in range(len(corpus)):
d = corpus[docu_index]
print(f"\n'{term}' in '{d}''")
for mode in ['raw', 'length', 'log', 'augfreq']:

x = tf(term, docu_index, mode=mode)
print(f"{x:7.2f}", end="")
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DOCUMENT FREQUENCY

The document frequency df of a term t is defined as the number of documents in the document set that contain
the term t.

df(t) = | {d ∈ D : t ∈ d} |

raw    length log   augmented freq

'matter' in 'It does not matter what you are doing, just do it!''
1.00   0.10   0.69   0.75

'matter' in 'Would you work if you won the lottery?''
0.00   0.00   0.00   0.50

'matter' in 'You like Python, he likes Python, we like Python, eve
rybody loves Python!You said: 'I wish I were a Python programme
r'''

0.00   0.00   0.00   0.50
'matter' in 'You can stay here, if you want to. I would, if I wer
e you.''

0.00   0.00   0.00   0.50
'python' in 'It does not matter what you are doing, just do it!''

0.00   0.00   0.00   0.50
'python' in 'Would you work if you won the lottery?''

0.00   0.00   0.00   0.50
'python' in 'You like Python, he likes Python, we like Python, eve
rybody loves Python!You said: 'I wish I were a Python programme
r'''

5.00   0.42   1.79   1.00
'python' in 'You can stay here, if you want to. I would, if I wer
e you.''

0.00   0.00   0.00   0.50
'would' in 'It does not matter what you are doing, just do it!''

0.00   0.00   0.00   0.50
'would' in 'Would you work if you won the lottery?''

1.00   0.14   0.69   0.75
'would' in 'You like Python, he likes Python, we like Python, ever
ybody loves Python!You said: 'I wish I were a Python programmer'''

0.00   0.00   0.00   0.50
'would' in 'You can stay here, if you want to. I would, if I were
you.''

1.00   0.11   0.69   0.67
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INVERSE DOCUMENT FREQUENCY

The inverse document frequency is a measure of how much information the word provides, i.e., if it's common
or rare across all documents. It is the logarithmically scaled inverse fraction of the document frequency. The
effect of adding 1 to the idf in the equation above is that terms with zero idf, i.e., terms that occur in all
documents in a training set, will not be entirely ignored.

idf(t) = log(
n

df ( t )
) + 1

n is the number of documents in the corpus n = | D |

(Note that the idf formula above differs from the standard textbook notation that defines the idf as

idf(t) = log(
n

df ( t ) + 1
).)

The formula above is used, when TfidfTransformer() is called with smooth_idf=False ! If it is called
with smooth_idf=True (the default) the constant 1 is added to the numerator and denominator of the
idf as if an extra document was seen containing every term in the collection exactly once, which prevents zero
divisions:

idf(t) = log(
n + 1

df ( t ) + 1
) + 1

TERM FREQUENCY–INVERSE DOCUMENT FREQUENCY

tfidf is calculated as the product of tf(t, d) and idf(t):

tfidf(t, d) = tf(t, d) ⋅ idf(t)

A high value of tf–idf means that the term has a high "term frequency" in the given document and a low
"document frequency" in the other documents of the corpus. This means that this wieght can be used to filter
out common terms.

We will program the tf_idf function now:

The helpfile of text.TfidfTransformer explains how tf_idf is calculated:

We will manually program these functions in the following:

def df(t):
""" df(t) is the document frequency of t; the document frequen

cy is
the number of documents  in the document set that contain

the term t. """
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word_ind = vectorizer.vocabulary_[t]

tf_in_docus = da[:, word_ind] # vector with the freqencies of
word_ind in all docus

existence_in_docus = tf_in_docus > 0 # binary vector, existenc
e of word in docus

return existence_in_docus.sum()

#df("would", vectorizer)

def idf(t, smooth_idf=True):
""" idf """
if smooth_idf:

return log((1 + n) / (1 + df(t)) ) + 1
else:

return log(n / df(t) ) + 1

def tf_idf(t, d):
return idf(t) * tf(t, d)

res_idf = []
for word in vectorizer.get_feature_names():

tf_docus = []
res_idf.append([word, idf(word)])

res_idf.sort(key=lambda x:x[1])
for item in res_idf:

print(item)
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corpus

for word, word_index in vectorizer.vocabulary_.items():
print(f"\n{word:12s}: ", end="")
for d_index in range(len(corpus)):

['you', 1.0]
['if', 1.5108256237659907]
['were', 1.5108256237659907]
['would', 1.5108256237659907]
['are', 1.916290731874155]
['can', 1.916290731874155]
['do', 1.916290731874155]
['does', 1.916290731874155]
['doing', 1.916290731874155]
['everybody', 1.916290731874155]
['he', 1.916290731874155]
['here', 1.916290731874155]
['it', 1.916290731874155]
['just', 1.916290731874155]
['like', 1.916290731874155]
['likes', 1.916290731874155]
['lottery', 1.916290731874155]
['loves', 1.916290731874155]
['matter', 1.916290731874155]
['not', 1.916290731874155]
['programmer', 1.916290731874155]
['python', 1.916290731874155]
['said', 1.916290731874155]
['stay', 1.916290731874155]
['the', 1.916290731874155]
['to', 1.916290731874155]
['want', 1.916290731874155]
['we', 1.916290731874155]
['what', 1.916290731874155]
['wish', 1.916290731874155]
['won', 1.916290731874155]
['work', 1.916290731874155]

Output: ['It does not matter what you are doing, just do it!',
'Would you work if you won the lottery?',
"You like Python, he likes Python, we like Python, everybod

y loves Python!You said: 'I wish I were a Python programme
r'",
'You can stay here, if you want to. I would, if I were yo

u.']
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print(f"{d_index:1d} {tf_idf(word, d_index):3.2f}, ", en
d="" )

ANOTHER SIMPLE EXAMPLE

We will use another simple example to illustrate the previously introduced concepts. We use a sentence which
contains solely different words. The corpus consists of this sentence and reduced versions of it, i.e. cutting of
words from the end of the sentence.

from sklearn.feature_extraction import text

words = "Cold wind blows over the cornfields".split()

it          : 0 3.83, 1 0.00, 2 0.00, 3 0.00,
does        : 0 1.92, 1 0.00, 2 0.00, 3 0.00,
not         : 0 1.92, 1 0.00, 2 0.00, 3 0.00,
matter      : 0 1.92, 1 0.00, 2 0.00, 3 0.00,
what        : 0 1.92, 1 0.00, 2 0.00, 3 0.00,
you         : 0 1.00, 1 2.00, 2 2.00, 3 3.00,
are         : 0 1.92, 1 0.00, 2 0.00, 3 0.00,
doing       : 0 1.92, 1 0.00, 2 0.00, 3 0.00,
just        : 0 1.92, 1 0.00, 2 0.00, 3 0.00,
do          : 0 1.92, 1 0.00, 2 0.00, 3 0.00,
would       : 0 0.00, 1 1.51, 2 0.00, 3 1.51,
work        : 0 0.00, 1 1.92, 2 0.00, 3 0.00,
if          : 0 0.00, 1 1.51, 2 0.00, 3 3.02,
won         : 0 0.00, 1 1.92, 2 0.00, 3 0.00,
the         : 0 0.00, 1 1.92, 2 0.00, 3 0.00,
lottery     : 0 0.00, 1 1.92, 2 0.00, 3 0.00,
like        : 0 0.00, 1 0.00, 2 3.83, 3 0.00,
python      : 0 0.00, 1 0.00, 2 9.58, 3 0.00,
he          : 0 0.00, 1 0.00, 2 1.92, 3 0.00,
likes       : 0 0.00, 1 0.00, 2 1.92, 3 0.00,
we          : 0 0.00, 1 0.00, 2 1.92, 3 0.00,
everybody   : 0 0.00, 1 0.00, 2 1.92, 3 0.00,
loves       : 0 0.00, 1 0.00, 2 1.92, 3 0.00,
said        : 0 0.00, 1 0.00, 2 1.92, 3 0.00,
wish        : 0 0.00, 1 0.00, 2 1.92, 3 0.00,
were        : 0 0.00, 1 0.00, 2 1.51, 3 1.51,
programmer  : 0 0.00, 1 0.00, 2 1.92, 3 0.00,
can         : 0 0.00, 1 0.00, 2 0.00, 3 1.92,
stay        : 0 0.00, 1 0.00, 2 0.00, 3 1.92,
here        : 0 0.00, 1 0.00, 2 0.00, 3 1.92,
want        : 0 0.00, 1 0.00, 2 0.00, 3 1.92,
to          : 0 0.00, 1 0.00, 2 0.00, 3 1.92,
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corpus = []
for i in range(1, len(words)+1):

corpus.append(" ".join(words[:i]))

print(corpus)

vectorizer = text.CountVectorizer()

vectorizer = vectorizer.fit(corpus)
vectorized_text = vectorizer.transform(corpus)
tf_idf = text.TfidfTransformer()
tf_idf.fit(vectorized_text)

tf_idf.idf_

word_weight_list = list(zip(vectorizer.get_feature_names(), tf_id
f.idf_))
word_weight_list.sort(key=lambda x:x[1]) # sort list by the weigh
ts (2nd component)
for word, idf_weight in word_weight_list:

print(f"{word:15s}: {idf_weight:4.3f}")

TfidF = text.TfidfTransformer(smooth_idf=True, use_idf=True)
tfidf = TfidF.fit_transform(vectorized_text)

word_weight_list = list(zip(vectorizer.get_feature_names(), tf_id
f.idf_))
word_weight_list.sort(key=lambda x:x[1]) # sort list by the weigh
ts (2nd component)
for word, idf_weight in word_weight_list:

['Cold', 'Cold wind', 'Cold wind blows', 'Cold wind blows over',
'Cold wind blows over the', 'Cold wind blows over the cornfields']

Output: array([1.33647224, 1.        , 2.25276297, 1.55961579, 1.8472
9786,

1.15415068])

cold           : 1.000
wind           : 1.154
blows          : 1.336
over           : 1.560
the            : 1.847
cornfields     : 2.253
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print(f"{word:15s}: {idf_weight:4.3f}")

WORKING WITH REAL DATA

scikit-learn contains a dataset from real newsgroups, which can be used for our purposes:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer

import numpy as np
# Create our vectorizer
vectorizer = CountVectorizer()

# Let's fetch all the possible text data
newsgroups_data = fetch_20newsgroups()

Let us have a closer look at this data. As with all the other data sets in sklearn we can find the actual data
under the attribute data :

print(newsgroups_data.data[0])

cold           : 1.000
wind           : 1.154
blows          : 1.336
over           : 1.560
the            : 1.847
cornfields     : 2.253

ENCODING TEXT FOR MACHINE LEARNING 330



print(newsgroups_data.data[200])

From: lerxst@wam.umd.edu (where's my thing)
Subject: WHAT car is this!?
Nntp-Posting-Host: rac3.wam.umd.edu
Organization: University of Maryland, College Park
Lines: 15

I was wondering if anyone out there could enlighten me on this ca
r I saw
the other day. It was a 2-door sports car, looked to be from the l
ate 60s/
early 70s. It was called a Bricklin. The doors were really small.
In addition,
the front bumper was separate from the rest of the body. This is
all I know. If anyone can tellme a model name, engine specs, years
of production, where this car is made, history, or whatever info y
ou
have on this funky looking car, please e-mail.

Thanks,
- IL

---- brought to you by your neighborhood Lerxst ----
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We create the vectorizer :

vectorizer.fit(newsgroups_data.data)

Let's have a look at the first n words:

counter = 0
n = 10
for word, index in vectorizer.vocabulary_.items():

print(word, index)
counter += 1
if counter > n:

break

Subject: Re: "Proper gun control?" What is proper gun cont
From: kim39@scws8.harvard.edu (John Kim)
Organization: Harvard University Science Center
Nntp-Posting-Host: scws8.harvard.edu
Lines: 17

In article <C5JGz5.34J@SSD.intel.com> hays@ssd.intel.com (Kirk Hay
s) writes:
>I'd like to point out that I was in error - "Terminator" began po
sting only
>six months before he purchased his first firearm, according to pr
ivate email
>from him.
>I can't produce an archived posting of his earlier than January 1
992,
>and he purchased his first firearm in March 1992.
>I guess it only seemed like years.
>Kirk Hays - NRA Life, seventh generation.

I first read and consulted rec.guns in the summer of 1991.  I
just purchased my first firearm in early March of this year.

NOt for lack of desire for a firearm, you understand.  I could
have purchased a rifle or shotgun but didn't want one.
-Case Kim

Output: CountVectorizer()
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We can turn the newsgroup postings into arrays. We do it with the first one:

a = vectorizer.transform([newsgroups_data.data[0]]).toarray()[0]
print(a)

The vocabulary is huge This is why we see mostly zeros.

len(vectorizer.vocabulary_)

There are a lot of 'rubbish' words in this vocabulary. rubish means seen from the perspective of machine
learning. For machine learning purposes words like 'Subject', 'From', 'Organization', 'Nntp-Posting-Host',
'Lines' and many others are useless, because they occur in all or in most postings. The technical 'garbage' from
the newsgroup can be easily stripped off. We can fetch it differently. Stating that we do not want 'headers',
'footers' and 'quotes':

newsgroups_data_cleaned = fetch_20newsgroups(remove=('headers', 'f
ooters', 'quotes'))
print(newsgroups_data_cleaned.data[0])

from 56979
lerxst 75358
wam 123162
umd 118280
edu 50527
where 124031
my 85354
thing 114688
subject 111322
what 123984
car 37780

[0 0 0 ... 0 0 0]

Output: 130107
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Let's have a look at the complete posting:

print(newsgroups_data.data[0])

vectorizer_cleaned = vectorizer.fit(newsgroups_data_cleaned.data)
len(vectorizer_cleaned.vocabulary_)

I was wondering if anyone out there could enlighten me on this ca
r I saw
the other day. It was a 2-door sports car, looked to be from the l
ate 60s/
early 70s. It was called a Bricklin. The doors were really small.
In addition,
the front bumper was separate from the rest of the body. This is
all I know. If anyone can tellme a model name, engine specs, years
of production, where this car is made, history, or whatever info y
ou
have on this funky looking car, please e-mail.

From: lerxst@wam.umd.edu (where's my thing)
Subject: WHAT car is this!?
Nntp-Posting-Host: rac3.wam.umd.edu
Organization: University of Maryland, College Park
Lines: 15

I was wondering if anyone out there could enlighten me on this ca
r I saw
the other day. It was a 2-door sports car, looked to be from the l
ate 60s/
early 70s. It was called a Bricklin. The doors were really small.
In addition,
the front bumper was separate from the rest of the body. This is
all I know. If anyone can tellme a model name, engine specs, years
of production, where this car is made, history, or whatever info y
ou
have on this funky looking car, please e-mail.

Thanks,
- IL

---- brought to you by your neighborhood Lerxst ----
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So, we got rid of more than 30000 words, but with more than a 100000 words is it still very large.

We can also directly separate the newsgroup feeds into a train and test set:

newsgroups_train = fetch_20newsgroups(subset='train',
remove=('headers', 'footer

s', 'quotes'))
newsgroups_test = fetch_20newsgroups(subset='test',

remove=('headers', 'footer
s', 'quotes'))
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics

vectorizer = CountVectorizer()
train_data = vectorizer.fit_transform(newsgroups_train.data)

# creating a classifier
classifier = MultinomialNB(alpha=.01)
classifier.fit(train_data, newsgroups_train.target)

test_data = vectorizer.transform(newsgroups_test.data)

predictions = classifier.predict(test_data)
accuracy_score = metrics.accuracy_score(newsgroups_test.target,

predictions)
f1_score = metrics.f1_score(newsgroups_test.target,

predictions,
average='macro')

print("Accuracy score: ", accuracy_score)
print("F1 score: ", f1_score)

Output: 101631

Accuracy score:  0.6460435475305364
F1 score:  0.6203806145034193
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STOP WORDS

So far we added all the words to the vocabulary. However, it is questionable whether words like "the", "am",
"were" or similar words should be included at all, since they usually do not provide any significant semantic
contribution for a text. In other words: They have limited predictive power. It would therefore make sense to
exclude such words from editing, i.e. inclusion in the dictionary. This means we have to provide a list of
words which should be neglected, i.e. being filtered out before or after processing text. In natural text
recognition such words are usually called "stop words". There is no single universal list of stop words defined,
which could be used by all natural language processing tools. Usually, stop words consist of the most
frequently used words in a language. "Stop words" can be individually chosen for a given task.

By the way, stop words are an idea which is quite old. It goes back to 1959 and Hans Peter Luhn, one of the
pioneers in information retrieval.

There are different ways to provide stop words in sklearn :

• Explicit list of stop words
• Automatically created stop words

We will start with individual stop words:

INDIVUDUAL STOP WORDS

from sklearn.feature_extraction.text import CountVectorizer

corpus = ["A horse, a horse, my kingdom for a horse!",
"Horse sense is the thing a horse has which keeps it fro

m betting on people."
"I’ve often said there is nothing better for the inside

of the man, than the outside of the horse.",

ENCODING TEXT FOR MACHINE LEARNING 336



"A man on a horse is spiritually, as well as physicall
y, bigger then a man on foot.",

"No heaven can heaven be, if my horse isn’t there to wel
come me."]

cv = CountVectorizer(input=corpus,
stop_words=["my", "for","the", "has", "tha

n", "if",
"from", "on", "of", "it", "ther

e", "ve",
"as", "no", "be", "which", "is

n", "to",
"me", "is", "can", "then"])

count_vector = cv.fit_transform(corpus)
count_vector.shape

cv.vocabulary_

sklearn contains default stop words, which are implemented as a frozenset and it can be accessed
with text.ENGLISH_STOP_WORDS :

from sklearn.feature_extraction import text
n = 25

Output: {'horse': 5,
'kingdom': 8,
'sense': 16,
'thing': 18,
'keeps': 7,
'betting': 1,
'people': 13,
'often': 11,
'said': 15,
'nothing': 10,
'better': 0,
'inside': 6,
'man': 9,
'outside': 12,
'spiritually': 17,
'well': 20,
'physically': 14,
'bigger': 2,
'foot': 3,
'heaven': 4,
'welcome': 19}

ENCODING TEXT FOR MACHINE LEARNING 337



print(str(n) + " arbitrary words from ENGLISH_STOP_WORDS:")
counter = 0
for word in text.ENGLISH_STOP_WORDS:

if counter == n - 1:
print(word)
break

print(word, end=", ")
counter += 1

We can use stop words in our 20newsgroups classification problem:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics

vectorizer = CountVectorizer(stop_words=text.ENGLISH_STOP_WORDS)

vectors = vectorizer.fit_transform(newsgroups_train.data)

# creating a classifier
classifier = MultinomialNB(alpha=.01)
classifier.fit(vectors, newsgroups_train.target)

vectors_test = vectorizer.transform(newsgroups_test.data)

predictions = classifier.predict(vectors_test)
accuracy_score = metrics.accuracy_score(newsgroups_test.target,

predictions)
f1_score = metrics.f1_score(newsgroups_test.target,

predictions,
average='macro')

print("accuracy score: ", accuracy_score)
print("F1-score: ", f1_score)

25 arbitrary words from ENGLISH_STOP_WORDS:
over, it, anywhere, all, toward, every, inc, had, been, being, wit
hout, thence, mine, whole, by, below, when, beside, nevertheless,
at, beforehand, after, several, throughout, eg

accuracy score:  0.6526818906001062
F1-score:  0.6268816896587931
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AUTOMATICALLY CREATED STOP WORDS

As in many other cases, it is a good idea to look for ways to automatically define a list of stop words. A list
that is or should be ideally adapted to the problem.

To automatically create a stop word list, we will start with the parameter min_df of
CountVectorizer . When you set this threshold parameter, terms that have a document frequency strictly

lower than the given threshold will be ignored. This value is also called cut-off in the literature. If a float value
in the range of [0.0, 1.0] is used, the parameter represents a proportion of documents. An integer will be
treated as absolute counts. This parameter is ignored if vocabulary is not None.

corpus = ["""People say you cannot live without love,
but I think oxygen is more important""",

"Sometimes, when you close your eyes, you cannot see."
"A horse, a horse, my kingdom for a horse!",
"""Horse sense is the thing a horse has which
keeps it from betting on people."""
"""I’ve often said there is nothing better for
the inside of the man, than the outside of the hors

e.""",
"""A man on a horse is spiritually, as well as physicall

y,
bigger then a man on foot.""",
"""No heaven can heaven be, if my horse isn’t there
to welcome me."""]

cv = CountVectorizer(input=corpus,
min_df=2)

count_vector = cv.fit_transform(corpus)
cv.vocabulary_

Hardly any words from our corpus text are left. Because we have only few documents (strings) in our corpus
and also because these texts are very short, the number of words which occur in less then two documents is

Output: {'people': 7,
'you': 9,
'cannot': 0,
'is': 3,
'horse': 2,
'my': 5,
'for': 1,
'on': 6,
'there': 8,
'man': 4}
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very high. We eliminated all the words which occur in less two documents.

We can also see the words which have been chosen as stopwords by looking at cv.stop_words_ :

cv.stop_words_
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Output: {'as',
'be',
'better',
'betting',
'bigger',
'but',
'can',
'close',
'eyes',
'foot',
'from',
'has',
'heaven',
'if',
'important',
'inside',
'isn',
'it',
'keeps',
'kingdom',
'live',
'love',
'me',
'more',
'no',
'nothing',
'of',
'often',
'outside',
'oxygen',
'physically',
'said',
'say',
'see',
'sense',
'sometimes',
'spiritually',
'than',
'the',
'then',
'thing',
'think',
'to',
've',
'welcome',
'well',

ENCODING TEXT FOR MACHINE LEARNING 341



print("number of docus, size of vocabulary, stop_words list size")
for i in range(len(corpus)):

cv = CountVectorizer(input=corpus,
min_df=i)

count_vector = cv.fit_transform(corpus)
len_voc = len(cv.vocabulary_)
len_stop_words = len(cv.stop_words_)
print(f"{i:10d} {len_voc:15d} {len_stop_words:19d}")

Another parameter of CountVectorizer with which we can create a corpus-specific stop_words_list is
max_df . It can be a float values between 0.0 and 1.0 or an integer. the default value is 1.0, i.e. the float

value 1.0 and not an integer 1! When building the vocabulary all terms that have a document frequency strictly
higher than the given threshold will be ignored. If this parameter is given as a float betwenn 0.0 and 1.0., the
parameter represents a proportion of documents. This parameter is ignored if vocabulary is not None.

Let us use again our previous corpus for an example.

cv = CountVectorizer(input=corpus,
max_df=0.20)

count_vector = cv.fit_transform(corpus)
cv.stop_words_

'when',
'which',
'without',
'your'}

number of docus, size of vocabulary, stop_words list size
0           42192                   0
1           42192                   0
2           17066               25126
3           10403               31789
4            6637               35555
5            4174               38018
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Output: {'jumped',
'remains',
'swart',
'pendant',
'pier',
'felicity',
'senor',
'solidity',
'regularly',
'escape',
'adds',
'dirty',
'struggled',
'meadow',
'differences',
'poser',
'comparative',
'jerkin',
'pleasant',
'principal',
'hangs',
'spiral',
'connection',
'diametrically',
'xxviii',
'magistrate',
'wickedly',
'battened',
'willy',
'breakfasting',
'invented',
'ejaculation',
'confer',
'anderson',
'pupils',
'92',
'click',
'alight',
'hoofs',
'disasters',
'monosyllables',
'admirers',
'traffic',
'ushered',
'littleness',
'labors',
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'telegraph',
'disembodied',
'delude',
'lawless',
'conduct',
'belie',
'morning',
'deeds',
'manners',
'foot',
'politeness',
'persia',
'ruler',
'divorced',
'vainly',
'opens',
'pellet',
'palace',
'chanson',
'result',
'wipe',
'passed',
'hoot',
'daringly',
'beforehand',
'qualifying',
'gazers',
'exported',
'chuckling',
'shaven',
'prostitute',
'grudging',
'barque',
'companies',
'birthright',
'analysis',
'reserved',
'pre',
'swagger',
'walls',
'unquestionable',
'unutterable',
'drive',
'willingness',
'attempts',
'helplessly',
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'serge',
'eaters',
'tear',
'sooty',
'friar',
'insertions',
'prosper',
'pennies',
'tilt',
'christians',
'cultured',
'accursed',
'entrusted',
'coat',
'traced',
'piers',
'healthier',
'garbage',
'tougher',
'jogs',
'glows',
'starved',
'vitiated',
'hails',
'scan',
'measured',
'diamond',
'lot',
'enough',
'predominating',
'unaware',
'embalming',
'abounded',
'jawed',
'ptolemy',
'usefully',
'theatre',
'transports',
'snuffed',
'weeps',
'friendship',
'cloths',
'snowy',
'absorb',
'partnership',
'assurances',
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'infanticide',
'wondrously',
'arrogance',
'allegiance',
'feebly',
'temperament',
'operas',
'ample',
'darkening',
'fascination',
'churches',
'whispers',
'highlander',
'protestant',
'ludicrous',
'bravery',
'commented',
'ham',
'79',
'hoops',
'turtle',
'pretences',
'bloodiest',
'turnips',
'priest',
'precipitous',
'murmured',
'endless',
'imagining',
'icebergs',
'grounds',
'cruise',
'madame',
'witty',
'implicit',
'squeeze',
'itself',
'splintered',
'waterloo',
'overjoyed',
'undertook',
'vibration',
'distinguishable',
'retirement',
'diverting',
'actions',
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'tied',
'academy',
'respectfully',
'asses',
'laugh',
'peas',
'stabs',
'daughters',
'identified',
'unrelenting',
'inverted',
'inn',
'improvement',
'sucklings',
'conceals',
'tiptoe',
'displaced',
'allowing',
'baton',
'superior',
'softly',
'introspective',
'breakers',
'affectionately',
'hamlet',
'blaming',
'bondage',
'card',
'calculations',
'fix',
'manservant',
'muscles',
'armada',
'sacrificed',
'choke',
'invoking',
'freed',
'cricket',
'catalogue',
'oatmeal',
'excursion',
'cans',
'displays',
'bulb',
'ventilated',
'follies',
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'filth',
'stunned',
'brasses',
'japanese',
'calling',
'rail',
'possession',
'wrist',
'sustained',
'rammed',
'estate',
'blurted',
'pavements',
'finds',
'250',
'steeple',
'enlarged',
'blew',
'throng',
'nasty',
'stiffness',
'landslip',
'wailing',
'past',
'navel',
'bedside',
'slunk',
'lapland',
'carriage',
'victoria',
'adoration',
'narration',
'contraction',
'prelude',
'breaths',
'energetically',
'hail',
'darker',
'bawl',
'reasonably',
'contracting',
'miraculously',
'48',
'entertaining',
'consistently',
'fond',
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'groaned',
'characteristics',
'smelt',
'buzz',
'gums',
'unmatched',
'get',
'watchful',
'cities',
'suit',
'conference',
'wax',
'preparing',
'overdone',
'wretched',
'striving',
'della',
'drudged',
'stolid',
'pierce',
'sorrowing',
'kink',
'slit',
'audible',
'entertainments',
'gradations',
'excessively',
'indolence',
'ballrooms',
'tolerably',
'midsummer',
'spanish',
'fiendish',
'distraction',
'defect',
'leaps',
'21',
'flexible',
'token',
'stammered',
'positively',
'create',
'cobweb',
'thinks',
'started',
'punishments',
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'parallel',
'needs',
'alive',
'drudgery',
'protecting',
'generous',
'cant',
'stung',
'fallow',
'iv',
'thunderbolts',
'plainly',
'sounding',
'assist',
'quiver',
'slightly',
'apprehension',
'cheated',
'flippancy',
'essentially',
'suggest',
'startling',
'positive',
'lipped',
'escapes',
'dazzling',
'immensity',
'dining',
'plums',
'creed',
'conventionality',
'lavish',
'retraced',
'resembled',
'forgiveness',
'avis',
'grounded',
'seen',
'recoiled',
'sometime',
'pollen',
'scalding',
'foresaw',
'disorder',
'worst',
'sheepish',
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'proportionate',
'immaterial',
'squander',
'occasions',
'pulpy',
'researches',
'chestnut',
'peer',
'muddled',
'prospect',
'sails',
'beat',
'stab',
'settees',
'expectancy',
'thump',
'dizzily',
'lose',
'abode',
'advertising',
'paces',
'st',
'solicited',
'workmen',
'exert',
'discharged',
'relapsed',
'observe',
'implored',
'ter',
'deformed',
'keep',
'dominance',
'journeys',
'buffalo',
'humbly',
'harp',
'wasted',
'grammar',
'err',
'assurance',
'oiled',
'frayed',
'fowls',
'imperatively',
'threatened',
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'notepaper',
'unsuccessful',
'practices',
'disagree',
'solomon',
'design',
'graved',
'handing',
'kee',
'sanctity',
'incumbent',
'precipitate',
'approval',
'promoting',
'obliquity',
'comfort',
'lowers',
'escaped',
'withhold',
'stretching',
'lacking',
'policeman',
'grouped',
'opposite',
'arena',
'stubbs',
'honest',
'vestige',
'travellers',
'groan',
'hypothesis',
'persist',
'levers',
'happened',
'pearson',
'snort',
'duly',
'bernard',
'tightly',
'mature',
'balloon',
'obscurity',
'undaunted',
'soiled',
'justify',
'buttered',
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'gilbert',
'reversed',
'restrain',
'intellect',
'limitations',
'difference',
'squares',
'tortoise',
'merits',
'jump',
'belvedere',
'brightness',
'coupled',
'objection',
'spruce',
'circuit',
'sunk',
'paused',
'cramped',
'medical',
'gallons',
'hoisted',
'moonlit',
'penned',
'spear',
'obedience',
'uncontrollable',
'blithe',
'feats',
'bony',
'stroll',
'complained',
'ornamented',
'albatrosses',
'baptismal',
'careering',
'hiss',
'certain',
'powers',
'swamped',
'aback',
'margaret',
'characters',
'ragged',
'visitors',
'propriety',
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'index',
'mare',
'anew',
'laurel',
'frenzy',
'symbols',
'babyish',
'cheaply',
'meals',
'specially',
'ourselves',
'sounds',
'secret',
'cursing',
'noon',
'archbishop',
'miseries',
'mistakes',
'vaughan',
'flaming',
'meanings',
'shock',
'deepest',
'afterwards',
'bounced',
'caramba',
'conceal',
'delusions',
'worth',
'section',
'fullness',
'privileged',
'barrow',
'compile',
'manage',
'animosity',
'recognise',
'uninteresting',
'systems',
'riches',
'endeavours',
'diddled',
'investigations',
'southerly',
'flats',
'realizing',
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'situated',
'proximity',
'stays',
'slogan',
'staring',
'ineffectually',
'burn',
'fickle',
'oath',
'homecoming',
'weekly',
'record',
'likewise',
'winks',
'xxxiv',
'conception',
'haunts',
'athenian',
'nourishment',
'beard',
'audience',
'genesis',
'timely',
'observing',
'entreaty',
'eclipsed',
'reappeared',
'salted',
'shaky',
'virgin',
'majesty',
'alterations',
'masculine',
'strained',
'puddings',
'oxford',
'algebra',
'flannelette',
'shall',
'reckoning',
'newspapers',
'proclaimed',
'lament',
'curdling',
'frustrate',
'professors',
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'lectures',
'phrase',
'exacted',
'basso',
'strait',
'climbing',
'avail',
'weather',
'long',
'abroad',
'impassive',
'painted',
'haters',
'philip',
'broken',
'ignoring',
'swore',
'worry',
'extension',
'longest',
'bareheaded',
'bog',
'meet',
'yonder',
'accompany',
'lovable',
'drawn',
'regular',
'demon',
'die',
'wouldst',
'unrest',
'fancied',
'dangled',
'listens',
'list',
'smoked',
'doubtfully',
'masses',
'learned',
'incomprehensible',
'grass',
'loth',
'tract',
'greetings',
'misgiving',
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'literature',
'stain',
'trent',
'determination',
'sufficiency',
'bangle',
'hurried',
'spur',
'metropolis',
'king',
'inconsistent',
'clown',
'hopelessness',
'ticked',
'eldest',
'interested',
'suburban',
'lisp',
'youths',
'raptures',
'partitions',
'poverty',
'effigy',
'dawn',
'existence',
'clatter',
'lt',
'tiresome',
'credited',
'howled',
'besides',
'borrow',
'gnawing',
'treason',
'speaking',
'film',
'hysterical',
'razor',
'rabble',
'thirds',
'flour',
'smiled',
'twas',
'beastly',
'feeding',
'female',
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'amiable',
'renewed',
'established',
'unmarried',
'railing',
'fluttered',
'stole',
'confinement',
'pouch',
'slay',
'india',
'relentless',
'sweep',
'upbraid',
'disdain',
'broadcloth',
'poet',
'antarctic',
'bottomless',
'accidentally',
'snores',
'imps',
'quarts',
'divert',
'sceptical',
'strength',
'neighbor',
'ends',
'initiated',
'reprimand',
'whaler',
'soothed',
'blimey',
'friends',
'passionate',
'whereupon',
'terrors',
'redoubled',
'kindle',
'finance',
'pico',
'hand',
'excellency',
'drugged',
'inspired',
'warehouses',
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'apoplectic',
'expanse',
'furled',
'stronger',
'stretched',
'bursts',
'celebration',
'heathen',
'circumpolar',
'encased',
'twins',
'graham',
'surveys',
'embassy',
'fundamentals',
'author',
'scope',
'eulogy',
'thanking',
'graves',
'steer',
'inhabit',
'solvency',
'talked',
'withdrew',
'risked',
'slanted',
'dane',
'cove',
'obtain',
'belt',
'tasting',
'forfeited',
'ugly',
'term',
'routine',
'curving',
'immaculate',
'instead',
'trophies',
'sunday',
'ridicule',
'skirted',
'launch',
'greasy',
'homely',
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'peacock',
'firearms',
'swelling',
'promise',
'cheerfully',
'interest',
'numbers',
'sou',
'whitened',
'distrustful',
'beaker',
'stiffening',
'malt',
'insanity',
'rooms',
'circle',
'rags',
'originals',
'blemish',
'breakfasts',
'butler',
'sugary',
'sheathed',
'scar',
'sew',
'venom',
'chiselled',
'indispensable',
'winning',
'splinter',
'open',
'calamity',
'mendelssohn',
'angelo',
'presses',
'indications',
'infallibly',
'congregational',
'chrysanthemums',
'unexpectedness',
'conceive',
'involves',
'bounds',
'passenger',
'builds',
'duke',
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'exceeded',
'yells',
'survived',
'market',
'prize',
'slinking',
'begets',
'british',
'pikes',
'pipes',
'pieties',
'blank',
'least',
'tom',
'burglars',
'sternness',
'crops',
'villainy',
'herring',
'cobbler',
'shallowest',
'lifting',
'reaped',
'respite',
'ganders',
'crow',
'robin',
'rude',
'purely',
'actress',
'surrey',
'fooling',
'dilating',
'lagoons',
'rod',
'chaplain',
'contact',
'blotch',
'unanswerable',
'deplorable',
'arrested',
'azure',
'tottenham',
'confirmation',
'phil',
'gangs',
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'mermaids',
'paled',
'quietude',
'moody',
'imperious',
'replacing',
'seized',
'lasted',
'restricted',
'nobody',
'braiding',
'illustrations',
'suspended',
'distinct',
'gilt',
'happen',
'australia',
'lotion',
'absence',
'contradicting',
'note',
'phrased',
'dashing',
'magnifying',
'pursed',
'infinitesimal',
'service',
'gout',
'deciphered',
'furnishing',
'hollow',
'youngest',
'police',
'multitudinous',
'brains',
'flows',
'vernacular',
'virtue',
'nurtured',
'cheeks',
'delivered',
'elderly',
'magical',
'salutes',
'despising',
'moods',
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'correctness',
'habit',
'outwardly',
'darwin',
'someone',
'derelict',
'embodied',
'wonderful',
'pussy',
'1846',
'4d',
'sheep',
'extent',
'wapping',
'bundling',
'smeared',
'toilet',
'inconsiderate',
'bountifully',
'incandescence',
'smoking',
'trust',
'father',
'backwards',
'thee',
'tornado',
'avenger',
'plumped',
'grouse',
'secrets',
'majority',
'staves',
'crutch',
'wakes',
'saddened',
'kine',
'nods',
'indifferently',
'butteries',
'charades',
'feelings',
'locking',
'librarian',
'greying',
'house',
'grudgingly',
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EXERCISES

EXERCISE 1

In the subdirectory 'books' you will find some books:

• Virginia Woolf: Night and Day
• Samuel Butler: The Way of all Flesh

'much',
'expound',
'marshalled',
'stillness',
'mirth',
'hours',
'everlasting',
'surf',
'appellation',
'trampled',
'porch',
'looping',
'justification',
'honestly',
'lamentable',
'musical',
'prodding',
'captain',
'procrastination',
'sneaking',
'smiles',
'tranquil',
'preservation',
'navigator',
'technically',
'daisy',
'boredom',
'twisting',
'speed',
'creamy',
'documents',
'tum',
'82',
'unwieldy',
...}
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• Herman Melville: Moby Dick
• David Herbert Lawrence: Sons and Lovers
• Daniel Defoe: The Life and Adventures of Robinson Crusoe
• James Joyce: Ulysses

Use these novels as the corpus and create a word count vector.

EXERCISE 2

Turn the previously calculated 'word count vector' into a dense ndarray representation.

EXERCISE 3

Let us have another example with a different corpus. The five strings are famous quotes from

1. William Shakespeare
2. W.C. Fields
3. Ronald Reagan
4. John Steinbeck
5. Author unknown

Compute the IDF values!

quotes = ["A horse, a horse, my kingdom for a horse!",
"Horse sense is the thing a horse has which keeps it fro

m betting on people."
"I’ve often said there is nothing better for the inside

of the man, than the outside of the horse.",
"A man on a horse is spiritually, as well as physicall

y, bigger then a man on foot.",
"No heaven can heaven be, if my horse isn’t there to wel

come me."]

SOLUTIONS

SOLUTION TO EXERCISE 1

corpus = []
books = ["night_and_day_virginia_woolf.txt",

"the_way_of_all_flash_butler.txt",
"moby_dick_melville.txt",
"sons_and_lovers_lawrence.txt",
"robinson_crusoe_defoe.txt",
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"james_joyce_ulysses.txt"]
path = "books"

corpus = []
for book in books:

txt = open(path + "/" + book).read()
corpus.append(txt)

[book[:30] for book in corpus]

We have to get rid of the Gutenberg header and footer, because it doesn't belong to the novels. We can see by
looking at the texts that the authors works begins after lines of the following kind

***START OF THIS PROJECT GUTENBERG ... ***

The footer of the texts start with this line:

***END OF THIS PROJECT GUTENBERG EBOOK ...***

There may or may not be a space after the first three stars or instead of "the" there may be "this".

We can use regular expressions to find the starting point of the novels:

from sklearn.feature_extraction import text
import re
corpus = []
books = ["night_and_day_virginia_woolf.txt",

"the_way_of_all_flash_butler.txt",
"moby_dick_melville.txt",
"sons_and_lovers_lawrence.txt",
"robinson_crusoe_defoe.txt",
"james_joyce_ulysses.txt"]

path = "books"

corpus = []
for book in books:

txt = open(path + "/" + book).read()
text_begin = re.search(r"\*\*\* ?START OF (THE|THIS) PROJEC

Output: ['The Project Gutenberg EBook of',
'The Project Gutenberg eBook, T',
'\nThe Project Gutenberg EBook o',
'The Project Gutenberg EBook of',
'The Project Gutenberg eBook, T',
'\nThe Project Gutenberg EBook o']
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T.*?\*\*\*", txt, re.DOTALL)
text_end = re.search(r"\*\*\* ?END OF (THE|THIS) PROJEC

T.*?\*\*\*", txt, re.DOTALL)
corpus.append(txt[text_begin.end():text_end.start()])

vectorizer = text.CountVectorizer()
vectorizer.fit(corpus)
token_count_matrix = vectorizer.transform(corpus)
print(token_count_matrix)
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(0, 4)        2
(0, 35)        1
(0, 60)        1
(0, 79)        1
(0, 131)        1
(0, 221)        1
(0, 724)        6
(0, 731)        5
(0, 734)        1
(0, 743)        5
(0, 761)        1
(0, 773)        1
(0, 779)        1
(0, 780)        1
(0, 781)        23
(0, 790)        1
(0, 804)        1
(0, 809)        412
(0, 810)        36
(0, 817)        2
(0, 823)        4
(0, 824)        19
(0, 825)        3
(0, 828)        11
(0, 829)        1
:        :
(5, 42156)        5
(5, 42157)        1
(5, 42158)        1
(5, 42159)        2
(5, 42160)        2
(5, 42161)        106
(5, 42165)        1
(5, 42166)        2
(5, 42167)        1
(5, 42172)        2
(5, 42173)        4
(5, 42174)        1
(5, 42175)        1
(5, 42176)        1
(5, 42177)        1
(5, 42178)        3
(5, 42181)        1
(5, 42182)        1
(5, 42183)        3
(5, 42184)        1
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print("Number of words in vocabulary: ", len(vectorizer.vocabular
y_))

SOLUTION TO EXERCISE 2

All you have to do is applying the method toarray to get the token_count_matrix :

token_count_matrix.toarray()

SOLUTION TO EXERCISE 3

from sklearn.feature_extraction import text

# our corpus:
quotes = ["A horse, a horse, my kingdom for a horse!",

"Horse sense is the thing a horse has which keeps it fro
m betting on people."

"I’ve often said there is nothing better for the inside
of the man, than the outside of the horse.",

"A man on a horse is spiritually, as well as physicall
y, bigger then a man on foot.",

"No heaven can heaven be, if my horse isn’t there to wel
come me."]

vectorizer = text.CountVectorizer()
vectorizer.fit(quotes)
vectorized_text = vectorizer.fit_transform(quotes)

tfidf_transformer = text.TfidfTransformer(smooth_idf=True,use_id

(5, 42185)        2
(5, 42186)        1
(5, 42187)        1
(5, 42188)        2
(5, 42189)        1

Number of words in vocabulary:  42192

Output: array([[ 0,  0,  0, ...,  0,  0,  0],
[19,  0,  0, ...,  0,  0,  0],
[20,  0,  0, ...,  0,  1,  1],
[ 0,  0,  1, ...,  0,  0,  0],
[ 0,  0,  0, ...,  0,  0,  0],
[11,  1,  0, ...,  1,  0,  0]])
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f=True)
tfidf_transformer.fit(vectorized_text)

"""
alternative way to output the data:
import pandas as pd
df_idf = pd.DataFrame(tfidf_transformer.idf_,

index=vectorizer.get_feature_names(),
columns=["idf_weight"])

df_idf.sort_values(by=['idf_weights'])  # sorting data
print(df_idf)

"""
print(f"{'word':15s}: idf_weight")
word_weight_list = list(zip(vectorizer.get_feature_names(), tfid
f_transformer.idf_))
word_weight_list.sort(key=lambda x:x[1]) # sort list by the weigh
ts (2nd component)
for word, idf_weight in word_weight_list:

print(f"{word:15s}: {idf_weight:4.3f}")
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word           : idf_weight
horse          : 1.000
for            : 1.511
is             : 1.511
man            : 1.511
my             : 1.511
on             : 1.511
there          : 1.511
as             : 1.916
be             : 1.916
better         : 1.916
betting        : 1.916
bigger         : 1.916
can            : 1.916
foot           : 1.916
from           : 1.916
has            : 1.916
heaven         : 1.916
if             : 1.916
inside         : 1.916
isn            : 1.916
it             : 1.916
keeps          : 1.916
kingdom        : 1.916
me             : 1.916
no             : 1.916
nothing        : 1.916
of             : 1.916
often          : 1.916
outside        : 1.916
people         : 1.916
physically     : 1.916
said           : 1.916
sense          : 1.916
spiritually    : 1.916
than           : 1.916
the            : 1.916
then           : 1.916
thing          : 1.916
to             : 1.916
ve             : 1.916
welcome        : 1.916
well           : 1.916
which          : 1.916
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FOOTNOTES

1Logically toarray and todense are the same thing, but toarray returns an ndarray whereas
todense returns a matrix . If you consider, what the official Numpy documentation has to say about the
numpy.matrix class, you shouldn't use todense ! "It is no longer recommended to use this class, even

for linear algebra. Instead use regular arrays. The class may be removed in the future." (numpy.matrix) (back)
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N A T U R A L  L A N G U A G E  P R O C E S S I N G :
C L A S S I F I C A T I O N

INTRODUCTION

One might think that it might not be that difficult to get good
text material for examples of text classification. After all, hardly
a minute goes by in our daily lives that we are not dealing with
written language. Newspapers, books, and most of all, most of
the internet is probably still text-based. For our example
classifiers, however, the texts must be in machine-readable form
and preferably in simple text files, i.e. not formatted in Word or
other formats. In addition, the texts may not be protected by
copyright.

We use our example novels from the Gutenberg project.

The first task consists in training a classifier which can predict
the author of a paragraph from a novel.

The second example will use novels of various languages, i.e.
German, Swedish, Danish, Dutch, French, Italian and Spanish.

AUTHOR PREDICTION

We want to demonstrate the concepts of the previous chapter of our Machine Learning tutorial in an extended
example. We will use the following novels:

• Virginia Woolf: Night and Day
• Samuel Butler: The Way of all Flesh
• Herman Melville: Moby Dick
• David Herbert Lawrence: Sons and Lovers
• Daniel Defoe: The Life and Adventures of Robinson Crusoe
• James Joyce: Ulysses

Will will train a classifier with these novels. This classifier should be able to predict the author from an
arbitrary text passage.
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We will segment the books into lists of paragraphs. We will use a function 'text2paragraphs', which we had
introduced as an exercise in our chapter on file handling.

def text2paragraphs(filename, min_size=1):
""" A text contained in the file 'filename' will be read
and chopped into paragraphs.
Paragraphs with a string length less than min_size will be ign

ored.
A list of paragraph strings will be returned"""

txt = open(filename).read()
paragraphs = [para for para in txt.split("\n\n") if len(para)

> min_size]
return paragraphs

labels = ['Virginia Woolf', 'Samuel Butler', 'Herman Melville',
'David Herbert Lawrence', 'Daniel Defoe', 'James Joyce']

files = ['night_and_day_virginia_woolf.txt', 'the_way_of_all_flas
h_butler.txt',

'moby_dick_melville.txt', 'sons_and_lovers_lawrence.txt',
'robinson_crusoe_defoe.txt', 'james_joyce_ulysses.txt']

path = "books/"
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data = []
targets = []
counter = 0
for fname in files:

paras = text2paragraphs(path + fname, min_size=150)
data.extend(paras)
targets += [counter] * len(paras)
counter += 1

# cell is useless, because train_test_split will do the shuffling!

import random
data_targets = list(zip(data, targets))
# create random permuation on list:
data_targets = random.sample(data_targets, len(data_targets))

data, targets = list(zip(*data_targets))

Split into train and test sets:

from sklearn.model_selection import train_test_split

res = train_test_split(data, targets,
train_size=0.8,
test_size=0.2,
random_state=42)

train_data, test_data, train_targets, test_targets = res

len(train_data), len(test_data), len(train_targets), len(test_targets)

We create a Naive Bayes classifiert:

from sklearn.feature_extraction.text import CountVectorizer, ENGLI
SH_STOP_WORDS

from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics

vectorizer = CountVectorizer(stop_words=ENGLISH_STOP_WORDS)

vectors = vectorizer.fit_transform(train_data)
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# creating a classifier
classifier = MultinomialNB(alpha=.01)
classifier.fit(vectors, train_targets)

vectors_test = vectorizer.transform(test_data)

predictions = classifier.predict(vectors_test)
accuracy_score = metrics.accuracy_score(test_targets,

predictions)
f1_score = metrics.f1_score(test_targets,

predictions,
average='macro')

print("accuracy score: ", accuracy_score)
print("F1-score: ", f1_score)

We will test this classifier now with a different book of Virginia Woolf.

paras = text2paragraphs(path + "the_voyage_out_virginia_woolf.tx
t", min_size=250)

first_para, last_para = 100, 500
vectors_test = vectorizer.transform(paras[first_para: last_para])
#vectors_test = vectorizer.transform(["To be or not to be"])

predictions = classifier.predict(vectors_test)
print(predictions)
targets = [0] * (last_para - first_para)
accuracy_score = metrics.accuracy_score(targets,

predictions)
precision_score = metrics.precision_score(targets,

predictions,
average='macro')

f1_score = metrics.f1_score(targets,
predictions,
average='macro')

print("accuracy score: ", accuracy_score)
print("precision score: ", accuracy_score)

accuracy score:  0.9123571039738705
F1-score:  0.9097752590254707
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print("F1-score: ", f1_score)

predictions = classifier.predict_proba(vectors_test)
print(predictions)

You may have hoped for a better result and you may be disappointed. Yet, this result is on the other hand quite
impressive. In nearly 60 % of all cases we got the label 0, which stand for Virginia Woolf and her novel "Night
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5 2 2 5 0
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5 5 5 0 5
0 0 0 0 0 0 1 2 0 0 0 5 0 1 2 2 2 5 5 0 0 0 1 3 0 0 5 1 3 0 0 0

0 3 0 0 0
0 0 5 0 5 0 5 5 1 1 1 0 0 0 0 0 0 5 0 1 0 0 0 5 5 5 5 0 2 3 5 0

0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 0 0 0 5 5 5 3 0 5 0 0 3

0 0 0 5 0
0 5 2 0 0 0 0 0 3 0 0 0 0 2 0 0 5 3 5 1 0 5 5 0 5 0 5 0 1 1 1 0

0 0 1 1 3
1 0 0 5 0 0 5 2 3 0 0 0 5 0 2 2 0 1 0 0 0 0 0 0 3 0 4 0 0 0 0 1

0 0 0 0 1
1 0 5 5 5 0 5 0 0 0 0 0 5 3 0 0 0 5 3 1 3 0 0 5 0 0 0 0 0 0 3 0

5 5 0 0 0
3 3 5 0 3 3 0 0 1 5 1 0 0 0 0 2 0 3 0 0 1 1 0 0 0 0 0 0 0 0 0 0

2 2 3 0 0
0 1 0 0 0 5 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0]

accuracy score:  0.595
precision score:  0.595
F1-score:  0.12434691745036573

[[6.26578058e-004 2.51943113e-002 4.85163038e-008 4.75065393e-005
4.00835263e-014 9.74131556e-001]

[7.12081909e-001 4.92957656e-002 5.37096844e-003 1.68824845e-009
4.99835718e-013 2.33251355e-001]

[1.11615265e-001 1.70149726e-009 8.02170949e-013 1.93038351e-008
3.38381992e-017 8.88384714e-001]

...
[9.99433053e-001 5.66946558e-004 6.87847449e-032 2.49682983e-019
9.56365457e-038 3.61259105e-033]

[9.99999991e-001 7.95355880e-009 9.29384687e-029 2.81898441e-033
1.49766211e-060 8.27077882e-010]

[1.00000000e+000 2.80028853e-054 1.53409474e-068 4.12917577e-086
3.33829236e-115 1.78467356e-057]]
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and Day". We can say that our classifier recognized the Woolf writing style just by the words in nearly 60
percent of all the paragraphs, even though it is a different novel.

Let us have a look at the first 10 paragraphs which we have tested:

for i in range(0, 10):
print(predictions[i], paras[i+first_para])
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[6.26578058e-04 2.51943113e-02 4.85163038e-08 4.75065393e-05
4.00835263e-14 9.74131556e-01] "That's the painful thing about pe

ts," said Mr. Dalloway; "they die. The
first sorrow I can remember was for the death of a dormouse. I reg
ret to
say that I sat upon it. Still, that didn't make one any the less s
orry.
Here lies the duck that Samuel Johnson sat on, eh? I was big for m
y
age."
[7.12081909e-01 4.92957656e-02 5.37096844e-03 1.68824845e-09
4.99835718e-13 2.33251355e-01] "Please tell me--everything." Tha

t was what she wanted to say. He had
drawn apart one little chink and showed astonishing treasures. It
seemed
to her incredible that a man like that should be willing to talk t
o her.
He had sisters and pets, and once lived in the country. She stirre
d her
tea round and round; the bubbles which swam and clustered in the c
up
seemed to her like the union of their minds.
[1.11615265e-01 1.70149726e-09 8.02170949e-13 1.93038351e-08
3.38381992e-17 8.88384714e-01] The talk meanwhile raced past he

r, and when Richard suddenly stated in a
jocular tone of voice, "I'm sure Miss Vinrace, now, has secret lea
nings
towards Catholicism," she had no idea what to answer, and Helen co
uld
not help laughing at the start she gave.
[1.94979929e-05 4.16423135e-06 1.30402613e-13 4.90014758e-03
1.02628751e-18 9.95076190e-01] However, breakfast was over and Mr

s. Dalloway was rising. "I always
think religion's like collecting beetles," she said, summing up th
e
discussion as she went up the stairs with Helen. "One person has a
passion for black beetles; another hasn't; it's no good arguing ab
out
it. What's _your_ black beetle now?"
[1.00000000e+00 2.88701360e-46 1.83061388e-38 5.54119421e-32
7.87165681e-71 1.33908569e-29] It was as though a blue shadow ha

d fallen across a pool. Their eyes
became deeper, and their voices more cordial. Instead of joining t
hem
as they began to pace the deck, Rachel was indignant with the pros
perous
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matrons, who made her feel outside their world and motherless, and
turning back, she left them abruptly. She slammed the door of her
room,
and pulled out her music. It was all old music--Bach and Beethove
n,
Mozart and Purcell--the pages yellow, the engraving rough to the f
inger.
In three minutes she was deep in a very difficult, very classical
fugue
in A, and over her face came a queer remote impersonal expression
of
complete absorption and anxious satisfaction. Now she stumbled; no
w she
faltered and had to play the same bar twice over; but an invisible
line seemed to string the notes together, from which rose a shape,
a building. She was so far absorbed in this work, for it was reall
y
difficult to find how all these sounds should stand together, and
drew
upon the whole of her faculties, that she never heard a knock at t
he
door. It was burst impulsively open, and Mrs. Dalloway stood in th
e room
leaving the door open, so that a strip of the white deck and of th
e blue
sea appeared through the opening. The shape of the Bach fugue cras
hed to
the ground.
[3.01049983e-02 2.33225150e-01 1.44790362e-07 2.08470928e-02
1.21445899e-20 7.15822614e-01] "He wrote awfully well, didn't h

e?" said Clarissa; "--if one likes
that kind of thing--finished his sentences and all that. _Wutherin
g_
_Heights_! Ah--that's more in my line. I really couldn't exist wit
hout
the Brontes! Don't you love them? Still, on the whole, I'd rather
live
without them than without Jane Austen."
[8.44480345e-03 4.79211117e-16 5.36229064e-04 1.94962600e-08
1.93352536e-27 9.91018948e-01] How divine!--and yet what nonsens

e!" She looked lightly round the room.
"I always think it's _living_, not dying, that counts. I really re
spect
some snuffy old stockbroker who's gone on adding up column after c
olumn
all his days, and trotting back to his villa at Brixton with some
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The paragraph with the index 100 was predicted as being "Ulysses by James Joyce". This paragraph contains
the name "Samuel Johnson". "Ulysses" contains many occurences of "Samuel" and "Johnson", whereas "Night

old
pug dog he worships, and a dreary little wife sitting at the end o
f the
table, and going off to Margate for a fortnight--I assure you I kn
ow
heaps like that--well, they seem to me _really_ nobler than poets
whom
every one worships, just because they're geniuses and die young. B
ut I
don't expect _you_ to agree with me!"
[9.99929790e-01 2.75362913e-05 7.08502304e-14 4.80647305e-11
3.30471723e-13 4.26739511e-05] "When you're my age you'll see tha

t the world is _crammed_ with
delightful things. I think young people make such a mistake about
that--not letting themselves be happy. I sometimes think that happ
iness
is the only thing that counts. I don't know you well enough to sa
y, but
I should guess you might be a little inclined to--when one's youn
g and
attractive--I'm going to say it!--_every_thing's at one's feet." S
he
glanced round as much as to say, "not only a few stuffy books and
Bach."
[1.06997945e-10 1.91268645e-22 9.99999647e-01 6.84957708e-12
3.46586775e-07 5.86836045e-09] The shores of Portugal were beginn

ing to lose their substance; but
the land was still the land, though at a great distance. They coul
d
distinguish the little towns that were sprinkled in the folds of t
he
hills, and the smoke rising faintly. The towns appeared to be ver
y small
in comparison with the great purple mountains behind them.
[4.71639134e-05 1.59969960e-12 3.57196090e-02 3.39541813e-12
2.99749181e-17 9.64233227e-01] Rachel followed her eyes and foun

d that they rested for a second, on the
robust figure of Richard Dalloway, who was engaged in striking a m
atch
on the sole of his boot; while Willoughby expounded something, whi
ch
seemed to be of great interest to them both.
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and Day" doesn't contain neither "Samuel" and "Johnson". So, this might be one of the reasons for the
prediction.

We had trained a Naive Bayes classifier by using MultinomialNB . We want to train now a Neural
Network. We will use MLPClassifier in the following. Be warned: It will take a long time, unless you
have an extremely fast computer. On my computer it takes about five minutes!

from sklearn.feature_extraction.text import CountVectorizer, ENGLI
SH_STOP_WORDS

from sklearn.neural_network import MLPClassifier
from sklearn import metrics

vectorizer = CountVectorizer(stop_words=ENGLISH_STOP_WORDS)
vectors = vectorizer.fit_transform(train_data)

print("Creating a classifier. This will take some time!")
classifier = MLPClassifier(random_state=1, max_iter=300).fit(vecto
rs, train_targets)

vectors_test = vectorizer.transform(test_data)

predictions = classifier.predict(vectors_test)
accuracy_score = metrics.accuracy_score(test_targets,

predictions)
f1_score = metrics.f1_score(test_targets,

predictions,
average='macro')

print("accuracy score: ", accuracy_score)
print("F1-score: ", f1_score)

LANGUAGE PREDICTION

We will train now a classifier which will be capable of recognizing the language of a text for the languages:

German, Danish, English, Spanish, French, Italian, Dutch and Swedish

We will use two books of each language for training and testing purposes. The authors and book titles should
be recognizable in the following file names:

Creating a classifier. This will take some time!

accuracy score:  0.9085465432770822
F1-score:  0.9125873156984565
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import os
os.listdir("books/various_languages")

labels = ['Virginia Woolf', 'Samuel Butler', 'Herman Melville',
'David Herbert Lawrence', 'Daniel Defoe', 'James Joyce']

path = "books/various_languages/"
files = os.listdir("books/various_languages")
labels = {fname[:2] for fname in files if fname.endswith(".txt")}
labels = sorted(list(labels))
labels

print(files)

Output: ['it_alessandro_manzoni_i_promessi_sposi.txt',
'es_antonio_de_alarcon_novelas_cortas.txt',
'de_nietzsche_also_sprach_zarathustra.txt',
'nl_lodewijk_van_deyssel.txt',
'de_goethe_leiden_des_jungen_werther2.txt',
'se_august_strindberg_röda_rummet.txt',
'license',
'it_amato_gennaro_una_sfida_al_polo.txt',
'nl_cornelis_johannes_kieviet_Dik_Trom_en_sijn_dorpgenoote

n.txt',
'fr_emile_zola_la_bete_humaine.txt',
'se_selma_lagerlöf_bannlyst.txt',
'de_goethe_leiden_des_jungen_werther1.txt',
'en_virginia_woolf_night_and_day.txt',
'original',
'es_mguel_de_cervantes_don_cuijote.txt',
'en_herman_melville_moby_dick.txt',
'dk_andreas_lauritz_clemmensen_beskrivelser_og_tegninger.tx

t',
'fr_emile_zola_germinal.txt']

Output: ['de', 'dk', 'en', 'es', 'fr', 'it', 'nl', 'se']
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data = []
targets = []

for fname in files:
if fname.endswith(".txt"):

paras = text2paragraphs(path + fname, min_size=150)
data.extend(paras)
country = fname[:2]
index = labels.index(country)
targets += [index] * len(paras)

import random
data_targets = list(zip(data, targets))
# create random permuation on list:
data_targets = random.sample(data_targets, len(data_targets))

data, targets = list(zip(*data_targets))
from sklearn.model_selection import train_test_split

res = train_test_split(data, targets,
train_size=0.8,
test_size=0.2,
random_state=42)

train_data, test_data, train_targets, test_targets = res
from sklearn.feature_extraction.text import CountVectorizer, ENGLI
SH_STOP_WORDS

from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics

vectorizer = CountVectorizer(stop_words=ENGLISH_STOP_WORDS)

['it_alessandro_manzoni_i_promessi_sposi.txt', 'es_antonio_de_alar
con_novelas_cortas.txt', 'de_nietzsche_also_sprach_zarathustra.tx
t', 'nl_lodewijk_van_deyssel.txt', 'de_goethe_leiden_des_jungen_we
rther2.txt', 'se_august_strindberg_röda_rummet.txt', 'license', 'i
t_amato_gennaro_una_sfida_al_polo.txt', 'nl_cornelis_johannes_kiev
iet_Dik_Trom_en_sijn_dorpgenooten.txt', 'fr_emile_zola_la_bete_hum
aine.txt', 'se_selma_lagerlöf_bannlyst.txt', 'de_goethe_leiden_de
s_jungen_werther1.txt', 'en_virginia_woolf_night_and_day.txt', 'or
iginal', 'es_mguel_de_cervantes_don_cuijote.txt', 'en_herman_melvi
lle_moby_dick.txt', 'dk_andreas_lauritz_clemmensen_beskrivelser_o
g_tegninger.txt', 'fr_emile_zola_germinal.txt']
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#vectorizer = CountVectorizer()

vectors = vectorizer.fit_transform(train_data)

# creating a classifier
classifier = MultinomialNB(alpha=.01)
classifier.fit(vectors, train_targets)

vectors_test = vectorizer.transform(test_data)

predictions = classifier.predict(vectors_test)
accuracy_score = metrics.accuracy_score(test_targets,

predictions)
f1_score = metrics.f1_score(test_targets,

predictions,
average='macro')

print("accuracy score: ", accuracy_score)
print("F1-score: ", f1_score)

Let us check this classifiert with some abitrary text in different languages:

some_texts = ["Es ist nicht von Bedeutung, wie langsam du gehst, s
olange du nicht stehenbleibst.",

"Man muss das Unmögliche versuchen, um das Mögliche
zu erreichen.",

"It's so much darker when a light goes out than it w
ould have been if it had never shone.",

"Rien n'est jamais fini, il suffit d'un peu de bonhe
ur pour que tout recommence.",

"Girano le stelle nella notte ed io ti penso forte f
orte e forte ti vorrei"]

sources = ["Konfuzius", "Hermann Hesse", "John Steinbeck", "Emile
Zola", "Gianna Nannini" ]
vtest = vectorizer.transform(some_texts)
predictions = classifier.predict(vtest)
for label in predictions:

print(label, labels[label])

accuracy score:  0.9946569178852643
F1-score:  0.9966453736745848
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W H A T  A R E  D E C I S I O N  T R E E S ?

Decision trees are supervised learning
algorithms used for both, classification
and regression tasks where we will
concentrate on classification in this first
part of our decision tree tutorial.
Decision trees are assigned to the
information based learning algorithms
which use different measures of
information gain for learning. We can use
decision trees for issues where we have
continuous but also categorical input and
target features. The main idea of decision
trees is to find those descriptive features
which contain the most "information"
regarding the target feature and then split
the dataset along the values of these
features such that the target feature values for the resulting sub_datasets are as pure as possible --> The
descriptive feature which leaves the target feature most purely is said to be the most informative one. This
process of finding the "most informative" feature is done until we accomplish a stopping criteria where we
then finally end up in so called leaf nodes. The leaf nodes contain the predictions we will make for new query
instances presented to our trained model. This is possible since the model has kind of learned the underlying
structure of the training data and hence can, given some assumptions, make predictions about the target feature
value (class) of unseen query instances.
A decision tree mainly contains of a root node, interior nodes, and leaf nodes which are then connected by
branches.
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Decision trees are further subdivided whether the target feature is continuously scaled like for instance house
prices or categorically scaled like for instance animal species.

In simplified terms, the process of training a decision tree and predicting the target features of query instances
is as follows:

1. Present a dataset containing of a number of training instances characterized by a number of
descriptive features and a target feature
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2. Train the decision tree model by continuously splitting the target feature along the values of the
descriptive features using a measure of information gain during the training process

3. Grow the tree until we accomplish a stopping criteria --> create leaf nodes which represent the
predictions we want to make for new query instances

4. Show query instances to the tree and run down the tree until we arrive at leaf nodes

5. DONE - Congratulations you have found the answers to your questions

So what do we know until know?
In principal decision trees can be used to predict the target feature of a unknown query instance by building a
model based on existing data for which the target feature values are known (supervised learning).
Additionally, we know that this model can make predictions for unknown query instances because it models
the relationship between the known descriptive features and the know target feature. In our following example,
the tree model learns "how a specific animal species looks like" respectively the combination of descriptive
feature values distinctive for animal species.
Additionally, we know that to train a decision tree model we need a dataset consisting of a number of training
examples characterized by a number of descriptive features and a target feature.
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What we do not know until know is:
How we can build a tree model. To
answer that question we should
recapitulate what we try to achieve using a
decision tree model. We want, given a
dataset, train a model which kind of
learns the relationship between the
descriptive features and a target feature
such that we can present the model a new,
unseen set of query instances and predict
the target feature values for these query
instances. Lets further recapitulate the
general shape of a decision tree. We know
that we have at the bottom of the tree leaf
nodes which contain (in the optimal case)
target feature values. To make this more
illustrative we use as a practical example a simplified version of the UCI machine learning Zoo Animal
Classification dataset which includes properties of animals as descriptive features and the and the animal
species as target feature. In our example the animals are classified as being Mammals or Reptiles based on
whether they are toothed, have legs and do breath. The dataset looks like:

import pandas as pd
data = pd.DataFrame({"toothed":["True","True","True","False","Tru
e","True","True","True","True","False"],

"hair":["True","True","False","True","Tru
e","True","False","False","True","False"],

"breathes":["True","True","True","True","Tru
e","True","False","True","True","True"],

"legs":["True","True","False","True","Tru
e","True","False","False","True","True"],

"species":["Mammal","Mammal","Reptile","Mamma
l","Mammal","Mammal","Reptile","Reptile","Mammal","Reptile"]},

columns=["toothed","hair","breathes","legs","s
pecies"])

features = data[["toothed","hair","breathes","legs"]]
target = data["species"]

data
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Hence, to come back to our initial question, each leaf node should (in the best case) only contain "Mammals"
or "Reptiles". The task for us is now to find the best "way" to split the dataset such that this can be achieved.
What do I mean when I say split? Well consider the dataset above and think about what must be done to split
the dataset into a Dataset 1 containing as target feature values (species) only Mammals and a Dataset 2,
containing only Reptiles. To achieve that, in this simplified example, we only need the descriptive feature hair
since if hair is TRUE, the associated species is always a Mammal. Hence in this case our tree model would
look like:

Output: :

toothed hair breathes legs species

0 True True True True Mammal

1 True True True True Mammal

2 True False True False Reptile

3 False True True True Mammal

4 True True True True Mammal

5 True True True True Mammal

6 True False False False Reptile

7 True False True False Reptile

8 True True True True Mammal

9 False False True True Reptile
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That is, we have split our dataset by asking the question if the animal has hair or not. And exactly this asking
and therewith splitting is the key to the decision tree models. Now in that case the splitting has been very easy
because we only have a small number of descriptive features and the dataset is completely separable along the
values of only one descriptive feature. However, most of the time datasets are not that easily separable and we
must split the dataset more than one time ("ask more than one question"). Here, the next question directly
arises: Given that we have to split the dataset more than one time, that is, ask more then one question to
separate the dataset, Which is the descriptive feature we should start with (root node) and in which order
should we ask questions (build the interior nodes) that is, use descriptive features to split the dataset on? Well,
we have seen that using the hair descriptive feature seems to occupy the most information about the target
feature since we only need this feature to perfectly split the dataset. Hence it would be useful to measure the
"informativeness" of the features and use the feature with the most "informativeness" as the feature which
should be used to split the data on. From now on, we use the term information gain as a measure of
"informativeness" of a feature. In the following section we will introduce some mathematical terms and derive
how the information gain is calculated as well as how we can build a tree model based on that.

THE MATHS BEHIND DECISION TREES

In the preceding section we have introduced the information gain as a measure of how good a descriptive
feature is suited to split a dataset on. To be able to calculate the information gain, we have to first introduce
the term entropy of a dataset. The entropy of a dataset is used to measure the impurity of a dataset and we will
use this kind of informativeness measure in our calculations. There are also other types of measures which can
be used to calculate the information gain. The most prominent ones are the: Gini Index, Chi-Square,
Information gain ratio, Variance. The term entropy (in information theory) goes back to Claude E. Shannon.
The idea behind the entropy is, in simplified terms, the following: Imagine you have a lottery wheel which
includes 100 green balls. The set of balls within the lottery wheel can be said to be totally pure because only
green balls are included. To express this in the terminology of entropy, this set of balls has a entropy of 0 (we
can also say zero impurity). Consider now, 30 of these balls are replaced by red and 20 by blue balls.
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If you now draw another ball from the lottery wheel, the probability of receiving a green ball has dropped
from 1.0 to 0.5. Since the impurity increased, the purity decreased, hence also the entropy increased. Hence
we can say, the more "impure" a dataset, the higher the entropy and the less "impure" a dataset, the lower the
entropy. Shannon's entropy model uses the logarithm function (log2(P(x))) to measure the entropy and

therewith the impurity of a dataset since the higher the probability of getting a specific result == P(x)
(randomly drawing a green ball), the closer approaches the binary logarithm 1.

import numpy as np
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)

ax.plot(np.linspace(0.01,1),np.log2(np.linspace(0.01,1)))
ax.set_xlabel("P(x)")
ax.set_ylabel("log2(P(x))")

plt.show()
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Once a dataset contains more than one "type" of elements specifically more than one target feature value, the
impurity will be greater than zero. Therewith also the entropy of the dataset will be greater than zero. Hence it
is useful to sum up the entropies of each possible target feature value and weight it by the probability that we
achieve these values assuming we would randomly draw values from the target feature value space (What is
the probability to draw a green ball just by chance? Exactly, 0.5 and therewith we have to weight the entropy
calculated for the green balls with 0.5). This finally leads to the formal definition of Shannon's entropy which
serves as the baseline for the information gain calculation:

H(x) = − ∑
for k ∈ target

(P(x = k) ∗ log2(P(x = k)))

where we say that P(x=k) is the probability, that the target feature takes a specific value k. Hence applying this
formula to our example with the three colored balls we get:

Green balls: H(x = green) = 0.5 ∗ log2(0.5) = − 0.5

Blue balls: H(x = blue) = 0.2 ∗ log2(0.2) = − 0.464

Red balls: H(x = red) = 0.3 ∗ log2(0.3) = − 0.521

H(x): H(x) = − (( − 0.5) + ( − 0.464) + ( − 0.521)) = 1.485

Lets apply this approach to our original dataset where we want to predict the animal species. Our dataset has
two target feature values in its target feature value space {Mammal, Reptile}. Where P(x = Mammal) = 0.6
and P(x = Reptile) = 0.4 Hence the entropy of our dataset regarding the target feature is calculated with:

H(x) = − ((0.6 ∗ log2(0.6)) + (0.4 ∗ log2(0.4))) = 0.971
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So where are we now on our way towards creating a tree model?
We have now determined the total impurity/purity ( ≈ entropy) of our dataset which equals to approximately
0.971. Now our task is to find the best feature in terms of information gain (Remember that we want to find
the feature which splits the data most accurate along the target feature values) which we should use to first
split our data on (which serves as root node). Remember that the hair feature is no longer part of our feature
set.
Following this, how can we check which of the descriptive features most accurately splits the dataset, that is,
remains the dataset with the lowest impurity ≈ entropy or in other words best classifies the target features by
its own? Well, we use each descriptive feature and split the dataset along the values of these descriptive
feature and then calculate the entropy of the dataset once we have split the data along the feature values. This
gives us the remaining entropy after we have split the dataset along the feature values. Next, we subtract this
value from the originally calculated entropy of the dataset to see how much this feature splitting reduces the
original entropy. The information gain of a feature is calculated with:

InfoGain(featured) = Entropy(D) − Entropy(featured)

So the only thing we have to do is to split the dataset along the values of each feature and then treat these sub
sets as if they were our "original" dataset in terms of entropy calculation. The formula for the Information
Gain calculation per feature is:

InforGain(featured, D) = Entropy(D) − ∑
t ∈ feature

(
| featured = t |

| D |
∗ H(featured = t))

=

Entropy(D) − ∑
t ∈ feature

(
| featured = t |

| D |
∗ ( − ∑

k ∈ target

(P(target = k, featured = t) ∗ log2(P(target = k, featured = t))))

Summarized, for each descriptive feature, we sum up the resulting entropies for splitting the dataset along the
feature values and additionally weight the feature value entropies by their occurrence probability.
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Now we will calcuate the Information gain for each descriptive feature:

toothed:

= 0.963547

InfoGain(toothed) = 0.971 − 0.963547 = 0.00745

breathes:

H(breathes) = (
9

10
∗ − ((

6

9
∗ log2(

6

9
)) + (

3

9
∗ log2(

3

9
))) +

1

10
∗ − ((0) + (1 ∗ log2(1)))) = 0.82647

InfoGain(breathes) = 0.971 − 0.82647 = 0.1445

legs:
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H(legs) =
7

10
∗ − ((

6

7
∗ log2(

6

7
)) + (

1

7
∗ log2(

1

7
))) +

3

10
∗ − ((0) + (1 ∗ log2(1))) = 0.41417

InfoGain(legs) = 0.971 − 0.41417 = 0.5568

Hence the splitting the dataset along the feature legs results in the largest information gain and we should use
this feature for our root node.
Hence for the time being the decision tree model looks like:

We see that for legs == False, the target feature values of the remaining dataset are all Reptile and hence we
set this as leaf node because we have a pure dataset (Further splitting the dataset on any of the remaining two
features would not lead to a different or more accurate result since whatever we do after this point, the
prediction will remain Reptile). Additionally, you see that the feature legs is no longer included in the
remaining datasets. Because we already has used this (categorical) feature to split the dataset on it must not be
further used.

Until now we have found the feature for the root node as well as a leaf node for legs == False. The same steps
for information gain calculation must now be accomplished also for the remaining dataset for legs == True
since here we still have a mixture of different target feature values. Hence:

Information gain calculation for the features toothed and breathes for the remaining dataset legs ==
True:

Entropy of the (new) sub data set after first split:
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H(D) = − ((
6

7
∗ log2(

6

7
)) + (

1

7
∗ log2(

1

7
))) = 0.5917

toothed:

H(toothed) =
5

7
∗ − ((1 ∗ log2(1)) + (0)) +

2

7
∗ − ((

1

2
∗ log2(

1

2
)) + (

1

2
∗ log2(

1

2
))) = 0.285

InfoGain(toothed) = 0.5917 − 0.285 = 0.3067

breathes:

H(breathes) =
7

7
∗ − ((

6

7
∗ log2(

6

7
)) + (

1

7
∗ log2(

1

7
))) + 0 = 5917

InfoGain(toothed) = 0.5917 − 0.5917 = 0

The dataset for toothed == False still contains a mixture of different target feature values why we proceed
partitioning on the last left feature (== breathes)

Hence the completely grown tree looks like:
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Mind the last split (node) where the dataset got split on the breathes feature. Here the breathes feature solely
contains data where breaths == True. Hence for breathes == False there are no instances in the dataset and
therewith there is no sub-Dataset which can be built. In that case we return the most frequently occurring
target feature value in the original dataset which is Mammal. This is an example how our tree model
generalizes behind the training data.
If we consider the other branch, that is breathes == True we know, that after splitting the Dataset on the
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values of a specific feature (breathes {True,False}) in our case, the feature must be removed. Well, that leads
to a dataset where no more features are available to further split the dataset on. Hence we stop growing the
tree and return the mode value of the direct parent node which is "Mammal".

That leads us to the introduction of the ID3 algorithm which is a popular algorithm to grow decision trees,
published by Ross Quinlan in 1986. Besides the ID3 algorithm there are also other popular algorithms like the
C4.5, the C5.0 and the CART algorithm which we will not further consider here. Before we introduce the ID3
algorithm lets quickly come back to the stopping criteria of the above grown tree. We can define a nearly
arbitrarily large number of stopping criteria. Assume for instance, we say a tree is allowed to grow for only 2
seconds and then the growing process should stop - Well that would be a stopping criteria - Nonetheless, there
are mainly three useful cases in which we stop the tree from growing assuming we do not stop it beforehand
by defining for instance a maximum tree depth or a minimum information gain value. We stop the tree from
growing when:
1. All rows in the target feature have the same value
2. The dataset can be no longer split since there are no more features left
3. The dataset can no longer be split since there are no more rows left / There is no data left

By definition, we say that if the growing gets stopped because of stopping criteria two, the leaf node should
predict the most frequently occurring target feature value of the superior (parent) node. If the growing gets
stopped because of the third stopping criteria, we assign the leaf node the mode target feature value of the
original dataset.

Attention, we now introduce the ID3 algorithm:

The pseudocode for the ID3 Algorithm is based on the pseudocode illustation of (Mitchell, 1997).

ID3(D,Feature_Attributes,Target_Attributes)

Create a root node r

Set r to the mode target feature value in D

If all target feature values are the same:
return r

Else:
pass

If Feature_Attributes is empty:
return r

Else:
Att = Attribute from Feature_Attributes with the largest in

formation gain value
r = Att
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For values in Att:
Add a new node below r where node_values = (Att == valu

es)
Sub_D_values = (Att == values)

If Sub_D_values == empty:
Add a leaf node l where l equals the mode target va

lue in D
Else:

add Sub_Tree with ID3(Sub_D_values,Feature_Attribut
es = Feature_Attributes without Att, Target_Attributes)

Well this pseudocode is probably a little bit confusing if you are new to decision trees and you don't have a
mental picture of a decision tree on your mind. Therefore we will illustrate this pseudocode in pictures to
make things a little bit more clear -hopefully-.
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CLASSIFICATION DECISION TREES FROM SCRATCH WITH PYTHON

Since we now know the principal steps of the ID3 algorithm, we will start create our own decision tree
classification model from scratch in Python.

Therefore we will use the whole UCI Zoo Data Set.
This dataset consists of 101 rows and 17 categorically valued attributes defining whether an animal has a
specific property or not (e.g.hairs, feathers,..). The first attribute represents the name of the animal and will be
removed. The target feature consist of 7 integer values [1 to 7] which represents [1:Mammal, 2:Bird,
3:Reptile, 4:Fish, 5:Amphibian, 6:Bug, 7:Invertebrate]

Though, before we finally start building the decision tree, I want to note a few things:
The intention of the following code is not to create a highly efficient and robust implementation of a ID3
decision tree. For this purpose bright heads have created the prepackaged sklearn decision tree model which
we will use in the next section.
With the following code I want to to provide and show the basic principle and steps behind creating a decision
tree from scratch with the goal that we can use the prepackaged modules more efficiently because we
understand and know what they are doing and can eventually, build our own machine learning model.
That said, there are four important steps:

1. The calculation of the Information Gain
2. The recursive call of the TreeModel
3. The building of the actual tree structure
4. The species prediction of a new unseen animal-instance

Here the most critical aspects are the recursive call of the TreeModel, the creation of the tree itself (building
the tree structure) as well as the prediction of a unseen query instance (the process of wandering down the tree
to predict the class of a unseen query instance).

"""
Make the imports of python packages needed
"""
import pandas as pd
import numpy as np
from pprint import pprint

#Import the dataset and define the feature as well as the target d
atasets / columns#
dataset = pd.read_csv('data/zoo.csv',

names=['animal_name','hair','feathers','egg
s','milk',

'airbone','aqua
tic','predator','toothed','backbone',
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'breathes','veno
mous','fins','legs','tail','domestic','catsize','class',])#Import
all columns omitting the fist which consists the names of the anim
als

#We drop the animal names since this is not a good feature to spli
t the data on
dataset=dataset.drop('animal_name',axis=1)

###################

def entropy(target_col):
"""
Calculate the entropy of a dataset.
The only parameter of this function is the target_col paramete

r which specifies the target column
"""
elements,counts = np.unique(target_col,return_counts = True)
entropy = np.sum([(-counts[i]/np.sum(counts))*np.log2(count

s[i]/np.sum(counts)) for i in range(len(elements))])
return entropy

###################

###################

def InfoGain(data,split_attribute_name,target_name="class"):
"""
Calculate the information gain of a dataset. This function tak

es three parameters:
1. data = The dataset for whose feature the IG should be calcu

lated
2. split_attribute_name = the name of the feature for which th

e information gain should be calculated
3. target_name = the name of the target feature. The default f

or this example is "class"
"""
#Calculate the entropy of the total dataset
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total_entropy = entropy(data[target_name])

##Calculate the entropy of the dataset

#Calculate the values and the corresponding counts for the spl
it attribute

vals,counts= np.unique(data[split_attribute_name],return_count
s=True)

#Calculate the weighted entropy
Weighted_Entropy = np.sum([(counts[i]/np.sum(counts))*entrop

y(data.where(data[split_attribute_name]==vals[i]).dropna()[targe
t_name]) for i in range(len(vals))])

#Calculate the information gain
Information_Gain = total_entropy - Weighted_Entropy
return Information_Gain

###################

###################

def ID3(data,originaldata,features,target_attribute_name="class",p
arent_node_class = None):

"""
ID3 Algorithm: This function takes five paramters:
1. data = the data for which the ID3 algorithm should be run

--> In the first run this equals the total dataset

2. originaldata = This is the original dataset needed to calcu
late the mode target feature value of the original dataset

in the case the dataset delivered by the first parameter is em
pty

3. features = the feature space of the dataset . This is neede
d for the recursive call since during the tree growing process

we have to remove features from our dataset --> Splitting at e
ach node

4. target_attribute_name = the name of the target attribute

5. parent_node_class = This is the value or class of the mode
target feature value of the parent node for a specific node. This
is
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also needed for the recursive call since if the splitting lead
s to a situation that there are no more features left in the featu
re

space, we want to return the mode target feature value of the
direct parent node.

"""
#Define the stopping criteria --> If one of this is satisfie

d, we want to return a leaf node#

#If all target_values have the same value, return this value
if len(np.unique(data[target_attribute_name])) <= 1:

return np.unique(data[target_attribute_name])[0]

#If the dataset is empty, return the mode target feature valu
e in the original dataset

elif len(data)==0:
return np.unique(originaldata[target_attribute_name])[np.a

rgmax(np.unique(originaldata[target_attribute_name],return_count
s=True)[1])]

#If the feature space is empty, return the mode target featur
e value of the direct parent node --> Note that

#the direct parent node is that node which has called the curr
ent run of the ID3 algorithm and hence

#the mode target feature value is stored in the parent_node_cl
ass variable.

elif len(features) ==0:
return parent_node_class

#If none of the above holds true, grow the tree!

else:
#Set the default value for this node --> The mode target f

eature value of the current node
parent_node_class = np.unique(data[target_attribute_nam

e])[np.argmax(np.unique(data[target_attribute_name],return_count
s=True)[1])]

#Select the feature which best splits the dataset
item_values = [InfoGain(data,feature,target_attribute_nam

e) for feature in features] #Return the information gain values fo
r the features in the dataset

best_feature_index = np.argmax(item_values)
best_feature = features[best_feature_index]
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#Create the tree structure. The root gets the name of the
feature (best_feature) with the maximum information

#gain in the first run
tree = {best_feature:{}}

#Remove the feature with the best inforamtion gain from th
e feature space

features = [i for i in features if i != best_feature]

#Grow a branch under the root node for each possible valu
e of the root node feature

for value in np.unique(data[best_feature]):
value = value
#Split the dataset along the value of the feature wit

h the largest information gain and therwith create sub_datasets
sub_data = data.where(data[best_feature] == value).dro

pna()

#Call the ID3 algorithm for each of those sub_dataset
s with the new parameters --> Here the recursion comes in!

subtree = ID3(sub_data,dataset,features,target_attribu
te_name,parent_node_class)

#Add the sub tree, grown from the sub_dataset to the t
ree under the root node

tree[best_feature][value] = subtree

return(tree)
###################

###################

def predict(query,tree,default = 1):
"""
Prediction of a new/unseen query instance. This takes two para

meters:
1. The query instance as a dictionary of the shape {"feature_n

ame":feature_value,...}
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2. The tree

We do this also in a recursive manner. That is, we wander dow
n the tree and check if we have reached a leaf or if we are still
in a sub tree.

Since this is a important step to understand, the single step
s are extensively commented below.

1.Check for every feature in the query instance if this featur
e is existing in the tree.keys() for the first call,

tree.keys() only contains the value for the root node
--> if this value is not existing, we can not make a predictio

n and have to
return the default value which is the majority value of the ta

rget feature

2. First of all we have to take care of a important fact: Sinc
e we train our model with a database A and then show our model

a unseen query it may happen that the feature values of these
query are not existing in our tree model because non of the

training instances has had such a value for this specific feat
ure.

For instance imagine the situation where your model has only s
een animals with one to four

legs - The "legs" node in your model will only have four outgo
ing branches (from one to four). If you now show your model

a new instance (animal) which has for the legs feature the val
e 5, you have to tell your model what to do in such a

situation because otherwise there is no classification possibl
e because in the classification step you try to

run down the outgoing branch with the value 5 but there is no
such a branch. Hence: Error and no Classification!

We can address this issue with a classification value of for i
nstance (999) which tells us that there is no classification

possible or we assign the most frequent target feature value o
f our dataset used to train the model. Or, in for instance

medical application we can return the most worse case - just t
o make sure...

We can also return the most frequent value of the direct paren
t node. To make a long story short, we have to tell the model

what to do in this situation.
In our example, since we are dealing with animal species wher

e a false classification is not that critical, we will assign
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the value 1 which is the value for the mammal species (for con
venience).

3. Address the key in the tree which fits the value for key --
> Note that key == the features in the query.

Because we want the tree to predict the value which is hidden
under the key value (imagine you have a drawn tree model on

the table in front of you and you have a query instance for wh
ich you want to predict the target feature

- What are you doing? - Correct:
You start at the root node and wander down the tree comparing

your query to the node values. Hence you want to have the
value which is hidden under the current node. If this is a lea

f, perfect, otherwise you wander the tree deeper until you
get to a leaf node.
Though, you want to have this "something" [either leaf or su

b_tree] which is hidden under the current node
and hence we must address the node in the tree which == the ke

y value from our query instance.
This is done with tree[keys]. Next you want to run down the br

anch of this node which is equal to the value given "behind"
the key value of your query instance e.g. if you find "legs"

== to tree.keys() that is, for the first run == the root node.
You want to run deeper and therefore you have to address the b

ranch at your node whose value is == to the value behind key.
This is done with query[key] e.g. query[key] == query['legs']

== 0 --> Therewith we run down the branch of the node with the
value 0. Summarized, in this step we want to address the node

which is hidden behind a specific branch of the root node (in the
first run)

this is done with: result = [key][query[key]]

4. As said in the 2. step, we run down the tree along nodes an
d branches until we get to a leaf node.

That is, if result = tree[key][query[key]] returns another tre
e object (we have represented this by a dict object -->

that is if result is a dict object) we know that we have not a
rrived at a root node and have to run deeper the tree.

Okay... Look at your drawn tree in front of you... what are yo
u doing?...well, you run down the next branch...

exactly as we have done it above with the slight difference th
at we already have passed a node and therewith

have to run only a fraction of the tree --> You clever guy! Th
at "fraction of the tree" is exactly what we have stored

under 'result'.
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So we simply call our predict method using the same query inst
ance (we do not have to drop any features from the query

instance since for instance the feature for the root node wil
l not be available in any of the deeper sub_trees and hence

we will simply not find that feature) as well as the "reduced
/ sub_tree" stored in result.

SUMMARIZED: If we have a query instance consisting of values f
or features, we take this features and check if the

name of the root node is equal to one of the query features.
If this is true, we run down the root node outgoing branch who

se value equals the value of query feature == the root node.
If we find at the end of this branch a leaf node (not a dict o

bject) we return this value (this is our prediction).
If we instead find another node (== sub_tree == dict objct) w

e search in our query for the feature which equals the value
of that node. Next we look up the value of our query feature a

nd run down the branch whose value is equal to the
query[key] == query feature value. And as you can see this is

exactly the recursion we talked about
with the important fact that for each node we run down the tre

e, we check only the nodes and branches which are
below this node and do not run the whole tree beginning at th

e root node
--> This is why we re-call the classification function with 'r

esult'
"""

#1.
for key in list(query.keys()):

if key in list(tree.keys()):
#2.
try:

result = tree[key][query[key]]
except:

return default

#3.
result = tree[key][query[key]]
#4.
if isinstance(result,dict):

return predict(query,result)

else:
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return result

"""
Check the accuracy of our prediction.
The train_test_split function takes the dataset as parameter whic
h should be divided into
a training and a testing set. The test function takes two paramete
rs, which are the testing data as well as the tree model.
"""
###################

###################

def train_test_split(dataset):
training_data = dataset.iloc[:80].reset_index(drop=True)#We dr

op the index respectively relabel the index
#starting form 0, because we do not want to run into errors re

garding the row labels / indexes
testing_data = dataset.iloc[80:].reset_index(drop=True)
return training_data,testing_data

training_data = train_test_split(dataset)[0]
testing_data = train_test_split(dataset)[1]

def test(data,tree):
#Create new query instances by simply removing the target feat

ure column from the original dataset and
#convert it to a dictionary
queries = data.iloc[:,:-1].to_dict(orient = "records")

#Create a empty DataFrame in whose columns the prediction of t
he tree are stored

predicted = pd.DataFrame(columns=["predicted"])

#Calculate the prediction accuracy
for i in range(len(data)):

predicted.loc[i,"predicted"] = predict(queries[i],tre
e,1.0)

print('The prediction accuracy is: ',(np.sum(predicted["predic
ted"] == data["class"])/len(data))*100,'%')
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"""
Train the tree, Print the tree and predict the accuracy
"""
tree = ID3(training_data,training_data,training_data.columns[:-1])
pprint(tree)
test(testing_data,tree)

As we can see, the prediction accuracy for the zoo dataset is about 86% which is actually not that bad
considering that we don't have done any improvements like for instance defining a minimal split size or a
minimal amount of instances per leaf or bagging or boosting, or pruning, etc.

DECISION TREES USING SKLEARN

Even if the above code is suitable and important to convey the concepts of decision trees as well as how to
implement a classification tree model "from scratch", there is a very powerful decision tree classification
model implemented in sklearn sklearn.tree.DecisionTreeClassifier¶. Thanks to this model we can implement a
tree model faster, more efficient and also neater as we can do it in just a few lines of code. The steps to use the
sklearn classification decision tree follow the principal sklearn API which are:

1. Choose the model you want to use --> the DecisionTreeClassifier
2. Set the model hyperparameters --> E.g. number of minimum samples per leaf
3. Create a feature data set as well as a target array containing the labels for the instances
4. Fit the model to the training data
5. Use the fitted model on unseen data.

Thats it! As always, the steps are straight forward.

"""
Import the DecisionTreeClassifier model.

{'legs': {'0': {'fins': {'0': {'toothed': {'0': '7', '1': '3'}},
'1': {'eggs': {'0': '1', '1': '4'}}}},

'2': {'hair': {'0': '2', '1': '1'}},
'4': {'hair': {'0': {'toothed': {'0': '7', '1': '5'}},

'1': '1'}},
'6': {'aquatic': {'0': '6', '1': '7'}},
'8': '7',
'legs': 'class_type'}}

The prediction accuracy is:  86.36363636363636 %
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"""

#Import the DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier

##################################################################
#########################################

##################################################################
########################################

"""
Import the Zoo Dataset
"""

#Import the dataset
dataset = pd.read_csv('data/zoo.csv')
#We drop the animal names since this is not a good feature to spli
t the data on
dataset=dataset.drop('animal_name',axis=1)

##################################################################
#########################################

##################################################################
########################################

"""
Split the data into a training and a testing set
"""

train_features = dataset.iloc[:80,:-1]
test_features = dataset.iloc[80:,:-1]
train_targets = dataset.iloc[:80,-1]
test_targets = dataset.iloc[80:,-1]

##################################################################
#########################################

##################################################################
########################################
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"""
Train the model
"""

tree = DecisionTreeClassifier(criterion = 'entropy').fit(train_fea
tures,train_targets)

##################################################################
#########################################

##################################################################
########################################

"""
Predict the classes of new, unseen data
"""
prediction = tree.predict(test_features)

##################################################################
#########################################

##################################################################
########################################

"""
Check the accuracy
"""

print("The prediction accuracy is: ",tree.score(test_features,tes
t_targets)*100,"%")

Cool isn't it? Well, the accuracy is not that mind blowing but this is more likely due to the composition of the
data itself as due to the model. Feel free to try different model parameters to improve the accuracy of the
model.

A d v a n t g e s  a n d
D i s a d v a n t a g e s
o f  D e c i s i o n
T r e e s

The prediction accuracy is:  80.95238095238095 %
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Since we now have seen how a decision tree classification model is programmed in Python by hand and and
by using a prepackaged sklearn model we will consider the main advantages and disadvantages of decision
trees in general, that is not only of classification decision trees.

ADVANTAGES

• White box, easy to interpret
model

• No feature normalization
needed

• Tree models can handle both
continuous and categorical
data (Classification and
Regression Trees)

• Can model nonlinear
relationships

• Can model interactions
between the different
descriptive features

DISADVANTAGES

• If continuous features are used the tree may become quite large and hence less interpretable
• Decision trees are prone to overfit the training data and hence do not well generalize the data if

no stopping criteria or improvements like pruning, boosting or bagging are implemented
• Small changes in the data may lead to a completely different tree. This issue can be addressed by

using ensemble methods like bagging, boosting or random forests
• Unbalanced datasets where some target feature values occur much more frequently than others

may lead to biased trees since the frequently occurring feature values are preferred over the less
frequently occurring ones. Facilitated: There are in general three cases why we want to grow a
leaf node: If there are only pure target feature values in a sub_set --> We return this value; If the
sub_dataset is empty --> We return the mode value of the original dataset; If there are no
features left in the sub_dataset --> We return the mode value of the parent node. If we have now
one target feature value whose frequency tops all other frequencies, it is clear why the outcome
may be biased towards this value. We can address this by ensuring that the dataset is relatively
balanced in terms of the target feature values

• If the number of features is relatively large (high dimensional) and the number of instances is
relatively low, the tree might overfit the data

• Features with many levels may be preferred over features with less levels since for them it is
"more easy" to split the dataset such that the sub_datasets only contain pure target feature
values. This issue can be addressed by preferring for instance the information gain ratio as
splitting criteria over information gain

• When we illustrate the target feature splitting process, we see that the tree model kind of
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categorizes the target feature classes into rectangular regions. Hence the tree model assumes that
the underlying data can be split respectively represented by these rectangular regions.

FURTHER ISSUES AND VARIATIONS

The first thing which has not been shown above is how to grow a tree when the descriptive features are not
categorically but continuously scaled.
This does not change much from the above approach with the large difference that we can use a continuously
scaled feature multiple times during the growing of the tree and we have to use the mean or mode of a feature
regarding the values of the target feature instead of the single (categorical) feature values --> These can no
loner be used since there is now a infinite number of different possible values.

The second important variation is when we do no longer have a categorically scaled but continuously scaled
target feature. If this is the case we call the tree model a regression tree model instead of a classification tree
model. Here as one example we can use the variance of a feature regarding the target feature as splitting
criteria instead of the information gain. We then use the feature with the lowest weighted variance as splitting
feature.

We said above that decision trees are prone to overfitting the training data. We also mentioned that this issue
can be addressed using a method called pruning. And it is exactly what it sounds like. We prune the tree.
Therefore we start at the leaf nodes and simply check if the accuracy grows if we prune the leafs and replace
the parent node of these leafs by a leaf node representing the mode target feature value for this node.
Following this procedure we wander up the tree until the pruning will not lead to a higher accuracy or until the
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pruning does not reduce the accuracy. To make a long story short, if pruning does not reduce the accuracy,
prune. Done. We have found the tree which results in the maximum accuracy regarding our testing data set.

Another approach to increase the accuracy
of a tree model is to use an ensemble
approach. With an ensemble approach we
create different models (in this case) trees
from the original dataset and let the
different models make a majority vote on
the test dataset. That is, we predict the
target values for the test dataset using
each of the created models and then return
this target feature value which has been
predicted by the majority of the models.
The most prominent approaches to create
decision tree ensemble models are called
bagging and boosting. A variant of a
boosting-based decision tree ensemble
model is called random forest model
which is one of the most powerful
machine learning algorithms. Ensemble
models can also be created by using different splitting criteria for the single models such as the Gini index as
well as the Information gain ratio.

We have now seen a lot of variations and different approaches to decision tree models. Though, there is no
general guideline on which approach should be used. -There is no free lunch- As often, it depends on... and the
only real advice which can be given is that you have to try different models with different hyperparameters to
find the best fitting model for a specific problem. Nevertheless, ensemble models such as the random forest
algorithm have proven as very powerful models.

In the following chapters we will address some of the above mentioned variations to get a deeper
understanding of decision trees.
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R E G R E S S I O N  T R E E S

In the previous chapter about
Classification decision Trees we have
introduced the basic concepts underlying
decision tree models, how they can be
build with Python from scratch as well as
using the prepackaged sklearn
DecisionTreeClassifier method. We have
also introduced advantages and
disadvantages of decision tree models as
well as important extensions and
variations. One disadvantage of
Classification decision Trees is that they
need a target feature which is
categorically scaled like for instance
weather = {Sunny, Rainy, Overcast,
Thunderstorm}.
Here arises a problem: What if we want our tree for instance to predict the price of a house given some target
feature attributes like the number of rooms and the location? Here the values of the target feature (prize) are no
longer categorically scaled but are continuous - A house can have, theoretically, a infinite number of different
prices -

Thats where Regression Trees come in. Regression Trees work in principal in the same way as Classification
Trees with the large difference that the target feature values can now take on an infinite number of
continuously scaled values. Hence the task is now to predict the value of a continuously scaled target feature Y
given the values of a set of categorically (or continuously) scaled descriptive features X.
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As stated above, the principle of building a Regression Tree follows the same approach as the creation of a
Classification Tree.
We search for the descriptive feature which splits the target feature values most purely, divide the dataset
along the values of this descriptive feature and repeat this process for each of the sub datasets until we
accomplish a stopping criteria.If we accomplish a stopping criteria, we grow a leaf node.
Though, a few things changed.
First of all, let us consider the stopping criteria we have introduced in the Classification Tree chapter to grow a
leaf node:

1. If the splitting process leads to a empty dataset, return the mode target feature value of the
original dataset

2. If the splitting process leads to a dataset where no features are left, return the mode target feature
value of the direct parent node

3. If the splitting process leads to a dataset where the target feature values are pure, return this
value

If we now consider the property of our new continuously scaled target feature we mention that the third
stopping criteria can no longer be used since the target feature values can now take on an infinite number of
different values. Consequently, it is most likely that we will not find pure target feature values until there is
only one instance left in the dataset.
To make a long story short, there is in general nothing like pure target feature values.

To address this issue, we will introduce an early stopping criteria that returns the average value of the target
feature values left in the dataset if the number of instances in the dataset is ≤ 5.
In general, while handling with Regression Trees we will return the average target feature values as prediction
at a leaf node.
The second change we have to make becomes apparent when we consider the splitting process itself.
While working with Classification Trees we used the Information Gain (IG) of a feature as splitting criteria.
That is, the feature with the largest IG was used to split the dataset on. Consider the following example where
we examine only one descriptive feature, lets say the number of bedrooms, and the costs of the house as target
feature.

import pandas as pd
import numpy as np
df = pd.DataFrame({'Number_of_Bedrooms':[2,2,4,1,3,1,4,2],'Price_o
f_Sale':[100000,120000,250000,80000,220000,170000,500000,75000]})
df
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Now how would we calculate the entropy of the Number_of_Bedrooms feature?

H(Number of Bedrooms) = ∑j ∈ Number of Bedrooms ∗ (
| DNumber of Bedrooms = j |

| D |
∗ (∑k ∈ Price of Sale ∗ ( − P(k | j) ∗ log2(P(k | j))))

If we calculate the weighted entropies, we see that for j = 3, we get a weighted entropy of 0. We get this result
because there is only one house in the dataset with 3 bedrooms. On the other hand, for j = 2 (occurs three
times) we will get a weighted entropy of 0.59436.
To make a long story short, since our target feature is continuously scaled, the IGs of the categorically scaled
descriptive features are no longer appropriate splitting criteria.
Well, we could instead categorize the target feature along its values where for instance housing prices between
$0 and $80000 are categorized as low, between $80001 and $150000 as middle and > $150001

as high.
What we have done here is converting our regression problem into kind of a classification problem. Though,
since we want to be able to make predictions from a infinite number of possible values (regression) this is not
what we are looking for.

Lets come back to our initial issue: We want to have a splitting criteria which allows us to split the dataset in
such a way that when arriving a tree node, the predicted value (we defined the predicted value as the mean
target feature value of the instances at this leaf node where we defined the minimum number of 5 instances as
early stopping criteria) is closest to the actual value.
It turns out that the variance is one of the most commonly used splitting criteria for regression trees where we
will use the variance as splitting criteria.
The explanation therefore is, that we want to search for the feature attributes which most exactly point to the

Output: :

Number_of_Bedrooms Price_of_Sale

0 2 100000

1 2 120000

2 4 250000

3 1 80000

4 3 220000

5 1 170000

6 4 500000

7 2 75000
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real target feature values when splitting the dataset along the values of these target features. Therefore,
examine the following picture. What do you think which of those two layouts of the Number_of_Bedrooms
feature points more exactly to the real sales prize?

Well, obviously that one with the smallest variance! We will introduce the maths behind the measure of
variance in the next section.
For the time being we start by illustrating these by arrows where wide arrows represent a high variance and
slim arrows a low variance. We can illustrate that by showing the variance of the target feature for each value
of the descriptive feature. As you can see, the feature layout which minimizes the variance of the target feature
values when we split the dataset along the values of the descriptive feature is the feature layout which most
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exactly points to the real value and hence should be used as splitting criteria. During the creation of our
Regression Tree model we will use the measure of variance to replace the information gain as splitting criteria.
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T H E  M A T H S  B E H I N D  R E G R E S S I O N
T R E E S

As stated above, the task during growing a Regression Tree is in principle the same as during the creation of
Classification Trees. Though, since the IG turned out to be no longer an appropriate splitting criteria (neither is
the Gini Index) due to the continuous character of the target feature we must have a new splitting criteria.

Therefore we use the variance which we will introduce now.

Variance

Var(x) =
∑n

i = 1
( yi − ȳ )

n − 1

Where yi are the single target feature values and ȳ is the mean of these target feature values.

Taking the example from above the total variance of the Prize_of_Sale target feature is calculated with:

Var(Price of Sale) =
( 100000 − 189375 )2 + ( 120000 − 189375 )2 + ( 250000 − 189375 )2 + ( 80000 − 189375 )2 + ( 220000 − 189375 )2 + ( 170000 − 189375

7

= 19.903125 ∗ 109 #Large Number ;) Though this has no effect on our calculations

Since we want to know which descriptive feature is best suited to split the target feature on, we have to
calculate the variance for each value of the descriptive feature with respect to the target feature values.
Hence for the Number_of_Rooms descriptive feature above we get for the single numbers of rooms:

Var(Number of Rooms = 1) =
( 80000 − 125000 )2 + ( 170000 − 125000 )2

1
= 4050000000

Var(Number of Rooms = 2) =
( 100000 − 98333.3 )2 + ( 120000 − 98333.3 )2 + ( 75000 − 98333.3 )2

2
= 508333333.3

Var(Number of Rooms = 3) = (220000 − 220000)2 = 0

Var(Number of Rooms = 4) =
( 250000 − 375000 )2 + ( 500000 − 375000 )2

1
= 31250000000

Since we now want to also address the issue that there are feature values which occur relatively rarely but
have a high variance (This could lead to a very high variance for the whole feature just because of one outliner
feature value even though the variance of all other feature values may be small) we address this by calculating
the weighted variance for each feature value with:
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WeightVar(Number of Rooms = 1) =
2

8
∗ 4050000000 = 1012500000

WeightVar(Number of Rooms = 2) =
2

8
∗ 508333333.3 = 190625000

WeightVar(Number of Rooms = 3) =
2

8
∗ 0 = 0

WeightVar(Number of Rooms = 4) =
2

8
∗ 31250000000 = 7812500000

Finally, we sum up these weighted variances to make an assessment about the feature as a whole:

SumVar(feature) = ∑value ∈ featureWeightVar(featurevalue)

Which is in our case:

1012500000 + 190625000 + 0 + 7812500000 = 9015625000

Putting all this together finally leads to the formula for the weighted feature variance which we will use at
each node in the splitting process to determine which feature we should choose to split our dataset on next.

feature[choose] = argminf ∈ features ∑l ∈ levels ( f )

| f = l |

| f |
∗ Var(t, f = l)

= argminf ∈ features ∑l ∈ levels ( f )

| f = l |

| f |
∗

∑n
i = 1

( ti − t̄ )2

n − 1

Here f denotes a single feature, l denotes the value of a feature (e.g Price == medium), t denotes the value of
the target feature in the subset where f=l.

Following this calculation specification we find the feature at each node to split our dataset on.
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To illustrate the process of splitting the dataset along the feature values of the lowest variance feature, we take
a simplified example of the UCI bike sharing dataset which we will use later on in the Regression Trees from
scratch with Python part of this chapter and calculate the variance for each feature to find the feature we
should use as root node.

import pandas as pd
df = pd.read_csv("data/day.csv",usecols=['season','holiday','weekd
ay','weathersit','cnt'])
df_example = df.sample(frac=0.012)

Drawing

Season

WeightVar(Season) =
1

9
∗ (79 − 79)2 +

5

9
∗

( 352 − 211.8 )2 + ( 421 − 211.8 )2 + ( 12 − 211.8 )2 + ( 162 − 211.8 )2 + ( 112 − 211.8 )2

4
+

1

9
∗ (161 −

= 16429.1

Weekday

WeightVar(Weekday) =
2

9
∗

( 109 − 94 )2 + ( 79 − 94 )2

1
+

2

9
∗

( 162 − 137 )2 + ( 112 − 137 )2

1
+

1

9
∗ (421 − 421)2 +

2

9
∗

( 161 − 86.5 )2 + ( 12 −

1

Weathersit

WeightVar(Weathersit) =
4

9
∗

( 421 − 174.2 )2 + ( 165 − 174.2 )2 + ( 12 − 174.2 )2 + ( 161 − 174.2 )2 + ( 112 − 174.2 )2

4
+

2

9
∗

( 352 − 230.5 )2 + ( 109 −

1

Since the Weekday feature has the lowest variance, this feature is used to split the dataset on and hence serves
as root node. Though due to random sampling, this example is not that robust (for instance there is no instance
with weekday == 3) it should convey the concept behind the data splitting using variance as splitting measure.
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ID3(D,Feature_Attributes,Target_Attr
ibutes,min_instances=5)

Create a root node r
Set r to the mean of the target feature values in D #######Cha

nged########
If num_instances <= min_instances :

return r
Else:

pass
If Feature_Attributes is empty:

return r
Else:

Att = Attribute from Feature_Attributes with the lowest we
ighted variance ########Changed########

r = Att
For values in Att:

Add a new node below r where node_values = (Att == val
ues)

Sub_D_values = (Att == values)
If Sub_D_values == empty:

Since we now have introduced the concept of how the
measure of variance can be used to split a dataset with a
continuous target feature, we will now adapt the pseudocode
for Classification Trees such that our tree model is able to
handle continuously scaled target feature values.

As stated above, there are two changes we have to make to
enable our tree model to handle continuously scaled target
feature values:

**1. We introduce an early stopping criteria where we say
that if the number of instances at a node is ≤ 5 (we can
adjust this value), return the mean target feature value of
these numbers**

**2. Instead of the information gain we use the variance of a
feature as our new splitting criteria**

Hence the pseudocode becomes:
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Add a leaf node l where l equals the mean of the t
arget values in D

Else:
add Sub_Tree with ID3(Sub_D_values,Feature_Attribu

tes = Feature_Attributes without Att, Target_Attributes,min_instan
ces=5)

In addition to the changes in the actual algorithm we also have to use another measure of accuracy because we
are no longer dealing with categorical target feature values. That is, we can no longer simply compare the
predicted classes with the real classes and calculate the percentage where we bang on the target. Instead we are
using the root mean square error (RMSE) to measure the "accuracy" of our model.

The equation for the RMSE is:

RMSE = √
∑n

i = i
( ti − Model ( testi ) )2

n

Where ti are the actual test target feature values of a test dataset and Model(testi) are the values predicted by

our trained regression tree model for these ti. In general, the lower the RMSE value, the better our model fits

the actual data.

Since we now have adapted our principal ID3 classification tree algorithm to handle continuously scaled target
features and therewith have made it to a regression tree model, we can start implementing these changes in
Python.
Therefore we simply take the classification tree model from the previous chapter and implement the two
changes mentioned above.
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R E G R E S S I O N  D E C I S I O N  T R E E S
F R O M  S C R A T C H  I N  P Y T H O N

As announced for the implementation of our regression tree model we will use the UCI bike sharing dataset
where we will use all 731 instances as well as a subset of the original 16 attributes. As attributes we use the
features: {'season', 'holiday', 'weekday', 'workingday', 'wheathersit', 'cnt'} where the {'cnt'} feature serves as
our target feature and represents the number of total rented bikes per day.
The first five rows of the dataset look as follows:

import pandas as pd
dataset = pd.read_csv("data/day.csv",usecols=['season','holida
y','weekday','workingday','weathersit','cnt'])
dataset.sample(frac=1).head()

We will now start adapting the originally created classification algorithm. For further comments to the code I
refer the reader to the previous chapter about Classification Trees.

"""
Make the imports of python packages needed
"""
import pandas as pd
import numpy as np
from pprint import pprint
import matplotlib.pyplot as plt

Output: :

season holiday weekday workingday weathersit cnt

458 2 0 2 1 1 6772

245 3 0 6 0 1 4484

86 2 0 1 1 1 2028

333 4 0 3 1 1 3613

507 2 0 2 1 2 6073
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from matplotlib import style
style.use("fivethirtyeight")

#Import the dataset and define the feature and target columns#
dataset = pd.read_csv("data/day.csv",usecols=['season','holida
y','weekday','workingday','weathersit','cnt']).sample(frac=1)

mean_data = np.mean(dataset.iloc[:,-1])

##################################################################
#########################################
##################################################################
#########################################

"""
Calculate the varaince of a dataset
This function takes three arguments.
1. data = The dataset for whose feature the variance should be cal
culated
2. split_attribute_name = the name of the feature for which the we
ighted variance should be calculated
3. target_name = the name of the target feature. The default for t
his example is "cnt"
"""

def var(data,split_attribute_name,target_name="cnt"):

feature_values = np.unique(data[split_attribute_name])
feature_variance = 0
for value in feature_values:

#Create the data subsets --> Split the original data alon
g the values of the split_attribute_name feature

# and reset the index to not run into an error while usin
g the df.loc[] operation below

subset = data.query('{0}=={1}'.format(split_attribute_nam
e,value)).reset_index()

#Calculate the weighted variance of each subse
t

value_var = (len(subset)/len(data))*np.var(subset[target_n
ame],ddof=1)

#Calculate the weighted variance of the feature
feature_variance+=value_var

return feature_variance

REGRESSION DECISION TREES FROM SCRATCH IN PYTHON 428



##################################################################
#########################################
##################################################################
#########################################
def Classification(data,originaldata,features,min_instances,targe
t_attribute_name,parent_node_class = None):

"""
Classification Algorithm: This function takes the same 5 param

eters as the original classification algorithm in the
previous chapter plus one parameter (min_instances) which defi

nes the number of minimal instances
per node as early stopping criterion.
"""
#Define the stopping criteria --> If one of this is satisfie

d, we want to return a leaf node#

#########This criterion is new########################
#If all target_values have the same value, return the mean val

ue of the target feature for this dataset
if len(data) <= int(min_instances):

return np.mean(data[target_attribute_name])
#######################################################

#If the dataset is empty, return the mean target feature valu
e in the original dataset

elif len(data)==0:
return np.mean(originaldata[target_attribute_name])

#If the feature space is empty, return the mean target featur
e value of the direct parent node --> Note that

#the direct parent node is that node which has called the curr
ent run of the algorithm and hence

#the mean target feature value is stored in the parent_node_cl
ass variable.

elif len(features) ==0:
return parent_node_class

#If none of the above holds true, grow the tree!

else:
#Set the default value for this node --> The mean target f

eature value of the current node
parent_node_class = np.mean(data[target_attribute_name])
#Select the feature which best splits the dataset
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item_values = [var(data,feature) for feature in features]
#Return the variance for features in the dataset

best_feature_index = np.argmin(item_values)
best_feature = features[best_feature_index]

#Create the tree structure. The root gets the name of the
feature (best_feature) with the minimum variance.

tree = {best_feature:{}}

#Remove the feature with the lowest variance from the feat
ure space

features = [i for i in features if i != best_feature]

#Grow a branch under the root node for each possible valu
e of the root node feature

for value in np.unique(data[best_feature]):
value = value
#Split the dataset along the value of the feature wit

h the lowest variance and therewith create sub_datasets
sub_data = data.where(data[best_feature] == value).dro

pna()

#Call the Calssification algorithm for each of those s
ub_datasets with the new parameters --> Here the recursion comes i
n!

subtree = Classification(sub_data,originaldata,feature
s,min_instances,'cnt',parent_node_class = parent_node_class)

#Add the sub tree, grown from the sub_dataset to the t
ree under the root node

tree[best_feature][value] = subtree

return tree

##################################################################
#########################################
##################################################################
#########################################
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"""
Predict query instances
"""

def predict(query,tree,default = mean_data):
for key in list(query.keys()):

if key in list(tree.keys()):
try:

result = tree[key][query[key]]
except:

return default
result = tree[key][query[key]]
if isinstance(result,dict):

return predict(query,result)
else:

return result

##################################################################
#########################################
##################################################################
#########################################

"""
Create a training as well as a testing set
"""
def train_test_split(dataset):

training_data = dataset.iloc[:int(0.7*len(dataset))].reset_ind
ex(drop=True)#We drop the index respectively relabel the index

#starting form 0, because we do not want to run into errors re
garding the row labels / indexes

testing_data = dataset.iloc[int(0.7*len(dataset)):].reset_inde
x(drop=True)

return training_data,testing_data
training_data = train_test_split(dataset)[0]
testing_data = train_test_split(dataset)[1]

##################################################################
#########################################
##################################################################
#########################################

"""
Compute the RMSE
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"""
def test(data,tree):

#Create new query instances by simply removing the target feat
ure column from the original dataset and

#convert it to a dictionary
queries = data.iloc[:,:-1].to_dict(orient = "records")

#Create a empty DataFrame in whose columns the prediction of t
he tree are stored

predicted = []
#Calculate the RMSE
for i in range(len(data)):

predicted.append(predict(queries[i],tree,mean_data))
RMSE = np.sqrt(np.sum(((data.iloc[:,-1]-predicted)**2)/len(dat

a)))
return RMSE

##################################################################
#########################################
##################################################################
#########################################

"""
Train the tree, Print the tree and predict the accuracy
"""
tree = Classification(training_data,training_data,training_data.co
lumns[:-1],5,'cnt')
pprint(tree)
print('#'*50)
print('Root mean square error (RMSE): ',test(testing_data,tree))
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{'season': {1: {'weathersit': {1.0: {'workingday': {0.0: {'holiday': {0.0: {'weekday':
{0.0: 2398.1071428571427,

6.0: 2398.1071428571427}},
1.0: 2540.0}},

1.0: {'holiday': {0.0: {'weekday':
{1.0: 3284.28,

2.0: 3284.28,

3.0: 3284.28,

4.0: 3284.28,

5.0: 3284.28}}}}}},
2.0: {'holiday': {0.0: {'weekday': {0.0: 2586.8,

1.0: 2183.66666666666
65,

2.0: {'workingday':
{1.0: 2140.6666666666665}},

3.0: {'workingday':
{1.0: 2049.0}},

4.0: {'workingday':
{1.0: 3105.714285714286}},

5.0: {'workingday':
{1.0: 2844.5454545454545}},

6.0: {'workingday':
{0.0: 1757.111111111111}}}},

1.0: 1040.0}},
3.0: 473.5}},

2: {'weathersit': {1.0: {'workingday': {0.0: {'weekday': {0.0: {'holiday':
{0.0: 5728.2}},

1.0: 5503.66666666
6667,

5.0: 3126.0,
6.0: {'holiday':

{0.0: 6206.142857142857}}}},
1.0: {'holiday': {0.0: {'weekday':

{1.0: 5340.06,

2.0: 5340.06,

3.0: 5340.06,

4.0: 5340.06,
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5.0: 5340.06}}}}}},
2.0: {'holiday': {0.0: {'workingday': {0.0: {'weekday':

{0.0: 4737.0,

6.0: 4349.7692307692305}},
1.0: {'weekday':

{1.0: 4446.294117647059,

2.0: 4446.294117647059,

3.0: 4446.294117647059,

4.0: 4446.294117647059,

5.0: 5975.333333333333}}}}}},
3.0: 1169.0}},

3: {'weathersit': {1.0: {'holiday': {0.0: {'workingday': {0.0: {'weekday':
{0.0: 5715.0,

6.0: 5715.0}},
1.0: {'weekday':

{1.0: 6148.342857142857,

2.0: 6148.342857142857,

3.0: 6148.342857142857,

4.0: 6148.342857142857,

5.0: 6148.342857142857}}}},
1.0: 7403.0}},

2.0: {'workingday': {0.0: {'holiday': {0.0: {'weekday':
{0.0: 4537.5,

6.0: 5028.8}},
1.0: 4697.0}},

1.0: {'holiday': {0.0: {'weekday':
{1.0: 6745.25,

2.0: 5222.4,

3.0: 5554.0,

4.0: 4580.0,

5.0: 5389.409090909091}}}}}},
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Above we can see RMSE for a minimum number of 5 instances per node. But for the time being, we have no
idea how bad or good that is. To get a feeling about the "accuracy" of our model we can plot kind of a learning
curve where we plot the number of minimal instances against the RMSE.

"""
Plot the RMSE with respect to the minimum number of instances
"""
fig = plt.figure()
ax0 = fig.add_subplot(111)

RMSE_test = []
RMSE_train = []
for i in range(1,100):

tree = Classification(training_data,training_data,training_dat

3.0: 2276.0}},
4: {'weathersit': {1.0: {'holiday': {0.0: {'workingday': {0.0: {'weekday':

{0.0: 4974.772727272727,

6.0: 4974.772727272727}},
1.0: {'weekday':

{1.0: 5174.906976744186,

2.0: 5174.906976744186,

3.0: 5174.906976744186,

4.0: 5174.906976744186,

5.0: 5174.906976744186}}}},
1.0: 3101.25}},

2.0: {'weekday': {0.0: 3795.6666666666665,
1.0: 4536.0,
2.0: {'holiday': {0.0: {'workingday':

{1.0: 4440.875}}}},
3.0: 5446.4,
4.0: 5888.4,
5.0: 5773.6,
6.0: 4215.8}},

3.0: {'weekday': {1.0: 1393.5,
2.0: 2946.6666666666665,
3.0: 1840.5,
6.0: 627.0}}}}}}

##################################################
Root mean square error (RMSE):  1623.9891244058906
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a.columns[:-1],i,'cnt')
RMSE_test.append(test(testing_data,tree))
RMSE_train.append(test(training_data,tree))

ax0.plot(range(1,100),RMSE_test,label='Test_Data')
ax0.plot(range(1,100),RMSE_train,label='Train_Data')
ax0.legend()
ax0.set_title('RMSE with respect to the minumim number of instance
s per node')
ax0.set_xlabel('#Instances')
ax0.set_ylabel('RMSE')
plt.show()

As we can see, increasing the minimum number of instances per node leads to a lower RMSE of our test data
until we reach approximately the number of 50 instances per node. Here the Test_Data curve kind of flattens
out and an additional increase in the minimum number of instances per leaf does not dramatically decrease the
RMSE of our testing set.

Lets plot the tree with a minimum instance number of 50.

tree = Classification(training_data,training_data,training_data.co
lumns[:-1],50,'cnt')
pprint(tree)
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So thats our final regression tree model. Congratulations - Done!

{'season': {1: {'weathersit': {1.0: {'workingday': {0.0: 2407.5666666666666,
1.0: 3284.28}},

2.0: 2331.74,
3.0: 473.5}},

2: {'weathersit': {1.0: {'workingday': {0.0: 5850.178571428572,
1.0: 5340.06}},

2.0: 4419.595744680851,
3.0: 1169.0}},

3: {'weathersit': {1.0: {'holiday': {0.0: {'workingday': {0.0: 5715.0,
1.0: {'weekday':

{1.0: 5996.090909090909,

2.0: 6093.058823529412,

3.0: 6043.6,

4.0: 6538.428571428572,

5.0: 6050.2307692307695}}}},
1.0: 7403.0}},

2.0: 5242.617647058823,
3.0: 2276.0}},

4: {'weathersit': {1.0: {'holiday': {0.0: {'workingday': {0.0: 4974.77272727
2727,

1.0: 5174.90697674
4186}},

1.0: 3101.25}},
2.0: 4894.861111111111,
3.0: 1961.6}}}}

REGRESSION DECISION TREES FROM SCRATCH IN PYTHON 437



R E G R E S S I O N  T R E E S  I N  S K L E A R N

Since we have now build a Regression Tree model from scratch we will use sklearn's prepackaged Regression
Tree model sklearn.tree.DecisionTreeRegressor. The procedure follows the general sklearn API and is as
always:

1. Import the model
2. Parametrize the model
3. Preprocess the data and create a descriptive feature set as well as a target feature set
4. Train the model
5. Predict new query instances

For convenience we will use the training and testing data from above.

#Import the regression tree model
from sklearn.tree import DecisionTreeRegressor

#Parametrize the model
#We will use the mean squered error == varince as spliting criteri
a and set the minimum number
#of instances per leaf = 5
regression_model = DecisionTreeRegressor(criterion="mse",min_sampl
es_leaf=5)

#Fit the model
regression_model.fit(training_data.iloc[:,:-1],training_data.ilo
c[:,-1:])

#Predict unseen query instances
predicted = regression_model.predict(testing_data.iloc[:,:-1])

#Compute and plot the RMSE

RMSE = np.sqrt(np.sum(((testing_data.iloc[:,-1]-predicted)**2)/le
n(testing_data.iloc[:,-1])))
RMSE

With a parameterized minimum number of 5 instances per leaf node, we get nearly the same RMSE as with

Output: : 1592.7501629176463
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our own built model above. Also for this model we will plot the RMSE against the minimum number of
instances per leaf node to evaluate the minimum number of instances parameter which yields the minimum
RMSE.

"""
Plot the RMSE with respect to the minimum number of instances
"""
fig = plt.figure()
ax0 = fig.add_subplot(111)

RMSE_train = []
RMSE_test = []

for i in range(1,100):
#Paramterize the model and let i be the number of minimum inst

ances per leaf node
regression_model = DecisionTreeRegressor(criterion="mse",min_s

amples_leaf=i)
#Train the model
regression_model.fit(training_data.iloc[:,:-1],training_data.i

loc[:,-1:])
#Predict query instances
predicted_train = regression_model.predict(training_data.ilo

c[:,:-1])
predicted_test = regression_model.predict(testing_data.ilo

c[:,:-1])
#Calculate and append the RMSEs
RMSE_train.append(np.sqrt(np.sum(((training_data.iloc[:,-1]-pr

edicted_train)**2)/len(training_data.iloc[:,-1]))))
RMSE_test.append(np.sqrt(np.sum(((testing_data.iloc[:,-1]-pred

icted_test)**2)/len(testing_data.iloc[:,-1]))))

ax0.plot(range(1,100),RMSE_test,label='Test_Data')
ax0.plot(range(1,100),RMSE_train,label='Train_Data')
ax0.legend()
ax0.set_title('RMSE with respect to the minumim number of instance
s per node')
ax0.set_xlabel('#Instances')
ax0.set_ylabel('RMSE')
plt.show()
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Using sklearns prepackaged regression tree model yields a minimum RMSE with ≈ 10 instances per node.
Though, the values for the minimum RMSE with respect to the number of instances are ≈ the same as
computed with our own created model. Additionally, the RMSE of sklearns decision tree model also flattens
out for large numbers of instances per node.

References:

• https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-
in-python/

• http://nbviewer.jupyter.org/gist/jwdink/9715a1a30e8c7f50a572
• John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, 2015. Machine Learning for Predictiive

Data Analytics. Cambridge, Massachusetts: The MIT Press.
• Lior Rokach, Oded Maimon, 2015. Data Mining with Decision Trees. 2nd Ed. Ben-Gurion,

Israel, Tel-Aviv, Israel: Wolrd Scientific.
• Tom M. Mitchel, 1997. Machine Learning. New York, NY, USA: McGraw-Hill.
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R A N D O M  F O R E S T S

WHAT ARE RANDOM FORESTS

Tree models are known to be high
variance, low bias models. In
consequence, they are prone to overfit the
training data. This is catchy if we
recapitulate what a tree model does if we
do not prune it or introduce early stopping
criteria like a minimum number of
instances per leaf node. Well, it tries to
split the data along the features until the
instances are pure regarding the value of
the target feature, there are no data left, or
there are no features left to spit the dataset
on. If one of the above holds true, we grow
a leaf node. The consequence is that the
tree model is grown to the maximal depth
and therewith tries to reshape the training
data as precise as possible which can easily lead to overfitting. Another drawback of classical tree models like
the (ID3 or CART) is that they are relatively unstable. This instability can lead to the situation that a small
change in the composition of the dataset leads to a completely different tree model.

For instance, consider the case where a categorically scaled feature *A* is used as the "root node feature".
Following, this feature is replaced from the dataset an no longer existent in the sub trees. Now imagine the
situation where we replace a single row in the dataset and this change leads to the situation that now feature
*B* has the largest information gain or reduction in variance respectively. What does that mean? Well, feature
*B* is now preferred over feature *A* as "root node feature" which leads to a completely different tree just
because we have altered one single instance in the dataset. This situation may not only occur at the root node
but also at all interior nodes of the tree.

Note that in the picture above, the "X" in the target feature column are proposed to be wildcards for the actual
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values. The Random Forest approach has proven to be one of the most useful ways to address the issues of
overfitting and instability.

The Random Forest approach is based on two concepts, called bagging and subspace sampling. Bagging is the
short form for *bootstrap aggregation*. Here we create a multitude of datasets of the same length as the original
dataset drawn from the original dataset with replacement (the *bootstrap* in bagging). We then train a tree
model for each of the bootstrapped datasets and take the majority prediction of these models for a unseen query
instance as our prediction (the *aggregation* in bagging). Here we take the mean or the median for regression
tree models and the mode for classification tree models.
You may ask why we draw samples with replacement? Well, let us assume our original dataset has 100 instances
(rows) and we want to create a Random Forest model consisting of 10 trees where each tree is trained on a
dataset of the same length as the original dataset. If we now draw 100 samples from our original dataset without
replacement, what will happen? Exactly, nothing since we have figuratively speaking simply shifted the dataset
from one container into another. If we do this 10 times and train one tree model on each data set, we will get 10
times the exact same dataset (assuming the same model parameters). If we now predict a unseen query instance
and average the outcome of the 10 tree models, that is run the random forest procedure, we have nothing won.
This brings us back to our initial question why we use the bagging approach? We use the bagging approach
(remember the resampling) because we know that the single tree models are very sensitive to changes in the
data and have large variances. To address this issue we create multiple models on differently composed datasets
and take the average of their predictions. Here we apply the principle that averaging the variance of multiple
models reduces the variance.

We can illustrate this in simplified terms by a gunman which represents the different tree models and is shooting
on a target from a relatively large distance. Hence a small movement of the rifle (our dataset) will lead to
completely different scores (Output of our model). But averaging the scores hits the bulls eye. This is meant by

the variance of the average is less than the variance of the single models (Var(X̄) =
σ2

n
where σ2 = Var(X))).

The second concept on which the Random Forest approach is based on, is the concept of subspace sampling.
Bagging advanced us towards our goal of having a more powerful model creating more accurate results.
Unfortunately it turns out that the bagged models are correlated and hence often relatively equal. That is, based
on the correlation they produce similar results. This can be reduced to the fact that the bagging is using the
whole feature set (all the descriptive features) for each model. Now assume that there are one or two very strong
features which surmounts all the others (e.g. the information gain is much much larger for these two features
as for the others) in terms of "predictiveness". Even if we change the composition of the data by sampling with
replacement, these two are likely to remain the dominant features and hence will serve as the root node or the
first hidden node layer respectively. In consequence, the trees look all quite similar.
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Now it turns out that it is possible that there are structures hidden in data which get lost if we use pure bagging.
To evoke these hidden structures we must reinforce other than those two strong features to give them a voice to
vote. How can we do that? Well, the simplest approach is to just move those two from our dataset. Obviously
this is no good idea since we want to have them but also want to consider and incorporate the voice (votes)
of the not so dominant features. To make a long story short, we do this by randomly drawing a number of
m ⊂ p different features for each split in the trees where p denotes the feature space at each split. Here the
literature recommends m = √p.The combination of the bagging and the subspace sampling gives us the desired

Random Forest model whose mystery is the assumption that a large number of weak learners are better in terms
of prediction accuracy than one strong learner - or why do you think that the "ask the audience lifeline" is set
as a lifeline in the *who wants to be the millionaire* show?? -. **Done - Congratulations! you now know the
concept behind random forest.** which are among the most powerful machine learning algorithms.

THE MATHS BEHIND RANDOM FORESTS
Luckily there is mostly no such thing as a "Random Forest" specific math which we haven't seen before.
The underlying maths is in principle the same as for [Classification-](https://www.python-course.eu/
Decision_Trees.php) and [Regression-Trees](https://www.python-course.eu/Regression_Trees.php).
The main difference with Random Forests is that we do all the step we have done at Decision- and Regression
Trees multiple times. That is, we grow a multitude of trees, let them make decisions and aggregate these
decisions by taking the most frequently (mode) decision if we have a categorically scaled target feature and
the mean or the median if we have a continuously scaled target feature. Hence for a categorically scaled target
feature: argmaxt ∈ T treemodels where argmax stands for the mode (majority vote), t represents the outcome
(prediction) of a single tree model, T is the result space created by the tree models (all outcomes) and treemodels
are the single tree models where each produces a outcome t. Hence the most frequently occurring outcome
t ∈ T is returned as prediction.

RANDOM FOREST PSEUDOCODE
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Tree_Outcomes = [] For i=1 to n: Create a bootstrap sample from the original data Train a tree-model on this
bootstrap data using the common stopping criteria where: For each split: subspace sample a number of
m=sqrt(p) features from the feature space p at this node Choose the best feature (highest IG, lowest variance)
to split the data on Split the data along the feature Remove the feature Add the outcome of each tree to the
Tree_Outcomes Random_Forest_Outcome = Majority vote (mode) of the elements in Tree_Outcomes # For
Classification Random_Forest_Outcome = Majority vore (mean/median) of the elements in Tree_Outcomes #
For Regression Return Random_Forest_Outcome

As stated above, the Random Forest algorithm is based on a combination of the principles of bootstrap
aggregation and subspace sampling. Hence:

RANDOM FORESTS FROM SCRATCH WITH PYTHON
Luckily for a Random Forest classification model we can use most of the Classification Tree code created in
the [Classification Tree](https://www.python-course.eu/Decision_Trees.php) chapter (The same holds true for
Random Forest regression models). The only real change we have to implement in the actual tree-building code
is that we use at each split a random feature sample of size m = √p where p denotes the feature space at this

node. All other changes are made "around" the tree building code. That is, from a code perspective, the Random
Forest is created by giving the tree-code kind of a nice "super hero suite".
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The third change we have to implement is that the Random Forest model actually can not be visualized like a
normal tree model and hence the visualization part is obsolete event though, internally each tree is build and
we actually could plot each single tree to reason the decision of the Random Forest model. Though, this is not
useful when the number of tree models grows to the hundreds or thousands.
The forth change is that we have to add a list in which the predictions of the single tree models are stored to
finally return the mode value of that list as prediction.
Here, only the changes in the tree-building code due to the creation of the Random Forest are commented.
For further comments on the tree-building code itself, the reader is referred to the [Classification
Tree](https://www.python-course.eu/Decision_Trees.php) chapter. For the sake of visualization we will use the
[UCI mushroom dataset](https://archive.ics.uci.edu/ml/datasets/mushroom) here.

"""
Make the imports of python packages needed
"""
import pandas as pd
import numpy as np
from pprint import pprint
import scipy.stats as sps

dataset = pd.read_csv('data\mushroom.csv',header=None)
dataset = dataset.sample(frac=1)
dataset.columns = ['target','cap-shape','cap-surface','cap-colo
r','bruises','odor','gill-attachment','gill-spacing',

'gill-size','gill-color','stalk-shape','stalk-roo
t','stalk-surface-above-ring','stalk-surface-below-ring','stalk-co
lor-above-ring',

'stalk-color-below-ring','veil-type','veil-color','ri
ng-number','ring-type','spore-print-color','population',

'habitat']

##################################################################
#########################################
##################################################################
#########################################

def entropy(target_col):
elements,counts = np.unique(target_col,return_counts = True)
entropy = np.sum([(-counts[i]/np.sum(counts))*np.log2(count

s[i]/np.sum(counts)) for i in range(len(elements))])
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return entropy

##################################################################
#########################################
##################################################################
#########################################

def InfoGain(data,split_attribute_name,target_name="target"):

#Calculate the entropy of the total dataset
total_entropy = entropy(data[target_name])

##Calculate the entropy of the dataset

#Calculate the values and the corresponding counts for the spl
it attribute

vals,counts= np.unique(data[split_attribute_name],return_count
s=True)

#Calculate the weighted entropy
Weighted_Entropy = np.sum([(counts[i]/np.sum(counts))*entrop

y(data.where(data[split_attribute_name]==vals[i]).dropna()[targe
t_name]) for i in range(len(vals))])

#Calculate the information gain
Information_Gain = total_entropy - Weighted_Entropy
return Information_Gain

##################################################################
#########################################
##################################################################
#########################################

def ID3(data,originaldata,features,target_attribute_name="targe
t",parent_node_class = None):

#Define the stopping criteria --> If one of this is satisfie
d, we want to return a leaf node#

#If all target_values have the same value, return this value
if len(np.unique(data[target_attribute_name])) <= 1:

return np.unique(data[target_attribute_name])[0]
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#If the dataset is empty, return the mode target feature valu
e in the original dataset

elif len(data)==0:
return np.unique(originaldata[target_attribute_name])[np.a

rgmax(np.unique(originaldata[target_attribute_name],return_count
s=True)[1])]

#If the feature space is empty, return the mode target featur
e value of the direct parent node --> Note that

#the direct parent node is that node which has called the curr
ent run of the ID3 algorithm and hence

#the mode target feature value is stored in the parent_node_cl
ass variable.

elif len(features) ==0:
return parent_node_class

#If none of the above holds true, grow the tree!

else:
#Set the default value for this node --> The mode target f

eature value of the current node
parent_node_class = np.unique(data[target_attribute_nam

e])[np.argmax(np.unique(data[target_attribute_name],return_count
s=True)[1])]

##################################################################
##############################################

############!!!!!!!!!Implement the subspace sampling. Dra
w a number of m = sqrt(p) features!!!!!!!!#############

##################################################################
#############################################

features = np.random.choice(features,size=np.int(np.sqrt(l
en(features))),replace=False)

#Select the feature which best splits the dataset
item_values = [InfoGain(data,feature,target_attribute_nam

e) for feature in features] #Return the information gain values fo
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r the features in the dataset
best_feature_index = np.argmax(item_values)
best_feature = features[best_feature_index]

#Create the tree structure. The root gets the name of the
feature (best_feature) with the maximum information

#gain in the first run
tree = {best_feature:{}}

#Remove the feature with the best inforamtion gain from th
e feature space

features = [i for i in features if i != best_feature]

#Grow a branch under the root node for each possible valu
e of the root node feature

for value in np.unique(data[best_feature]):
value = value
#Split the dataset along the value of the feature wit

h the largest information gain and therwith create sub_datasets
sub_data = data.where(data[best_feature] == value).dro

pna()

#Call the ID3 algorithm for each of those sub_dataset
s with the new parameters --> Here the recursion comes in!

subtree = ID3(sub_data,dataset,features,target_attribu
te_name,parent_node_class)

#Add the sub tree, grown from the sub_dataset to the t
ree under the root node

tree[best_feature][value] = subtree

return(tree)

##################################################################
#########################################
##################################################################
#########################################

def predict(query,tree,default = 'p'):

for key in list(query.keys()):
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if key in list(tree.keys()):
try:

result = tree[key][query[key]]
except:

return default
result = tree[key][query[key]]
if isinstance(result,dict):

return predict(query,result)

else:
return result

##################################################################
#########################################
##################################################################
#########################################

def train_test_split(dataset):
training_data = dataset.iloc[:round(0.75*len(dataset))].rese

t_index(drop=True)#We drop the index respectively relabel the inde
x

#starting form 0, because we do not want to run into errors re
garding the row labels / indexes

testing_data = dataset.iloc[round(0.75*len(dataset)):].reset_i
ndex(drop=True)

return training_data,testing_data

training_data = train_test_split(dataset)[0]
testing_data = train_test_split(dataset)[1]

##################################################################
#########################################
##################################################################
#########################################

#######Train the Random Forest model###########
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def RandomForest_Train(dataset,number_of_Trees):
#Create a list in which the single forests are stored
random_forest_sub_tree = []

#Create a number of n models
for i in range(number_of_Trees):

#Create a number of bootstrap sampled datasets from the or
iginal dataset

bootstrap_sample = dataset.sample(frac=1,replace=True)
#Create a training and a testing datset by calling the tra

in_test_split function
bootstrap_training_data = train_test_split(bootstrap_sampl

e)[0]
bootstrap_testing_data = train_test_split(bootstrap_sampl

e)[1]

#Grow a tree model for each of the training data
#We implement the subspace sampling in the ID3 algorithm i

tself. Hence take a look at the ID3 algorithm above!
random_forest_sub_tree.append(ID3(bootstrap_training_dat

a,bootstrap_training_data,bootstrap_training_data.drop(labels=['ta
rget'],axis=1).columns))

return random_forest_sub_tree

random_forest = RandomForest_Train(dataset,50)

#######Predict a new query instance###########
def RandomForest_Predict(query,random_forest,default='p'):

predictions = []
for tree in random_forest:

predictions.append(predict(query,tree,default))
return sps.mode(predictions)[0][0]

query = testing_data.iloc[0,:].drop('target').to_dict()
query_target = testing_data.iloc[0,0]
print('target: ',query_target)
prediction = RandomForest_Predict(query,random_forest)
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print('prediction: ',prediction)

#######Test the model on the testing data and return the accurac
y###########
def RandomForest_Test(data,random_forest):

data['predictions'] = None
for i in range(len(data)):

query = data.iloc[i,:].drop('target').to_dict()
data.loc[i,'predictions'] = RandomForest_Predict(query,ran

dom_forest,default='p')
accuracy = sum(data['predictions'] == data['target'])/len(dat

a)*100
#print('The prediction accuracy is: ',sum(data['predictions']

== data['target'])/len(data)*100,'%')
return accuracy

RandomForest_Test(testing_data,random_forest)

##################################################################
############################################
##########Plot the prediction accuracy with respect to the number
of Trees in the random forests#############
##################################################################
############################################
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')

fig = plt.figure(figsize=(15,10))

target:  e
prediction:  e
c:\users\tobia\python\lib\site-packages\scipy\stats\stats.py:245:
RuntimeWarning: The input array could not be properly checked for
nan values. nan values will be ignored.

"values. nan values will be ignored.", RuntimeWarning)
The prediction accuracy is:  88.72476612506155 %

Output:: 88.72476612506155
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ax0 = fig.add_subplot(111)

accuracy = []

for i in range(1,11,1):
random_forest = RandomForest_Train(dataset,i)
accuracy.append(RandomForest_Test(testing_data,random_forest))

for i in range(10,110,10):
random_forest = RandomForest_Train(dataset,i)
accuracy.append(RandomForest_Test(testing_data,random_forest))

for i in range(100,1100,100):
random_forest = RandomForest_Train(dataset,i)
accuracy.append(RandomForest_Test(testing_data,random_forest))

print(accuracy)
ax0.plot(np.logspace(0,3,30),accuracy)
ax0.set_yticks(np.linspace(50,100,50))
ax0.set_title("Accuracy with respect to the numer of trees in the
random forest")
ax0.set_xscale('log')
ax0.set_xlabel("Number of Trees")
ax0.set_ylabel('Accuracy(%)')

plt.show()
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c:\users\tobia\python\lib\site-packages\scipy\stats\stats.py:245:
RuntimeWarning: The input array could not be properly checked for
nan values. nan values will be ignored.

"values. nan values will be ignored.", RuntimeWarning)
The prediction accuracy is:  78.72968980797637 %
The prediction accuracy is:  76.71097981290005 %
The prediction accuracy is:  82.7178729689808 %
The prediction accuracy is:  92.66371245691778 %
The prediction accuracy is:  88.13392417528311 %
The prediction accuracy is:  90.00492368291482 %
The prediction accuracy is:  89.51255539143278 %
The prediction accuracy is:  89.51255539143278 %
The prediction accuracy is:  85.37666174298376 %
The prediction accuracy is:  88.33087149187593 %
The prediction accuracy is:  80.20679468242245 %
The prediction accuracy is:  89.85721319547021 %
The prediction accuracy is:  89.75873953717381 %
The prediction accuracy is:  89.561792220581 %
The prediction accuracy is:  90.15263417035942 %
The prediction accuracy is:  89.75873953717381 %
The prediction accuracy is:  92.31905465288035 %
The prediction accuracy is:  88.87247661250616 %
The prediction accuracy is:  90.98966026587888 %
The prediction accuracy is:  89.36484490398819 %
The prediction accuracy is:  89.6110290497292 %
The prediction accuracy is:  89.75873953717381 %
The prediction accuracy is:  89.6602658788774 %
The prediction accuracy is:  90.15263417035942 %
The prediction accuracy is:  89.90645002461841 %
The prediction accuracy is:  90.15263417035942 %
The prediction accuracy is:  89.7095027080256 %
The prediction accuracy is:  90.00492368291482 %
The prediction accuracy is:  89.51255539143278 %
The prediction accuracy is:  90.15263417035942 %
[78.72968980797637, 76.71097981290005, 82.7178729689808, 92.663712
45691778, 88.13392417528311, 90.00492368291482, 89.5125553914327
8, 89.51255539143278, 85.37666174298376, 88.33087149187593, 80.206
79468242245, 89.85721319547021, 89.75873953717381, 89.56179222058
1, 90.15263417035942, 89.75873953717381, 92.31905465288035, 88.872
47661250616, 90.98966026587888, 89.36484490398819, 89.611029049729
2, 89.75873953717381, 89.6602658788774, 90.15263417035942, 89.9064
5002461841, 90.15263417035942, 89.7095027080256, 90.0049236829148
2, 89.51255539143278, 90.15263417035942]
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Given the dataset and this kind of model we achieve an accuracy of about 90% which is quite good considering
that our model is "hard coded from scratch" and neither a highly optimized nor robust Random Forest model.
We also have not altered the number of randomly selected features *m* per split which is also a parameter
which can have an effect on the prediction accuracy.
As we can see, the accuracy curve flattens out once the number of trees grows to large n (mind the logarithmic
scaled x-axis). Though Random Forest modelS are said to kind of "cannot overfit the data" a further increase
in the number of trees will not further increase the accuracy of the model. Nevertheless, one drawback of
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Random Forest models is that they take relatively long to train especially if the number of trees is set to a very
high number. Irrespective of this drawback, for instance Caruana and Niculescu-Mizil 2006 *(An Empirical
Comparison of Supervised Learning Algorithms)* have shown that Random Forest models often have very
good predictive accuracy compared to other supervised learning algorithms.

RANDOM FORESTS USING SKLEARN

we will now use the prepackaged sklearn Random Forest classification model RandomForestClassifier.

from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_validate

#Encode the feature values which are strings to integers
for label in dataset.columns:

dataset[label] = LabelEncoder().fit(dataset[label]).transfor
m(dataset[label])

X = dataset.drop(['target'],axis=1)
Y = dataset['target']

#Instantiate the model with 100 trees and entropy as splitting cri
teria
Random_Forest_model = RandomForestClassifier(n_estimators=100,crit
erion="entropy")

#Cross validation
accuracy = cross_validate(Random_Forest_model,X,Y,cv=10)['test_sco
re']
print('The accuracy is: ',sum(accuracy)/len(accuracy)*100,'%')

Well, Bull's eye!
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The accuracy is:  100.0 %
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B O O S T I N G

WHAT IS BOOSTING

We will close the tree chapter with an algorithm called *Boosting*. Besides Random Forests, *Boosting* is
another powerful approach to increase the predictive power of classical decision and regression tree models.
The Boosting algorithm itself can strictly speaking neither learn nor predict anything since it is build kind of
on top of some other (weak) algorithm. The Boosting algorithm is called a "meta algorithm". The Boosting
approach can (as well as the bootstrapping approach), be applied, in principle, to any classification or regression
algorithm but it turned out that tree models are especially suited. The accuracy of boosted trees turned out to
be equivalent to Random Forests with respect and even often outperforms the latter (see for instance Caruana
and Niculescu-Mizil (2008)(*An Empirical Comparison of Supervised Learning Algorithms*)). Hastie et al.
(2009) call boosted decision trees the "best off-the-shelf classifier of the world" (Hastie et al. 2006 p.340). The
mystic behind Boosting is in principal the same as for Random Forest models *-A bunch of weak learners
which performs just slightly better than random guessing can be combined to make better predictions than one
strong learner-*. Though, the process how these weak learners are created differs.
Recapitulate, that during the creation of our Random Forest model we used the concept of Bagging. During
Bagging we have grown a number of *M* trees where each was build on a random sample (allowing
resampling) of the original dataset where the random sample had the same length as the original dataset but
comprises only a randomly drawn subset of the total feature space. After we have created theses models,
we let them make a majority vote to make our final decision. The quintessence is that each tree model is
created independent from the outcomes of the other tree models. That is, the "shape" of the tree model is only
influenced by the "shape" of the underlying data which in turn is only influenced by chance (*sampling with
resampling*). The main difference in the creation of bagged trees using bootstrap aggregation and boosted
trees using boosting is that we now replace the (random) resampling by some kind of *weighting* where we

allocate the instances with weights and the weights of the *nth* tree depends on the results returned by the

previously created (nth − 1) tree model. Hence, different from the Random Forest approach where we created an
ensemble of tree models in parallel, we now create the ensemble in sequence, where the set up of the actual tree
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is influenced by the outputs of all the previous tree models by altering the weights of the dataset, the tree model
is build on. The point is, that by implementing these weights, we introduce some kind of learning where the

creation of the *nth* tree in the boosted model partly depends on the predictions the *nth − 1* model has made.
Therewith, we replace the more or less "randomly-guided" creation of the single datasets during bootstrapping
by a "guided" creation. The most prominent boosting algorithm is called *AdaBoost* (adaptive boosting) and
was developed by Freund and Schapire (1996). The following discussion is based on the AdaBoost Boosting
algorithm. The following illustration gives a visual insight into the boosting algorithm.

Here the different base classifiers are each build on a weighted dataset where the weights of the single
instances in the dataset depend on the results the previous base classifiers had made for these instances. If
they have misclassified a instance, the weight for this instance will be increased in the next model while if the
classification was correct, the weight remains unaltered. The final decision making is achieved by a weighted
vote of the base classifiers where the weights are determined depending on the misclassification rates of the
models. If a model has had a high classification accuracy, it will get a high weight while it gets a low weight if
it has had a poor classification accuracy.

BOOSTING PSEUDOCODE

Initialize all weights to w =
1

n
where n is the number of instances in the dataset

• while t < T (T==number of models to be grown) do:

• Create a model and get the hypothesis ht(xn) for all datapoints xn in the dataset

• Calculate the error ϵ of the training set summing over all datapoints xn in the training set with:

ϵt =

∑N
n = 1

w ( t )
n

∗ I(yn ≠ ht(xn))

∑N
n = 1

w ( t )
n

where I(cond) returns 1 if I(cond) == True and 0 otherwise
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• Compute α with:

αt = log(
1 − ϵt

ϵt
)

• Update the weights for the N training instances in the next (t + 1) model with:

w ( t + 1 )
n

= w ( t )
n

∗ exp(αt ∗ I(yn ≠ ht(xn)))

• After the T iterations, calculate the final output with:

f(x) = sign(

T

∑
t

αt ∗ ht(x))

BOOSTING FROM SCRATCH WITH PYTHON
In the previous chapters for [Classification Trees](https://www.python-course.eu/Decision_Trees.php),
[Regression Trees](https://www.python-course.eu/Regression_Trees.php) and [Random Forest
models](https://www.python-course.eu/Random_Forests.php), we have always dragged along the whole "Tree
code from scratch". I think we now have understood the concept of how to build a tree model (be it for
regression or classification) from scratch in Python and if not, just go to one of the previous chapters
and play around with the code! Since the power and mystic of the Boosting concept lays more in the
combination of the weak learners as in the creation of these weak learners we will use [sklearn's
DecisionTreeClassifier](http://scikit-learn.org/stable/modules/generated/
sklearn.tree.DecisionTreeClassifier.html) to create the single weak learners but will program the actual boosting
procedure from scratch. To make the sklearn DecisionTreeClassifier a *weak* classifier we will set
*max_depth* parameter == 1 to create something called a *decision stump* which is in principal (as stated
above) nothing else as a decision tree with only one layer, that is, the root node directly ends in leaf nodes and
hence the dataset is split only once. As always, we will use the Shannon's entropy as splitting criteria. As you
might see, even though we do not use our self coded Decision Tree algorithm here, the only thing we had to
change in the actual tree building algorithm is that we introduce a max depth parameter which stops growing the
tree after the first split - This slight change in code is actually not worth to drag it all over here - As dataset we
use the [UCI mushroom dataset](https://archive.ics.uci.edu/ml/datasets/mushroom) as we have did in the
previous Random Forest chapter.
Lets first of all create a decision stump and measure the accuracy of this decision stump to get a feeling about
the prediction "goodness" or rather "badness" of this model.

"""
Create a Decision Stump
"""

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib import style
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style.use('fivethirtyeight')
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import cross_validate
import scipy.stats as sps

# Load in the data and define the column labels

dataset = pd.read_csv('data\mushroom.csv',header=None)
dataset = dataset.sample(frac=1)
dataset.columns = ['target','cap-shape','cap-surface','cap-colo
r','bruises','odor','gill-attachment','gill-spacing',

'gill-size','gill-color','stalk-shape','stalk-roo
t','stalk-surface-above-ring','stalk-surface-below-ring','stalk-co
lor-above-ring',

'stalk-color-below-ring','veil-type','veil-color','ri
ng-number','ring-type','spore-print-color','population',

'habitat']

# Encode the feature values from strings to integers since the skl
earn DecisionTreeClassifier only takes numerical values
for label in dataset.columns:

dataset[label] = LabelEncoder().fit(dataset[label]).transfor
m(dataset[label])

Tree_model = DecisionTreeClassifier(criterion="entropy",max_dept
h=1)

X = dataset.drop('target',axis=1)
Y = dataset['target'].where(dataset['target']==1,-1)

predictions = np.mean(cross_validate(Tree_model,X,Y,cv=100)['tes
t_score'])

print('The accuracy is: ',predictions*100,'%')
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Mind that we have trained and tested the model on the same dataset (the whole dataset) using 100-fold Cross
Validation. We get an accuracy of ≈ 73% which is not good but also not that terribly bad considering that we
have used a decision stump for classification (split the dataset only once).

Next, lets see how we can improve this result using a boosted decision stump approach. One thing which might
be a bit confusing is that on our way to the final *boosted decision stump*, we use the whole dataset as training
and testing dataset (we don't do a train test split). You might remember that we normally want to have a training
set, on which we train the model and a testing set on which we test a model - Nevertheless, for Boosting we
make an exception and use the whole dataset for training and testing - Just keep this exception in mind-.

class Boosting:
def __init__(self,dataset,T,test_dataset):

self.dataset = dataset
self.T = T
self.test_dataset = test_dataset
self.alphas = None
self.models = None
self.accuracy = []
self.predictions = None

def fit(self):
# Set the descriptive features and the target feature
X = self.dataset.drop(['target'],axis=1)
Y = self.dataset['target'].where(self.dataset['targe

t']==1,-1)

# Initialize the weights of each sample with wi = 1/N and

The accuracy is:  73.06860322953968 %
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create a dataframe in which the evaluation is computed
Evaluation = pd.DataFrame(Y.copy())
Evaluation['weights'] = 1/len(self.dataset) # Set the init

ial weights w = 1/N

# Run the boosting algorithm by creating T "weighted model
s"

alphas = []
models = []

for t in range(self.T):

# Train the Decision Stump(s)
Tree_model = DecisionTreeClassifier(criterion="entrop

y",max_depth=1) # Mind the deth one --> Decision Stump

# We know that we must train our decision stumps on we
ighted datasets where the weights depend on the results of

# the previous decision stumps. To accomplish that, w
e use the 'weights' column of the above created

# 'evaluation dataframe' together with the sample_weig
ht parameter of the fit method.

# The documentation for the sample_weights parameter s
ais: "[...] If None, then samples are equally weighted."

# Consequently, if NOT None, then the samples are NOT
equally weighted and therewith we create a WEIGHTED dataset

# which is exactly what we want to have.
model = Tree_model.fit(X,Y,sample_weight=np.array(Eval

uation['weights']))

# Append the single weak classifiers to a list which i
s later on used to make the

# weighted decision
models.append(model)
predictions = model.predict(X)
score = model.score(X,Y)

# Add values to the Evaluation DataFrame
Evaluation['predictions'] = predictions
Evaluation['evaluation'] = np.where(Evaluation['predic

tions'] == Evaluation['target'],1,0)
Evaluation['misclassified'] = np.where(Evaluation['pre

dictions'] != Evaluation['target'],1,0)
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# Calculate the misclassification rate and accuracy
accuracy = sum(Evaluation['evaluation'])/len(Evaluatio

n['evaluation'])
misclassification = sum(Evaluation['misclassified'])/l

en(Evaluation['misclassified'])

# Caclulate the error
err = np.sum(Evaluation['weights']*Evaluation['misclas

sified'])/np.sum(Evaluation['weights'])

# Calculate the alpha values
alpha = np.log((1-err)/err)
alphas.append(alpha)

# Update the weights wi --> These updated weights are
used in the sample_weight parameter

# for the training of the next decision stump.
Evaluation['weights'] *= np.exp(alpha*Evaluation['misc

lassified'])

#print('The Accuracy of the {0}. model is : '.forma
t(t+1),accuracy*100,'%')

#print('The missclassification rate is: ',misclassific
ation*100,'%')

self.alphas = alphas
self.models = models

def predict(self):
X_test = self.test_dataset.drop(['target'],axis=1).reinde

x(range(len(self.test_dataset)))
Y_test = self.test_dataset['target'].reindex(range(len(sel

f.test_dataset))).where(self.dataset['target']==1,-1)

# With each model in the self.model list, make a predictio
n

accuracy = []
predictions = []

for alpha,model in zip(self.alphas,self.models):
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prediction = alpha*model.predict(X_test) # We use the
predict method for the single decisiontreeclassifier models in th
e list

predictions.append(prediction)
self.accuracy.append(np.sum(np.sign(np.sum(np.array(pr

edictions),axis=0))==Y_test.values)/len(predictions[0]))
# The above line of code could be a little bit confusi

ng and hence I will do up the single steps:
# Goal: Create a list of accuracies which can be used

to plot the accuracy against the number of base learners used for
the model

# 1. np.array(predictions) --> This is the array whic
h contains the predictions of the single models. It has the shape
8124xn

# and hence looks like [[0.998,0.87,...0.8
7...],[...],[...],[0.99,1.23,...,1.05,0,99...]]

# 2. np.sum(np.array(predictions),axis=0) --> Summs u
p the first elements of the lists, that is 0,998+...+...+0.99. Thi
s is

# done since the formula for the prediction wants us t
o sum up the predictions of all models for each instance in the da
taset.

# Hence if we have for example 3 models than the predi
ctions array has the shape 8124x3 (Imagine a table with 3 columns
and

# 8124 rows). Here the first column containst the pred
ictions for the first model, the second column contains the

# prediction for the second model, the third column th
e prediction for the third model (mind that the

# second and third model are influenced by the result
s of the first resoectvely the first and the

# second model). This is logical since the results fro
m column (model)

# n-1 are used to alter the weights of the nth model a
nd the results of the nth model are then used to alter the weights

# of the n+1 model.
# 3. np.sign(np.sum(np.array(predictions),axis=0)) --

> Since our test target data are elements of {-1,1} and we want t
o

# have our prediction in the same format, we use the s
ign function. Hence each column in the accuracy array is like

# [-0.998,1.002,1.24,...,-0.89] and each element repre
sents the combined and weighted prediction of all models up this c
olumn

# (so if we are for instance in the 5th column and fo
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r the 4th instnace we find the value -0.989, this value represent
s the

# weighted prediction of a boosted model with 5 base l
earners for the 4th instance. The 4th instance of the 6th column r
epresents

# the weighted and combined predictions of a boosted m
odel with 6 base learners while the 4th instance of the 4th colum
n represents

# the predction of a model with 4 base learners and s
o on and so forth...). To make a long story short, we are interest
ed in the

# the sign of these comined predictions. If the sign i
s positive, we know that the true prediction is more likely postiv
e (1) then

# negaive (-1). The higher the value (postive or negat
ive) the more likely it is that the model returns the correct pred
iction.

# 4. np.sum(np.sign(np.sum(np.array(predictions),axi
s=0))==Y_test.values)/len(predictions[0]) --> With the last step w
e have transformed the array

# into the shape 8124x1 where the instances are elemen
ts {-1,1} and therewith we are now in the situation to compare thi
s

# prediction with our target feature values. The targe
t feature array is of the shape 8124x1 since for each row it conta
ins

# exactly one prediction {-1,1} just as our just creat
ed array above --> Ready to compare ;).

# The comparison is done with the == Y_test.values com
mand. As result we get an

# array of the shape 8124x1 where the instances are el
ements of {True,False} (True if our prediction is consistent with
the

# target feature value and False if not). Since we wan
t to calculate a percentage value we have to calculate the fractio
n of

# instances which have been classified correctly. Ther
efore we simply sum up the above comparison array

# with the elements {True,False} along the axis 0.
# and divide it by the total number of rows (8124) sin

ce True is the same as 1 and False is the same as 0. Hence correc
t predictions

# increase the sum while false predictions does not ch
ange the sum. If we predicted nothing correct the calculation is
0/8124 and
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# therewith 0 and if we predicted everything correct,
the calculation is 8124/8124 and thereiwth 1.

# 5. self.accuracy.append(np.sum(np.sign(np.sum(np.arr
ay(predictions),axis=0))==Y_test.values)/len(predictions[0])) -->

# After we have computed the above steps, we add the r
esult to the self.accuracy list. This list has the shape n x 1, th
at is,

# for a model with 5 base learners this list has 5 ent
ries where the 5th entry represents the accuracy of the model whe
n all

# 5 base learners are combined, the 4th element the ac
curacy of the model when 4 base learners are combined and so on an
d so forth. This

# procedure has been explained above. That's it and w
e can plot the accuracy.

self.predictions = np.sign(np.sum(np.array(predictions),ax
is=0))

######Plot the accuracy of the model against the number of stump-m
odels used##########

number_of_base_learners = 50

fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)

for i in range(number_of_base_learners):
model = Boosting(dataset,i,dataset)
model.fit()
model.predict()

ax0.plot(range(len(model.accuracy)),model.accuracy,'-b')
ax0.set_xlabel('# models used for Boosting ')
ax0.set_ylabel('accuracy')
print('With a number of ',number_of_base_learners,'base models we
receive an accuracy of ',model.accuracy[-1]*100,'%')

plt.show()
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With a number of  50 base models we receive an accuracy of  98.670
60561299851 %
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As we can see, the predictive power of these boosted decision stumps is really amazing. For more than 8000
testing instances we got all correct and therewith an accuracy of 100% with a model which contains 400 base
learners. Also interesting is the fact, that the accuracy increases rapidly up to ≈ 10 base learners and with ≈
70 base learners our model returns an accuracy of close to 100%.
Nevertheless, allow me a side node. First, this kind of boosted model is kind of computationally expensive, that
is, its predictive power comes with the costs of computational expensiveness and therewith we have to make a
compromise between accuracy and computation effort. Taking the above example we need ≈ 400 base learners
to get an accuracy of 100% but with ≈ 70 decision stumps we already get close to 100%. So we have to
decide how important the 100% mark is. Second, the above shown model does not claim to be computationally
efficient at all. The model should show how a boosted decision stump can be created from scratch without
taking care of computational efficiency. Hence, there are for sure ways how the above code can be made more
efficient and therewith the model more fast. It is up to you, playing around with the code and check if you can,
for instance, implement some vectorized calculations instead of the loops or something like that.

BOOSTING USING SKLEARN

As always, we will now use the prepackaged sklearn AdaBoostClassifier with the parameters set to the same
values we used above. The documentation says:
"An AdaBoost [Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an
Application to Boosting”, 1995] classifier is a meta-estimator that begins by fitting a classifier on the original
dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus more on difficult cases."[1]
The parameters we have to adjust are:

• base_estimator: We set this to the default value which is DecisionTreeClassifier as we have used
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above. Mind that we could also define a variable like estimator= DecisionTreeClassifier and
parametrize this estimator by setting max_depth = 1, criterion = "entropy",... But for
convenience we will omit this here

• n_estimators: This is the number of base learners which should be used. We set this to 400 as
above.

• learning_rate: The default value is 1.0 and reduces the contribution of each tree by the learning
rate.We set this to the default value since we don't have explicitly incorporated a learning rate.

The rest of the parameter is set to the default values.

from sklearn.ensemble import AdaBoostClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
for label in dataset.columns:

dataset[label] = LabelEncoder().fit(dataset[label]).transfor
m(dataset[label])

X = dataset.drop(['target'],axis=1)
Y = dataset['target']

#model = DecisionTreeClassifier(criterion='entropy',max_depth=1)
#AdaBoost = AdaBoostClassifier(base_estimator= model,n_estimator
s=400,learning_rate=1)

AdaBoost = AdaBoostClassifier(n_estimators=400,learning_rate=1,alg
orithm='SAMME')

AdaBoost.fit(X,Y)

prediction = AdaBoost.score(X,Y)

print('The accuracy is: ',prediction*100,'%')

DONE!
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P R I N C I P A L  C O M P O N E N T  A N A L Y S I S
( P C A )

WHAT IS PRINCIPAL COMPONENT ANALYSIS

When we perform Principal Component Analysis (PCA) we want to find the principal components of a dataset.
Surprising isn't it? Well, what are the principal components of a dataset and why do we want to find them,
and what do they tell us? The principal components of a dataset are the "directions" in a dataset which
hold the most variation (I assume that you have a basic understanding of the term variance. If not, look it
up [here](https://www.mathsisfun.com/data/standard-deviation.html)). In simplified terms, the first principal
component of a dataset is the direction along the dataset with the highest variation.

Consider the following dataset onto which I have drawn different "directions" shown by the differently colored
arrows. What do you think, which arrow points into the direction with the largest variance of the dataset?
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Well, by the naked eye we see that the orange arrow probably points into the direction with the largest variance.
Ok, but why do we need this direction(s)?
We want to have this direction (the direction with the largest variance) because in the future we want to use
the principal components of the dataset to reduce dimensionality of our dataset the either make it "plottable" by
reducing it to three or less dimensions, or simply to reduce the size of the dataset without loosing too much of
the information. Reducing the dimensionality of our dataset is like creating new columns by combining columns
such that the number of the new==combined columns is less than the original number of columns.
Imagine a dataset with only two columns A and B, then this dataset is said to be two dimensional. If we now
combine these two columns to one column for instance by simply adding column one and two, the dataset is
reduced to one dimension. To decide which columns should be combined and how we should combine them
is kind of the goal of the PCA. Mind that this illustration is not 100% correct since the goal of the PCA
is to transform the data and not simply cutting something off or combining something but for the first step
this illustrations should to it. That is, we want to decrease the size of our dataset to make life easier for the
algorithms or to simply visualize the data by making it 2 or 3 dimensional. But wait, I said decrease the size of
the dataset, that is kind of "loosing something", correct? Correct! By reducing the dimensionality of a dataset we
loose dimensions, that is, we loose information. Imagine a 3D movie where we remove the third dimension such
that the remaining movie is two dimensional. We still can watch the film but we have lost some information.
The question we have to find an answer to is: Which are the dimensions which held the most information of the
dataset and which are the dimensions which held only little information - and therewith can be cut off without
loosing too much information -. Finding these dimensions (the principal components) and transforming the
dataset to a lower dimensional dataset using these principal components is the task of the PCA. As said, in the
end we use the found and chosen principal component to transform our dataset, that is, projecting our dataset
(the projection is done with matrix multiplication) using these principal components. By doing this, we get a
dataset with reduced dimensionality (that is reduced size) without loosing too much information -hopefully-.
Ok, to proceed and for the understanding we have to go a small step back. We want to find the principal
components because these are the "directions" of the dataset with the highest variance. You ask yourself: Why
highest variance? Well, it turns out that the directions with the highest variance (principal components) are the
most informative directions. Let's make this clear using a little graphical illustration:
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Since the values assigned to the triangles (let's assume the unit are kg) are all the same, the variance is 0 whereas

the variance of the balls is 16.66 kg2

Now let's further assume someone chooses one ball and one triangle, tells you the assigned weight and wants
you to make a prediction about the color. Whatever triangle the person chooses, the weight is always 10kg and
therewith you have no chance to correctly predict the color of the triangle based on the kg number. Though, the
weights of the balls differ (they have a higher variance as the triangles) and whatever weight the person will tell
you, you can predict the color based on the number. To make this even more clear, assume in the next step the
person wants you to do the same thing but now he or she does not tell you the exact number but only a number
which is close to one of the above. For instance, 11kg. Based on this number you can predict the color of the
ball as blue since 11 is closer to 10 than to 15. Hence, the farther away the assigned weights are, that is, the
higher the variance is, the easier it is for you to predict the color. Please take the above as a principal idea why
we can use the variance as a measure of informativeness and do not claim a 100% mathematical correctness.
Ok, now we have understood why we want to have the directions with the highest variance (principal
components). But on our way the main question is still unanswered. *How do we get these principal
components?* We get these principal components by finding the directions with the highest variance. Wise
guy... we already know this. This sentence contains two important words: directions and variance - Finding the
*direction* with the highest *variance* -. Well, we can do exactly the same as I have done above and simply
draw an arbitrary line into the dataset. To know how good or bad this line is, we have to measure the variance
of the data along this line. Now we know that the formula for the variance (of the population) is:

var(x) =

∑n
i = 1

(xi − x̄)2

n

But here x is one dimensional and our dataset has two dimensions x and y, hence: Which of them should we
use as x in the variance calculation? Should we calculate the variance of x or y? The answer is: None of them is
correct. Why? Look at the following illustration:

Illustrates the directions x and y

In this picture, I have drawn two arrows, one points into the direction of the x axis and one into the direction of
the y axis. What happens if I calculate the variance along these arrows? Well, I calculate the variance along the
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feature x and along the feature y. The dataset looks like:

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style
style.use("fivethirtyeight")
import numpy as np

data = np.arra
y([[2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1],[2.4,0.7,2.9,2.2,3.0,2.7,
1.6,1.1,1.6,0.9]])
print(data)
fig = plt.figure()
ax0 = fig.add_subplot(111)

ax0.scatter(data[0],data[1])

plt.show()

where the fist list represents the x feature and the second list represents the y feature. Consider the code below.
What happens if we calculate the variance of the dataset along the *x-arrow* and along the *y-arrow*? We
calculate the variance along the feature x and y! We implicitly do this by ignoring the other dimension (feature)
x or y respectively. That is, by ignoring x or y, we kind of project the data onto the x or y axis and therewith
reduce the dimensionality, that is cut one dimension off.

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style

[[2.5 0.5 2.2 1.9 3.1 2.3 2.  1.  1.5 1.1]
[2.4 0.7 2.9 2.2 3.  2.7 1.6 1.1 1.6 0.9]]
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style.use("fivethirtyeight")
import numpy as np

data = np.arra
y([[2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1],[2.4,0.7,2.9,2.2,3.0,2.7,
1.6,1.1,1.6,0.9]])
print(data)
fig = plt.figure()
ax0 = fig.add_subplot(111)

ax0.scatter(data[0],data[1])
ax0.scatter(data[0],np.ones_like(data[1])*min(data[1])-0.2,colo
r="red")
ax0.scatter(np.ones_like(data[0])*min(data[0])-0.2,data[1],colo
r="blue")
ax0.arrow(min(data[0])-0.2,min(data[1])-0.2,0,max(data[1])-0.5,wid
th=0.01,color="blue",alpha=0.4,length_includes_head="True")
ax0.arrow(min(data[0])-0.2,min(data[1])-0.2,max(data[0])-0.3,0,wid
th=0.01,color="red",alpha=0.4,length_includes_head="True")
ax0.vlines(data[0],min(data[1])-0.2,data[1],colors="red",linestyle
s="--",linewidth=0.7)
ax0.hlines(data[1],min(data[0])-0.2,data[0],colors="blue",linestyl
es="--",linewidth=0.7)

plt.show()
[[2.5 0.5 2.2 1.9 3.1 2.3 2.  1.  1.5 1.1]
[2.4 0.7 2.9 2.2 3.  2.7 1.6 1.1 1.6 0.9]]
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Now you can see the effect of choosing the x and y axis as our principal components. We project the data onto
the x and y axis. We can now calculate the variance of the projected data and see how good or bad we are. If
you are confused how we can accomplish this transformation, keep calm, we come back to this later.
So now we have chosen the x and the y axis as our principal components. But as stated above, in that case this
is most likely not correct because we have seen that the skewed (green) line from bottom left to top right is the
line spanned by the vector which points into the direction of the highest variation == 1. principal component (at
this point I have to mention that a dataset has as many principal components as it has dimensions but the first
principal component is the "strongest"). So let's first of all assume, that this skewed green line is actually the
first principal component of the dataset, that is, the vector which points into the direction of highest variation.
How does this look like if we choose arbitrary vectors and do exactly the same thing as we have done taking
the x and y direction as our assumed principal components (Mind that we want to project the data onto the
line because we want to calculate the variation). Mind that since we now do actual calculations, we have to
normalize the data to zero mean since otherwise the calculations fail.
We will now plot the dataset and choose arbitrary vectors whose values we can alter using sliders. We project
the dataset onto the line spanned by the vector (defined by the slider values). We transform the dataset using the
chosen vector and calculate the resulting variance. The point (the slider adjustment) which results in the largest
variance gives us our first principal component. Additionally, we plot the "variance surface" with respect to
the values we choose for the vector. So to summarize, by altering the direction of the line we want to find this
line which leads to the highest variance when the dataset is projected onto this line. This line is the 1. principal
component. If we choose lines parallel to the x and y axes, we simply cut off the other axis.

import numpy as np
import pandas as pd
from ipywidgets import interact,interactive,fixed,interact_manual
import matplotlib.pyplot as plt
from matplotlib import style
from mpl_toolkits.mplot3d import Axes3D
style.use('fivethirtyeight')

def f(x,y):

data = np.arra
y([[2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1],[2.4,0.7,2.9,2.2,3.0,2.7,
1.6,1.1,1.6,0.9]])

data[0] = data[0]-np.mean(data[0])
data[1] = data[1]-np.mean(data[1])

# Create Axes

fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(121)
ax0.set_aspect('equal')
ax0.set_ylim(-2,2)
ax0.set_xlim(-2,2)
ax0.set_title('Search for Principal component',fontsize=14)
ax0.set_xlabel('PC x value',fontsize=10)
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ax0.set_ylabel('PC y value',fontsize=10)

#vec = np.array([0.6778734,0.73517866])
vec = np.array([x,y])

ax0.scatter(data[0],data[1])
ax0.plot(np.linspace(min(data[0]),max(data[0])),(vec[1]/ve

c[0])*np.linspace(min(data[0]),max(data[0])),linewidth=1.5,colo
r="black",linestyle="--")

b_on_vec_list = [[],[]]
for i in range(len(data[0])):

a = vec
b = np.array([data[0][i],data[1][i]])
b_on_a = (np.dot(a,b)/np.dot(a,a))*a
b_on_vec_list[0].append(b_on_a[0])
b_on_vec_list[1].append(b_on_a[1])
ax0.scatter(b_on_a[0],b_on_a[1],color='red')
ax0.plot([b_on_a[0],b[0]],[b_on_a[1],b[1]],"r--",linewidt

h=1)

ax1 = fig.add_subplot(122,projection='3d')
ax1.set_aspect('equal')
ax1.set_ylim(0,1)
ax1.set_xlim(0,1)
ax1.set_title('Varicane with respect to the 1. PC',fontsize=1

4)
ax1.set_xlabel('PC x value',fontsize=10)
ax1.set_ylabel('PC y value',fontsize=10)
ax1.set_zlabel('variance',fontsize=10)

# Transform data
e_vec = (1/np.sqrt(np.dot(vec,vec.T)))*vec
data_trans = np.dot(data.T,e_vec)

# Plot the data
ax0.scatter(data_trans,np.zeros_like(data_trans),c='None',edge
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color='black')
# Plot the twisted line
ax0.plot(np.linspace(min(data_trans),max(data_trans),10),np.ze

ros_like(data_trans),linestyle='--',color='grey',linewidth=1.5)
# Plot the circles
for i in range(len(data_trans)):

ax0.add_artist(plt.Circle((0,0),data_trans[i],linewidt
h=0.5,linestyle='dashed',color='grey',fill=False))

# Calculate the variance
ax0.text(0,-1.4,'variance= {0}'.format(str(np.round(np.var(dat

a_trans),3))),fontsize=20)

# Plot the variance with respect to the principal component ve
ctor

# Initialize the meshgrid
cross_x,cross_y =np.meshgrid(np.linspace(0.001,1,num=20),np.li

nspace(0.001,1,num=20))
# Create the iterators in the format [(0.01,0.01),(0.01,0.062

0),(0.01,0.114),...(0.0620,0.01),(0.0620,0.0620),(0.0620,0.114
1),...(0.999,0.01),(0.999,0.0620),...(0.999,0.999)]

x_y_pairs = []
for i in range(len(cross_y)):

x_y_pairs.append(list(zip(cross_x[i],cross_y[i])))
flatten_x_y_pairs = [np.array(list(x_y)) for sublist in x_y_pa

irs for x_y in sublist]

variances = []
for i in flatten_x_y_pairs:

e_vec = (1/np.sqrt(np.dot(i,i.T)))*i
data_trans = np.dot(data.T,e_vec.T)
variances.append(np.var(data_trans))

index_of_max_variance = np.where(variances == max(variance
s))[0][0]

# PLot the variance surface
ax1.scatter(cross_x,cross_y,np.array(variances).reshape(20,2

0),alpha=0.8)
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# Mark the point with the highest variance
vec_point = np.array([x,y])
e_vec_point = (1/np.sqrt(np.dot(vec_point,vec_point.T)))*vec_p

oint
data_trans_point = np.dot(data.T,e_vec_point.T)
ax1.scatter(x,y,np.var(data_trans_point)+0.01,color="orang

e",s=100)

plt.show()

interact(f,x=(0.001,1,0.001),y=(0.001,1,0.001))

By playing around with the sliders we can see that slider values of [0.67,0.73] lead to the highest variance. Mind
also the gray dashed circles as well as the gray scatter dots on the x axis. If we project the dataset onto the line
spanned by the chosen vector and kind of twist around this line such that it aligns with our original x axis, we
make the spanned line our new x axis. While altering the vector values we can now observe the spread of these
values on the x axis, the more spread out the values are, the higher the variance. This projecting of the dataset
and twisting of the spanned line is accomplished by transforming the original dataset using the chosen vector.

Output: <function __main__.f(x, y)>
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But wait, you said projected and transformed... How can we project data? Well, therefore you must be
familiar with linear algebra. If you are, fine. If not, [this](https://www.youtube.com/
playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) youtube playlist about the essence of linear
algebra might be very useful. So what we are doing is simply calculating the *dot product* (sometimes it is also
called scalar product) of our dataset and the chosen vector. So now for simplicity, assume we use an arbitrary
dataset and want to project this dataset onto the y axis. To project the dataset we need two things. First, the
dataset of shape nxn and a vector of shape nxm. We know that after calculating the dot product, the resulting
dataset has the dimensionality nxm and hence if m < n, we have reduced the dimensionality of our original
dataset. Now lets turn this into practice.
Assume we have a 10x2 dataset and we want to project this dataset onto the line spanned by the vector pointing
into the direction of the y axis (This is the same as we have done above). This vector is the unit vector [0,1]
which has dimensionality 1x2. What we want to have is the dataset projected onto the y axis and therewith a
dataset with the dimensionality 10x1. So to accomplish that, we have to calculate the dot product of:

data ∗ vecT where vecT is the transposed unit vector and therewith has no longer the shape 1x2 but 2x1 and
therewith the resulting dataset has the shape 10x1. If we now do the described calculations in practice, this looks
like:

import numpy as np
data = np.arra
y([[2.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1],[2.4,0.7,2.9,2.2,3.0,2.7,
1.6,1.1,1.6,0.9]])
ex = np.array([[1,0]])
ey = np.array([[0,1]])

print(data.shape)
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print(ex.shape)

print(np.dot(data.T,ey.T)) #  As you can see this is exactly the
y component (x dimension) of our dataset

As you can see, the result is the same as the y values of the original dataset. This is logical since by transforming
the data onto the y axis (look at the plot above) we just omit the x values of the dataset. Now assume we do
not use the vector [0,1] which is the unit vector pointing into the direction of the y axis but any other arbitrary
vector like for instance [0.653,1.2] what happens? Well the calculation are exactly the same: we calculate the
dot product of the 10x2 dataset with the 2x1 vector and get a dataset with dimensionality 10x1 projected onto
this vector. Though, the line onto which we have projected the data is no longer a vertical line but a slant line
with slope 1.2/0.653.

In the above part we talked a lot about the idea behind the PCA as well as how we can find the (first) principal
component of a dataset using kind of a graphical trial and error approach where we measured the variance of
the projected dataset. Luckily, it turns out that there is a lot more convenient way of finding the principal
components of a dataset. You might have noticed that I used the plural of principal component, principal
components. A dataset has as many principal components as it has dimensions. That is, a 2D dataset has 2
principal components while a dataset with 3 dimensions has 3 principal components. To find these principal
components (as well as which of them is the one which points into the direction of highest variance, which
points into the direction of second highest variance and so on) and to finally transform the original dataset
choosing the largest m of these n principal components, that is reducing the dimensionality from n to m
dimensions, we have to perform in principal five steps:

1. Collect the data
2. Normalize the data
3. Calculate the covariance matrix
4. Find the eigenvalues and eigenvectors of the covariance matrix
5. Use the principal components to transform the data - Reduce the dimensionality of the data

Step 3 to 5 are new to us but trust me, though this way may seem a little out of the blue its
worth it. The mystic here is to find the eigenvectors and eigenvalues of the covariance matrix of a
dataset. I don't want to delve deep into the maths behind calculating the covariance matrix as well
as finding the eigenvectors and eigenvalues of the covariance matrix and why the eigenvalues
and eigenvectors of the covaricance matrix turn out to be the principal components of a dataset
but just want to give a swift overview. For a mathematical proof on why the eigenvalues and

(2, 10)
(1, 2)
[[2.4]
[0.7]
[2.9]
[2.2]
[3. ]
[2.7]
[1.6]
[1.1]
[1.6]
[0.9]]
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eigenvectors of the covariance matrix turn out to be the principal components of a dataset, I refer
the interested reader to the chapter about PCA of Marsland, S. (2015) pp.134. For persons who
want to understand the maths behind eigenvectors and eigenvalues, I recommend to look these
terms up into text books about linear algebra. But now, step by step (this example is based on
Smith, L.I. (2002)):
Covariance matrix
_
The covariance matrix is a matrix full of covariances. The covariance matrix is a square matrix
of shape nxn and consists of the covariances of each of the n dimensions in a dataset with each
other (If we have n dimensions and each dimension is interacting with each other, we have nxn
interactions)

[
cov(x1, x1) cov(x1, x2) . . . cov(x1, xn

cov(x2, x1) cov(x2, x2) . . . cov(x2, xn)

. . .

cov(xn, x1) cov(xn, x2) . . . cov(xn, xn))
]

Where the formula for the covariance is:

cov(x, y) =

∑n
i = 1

(xi − x̄)(yi − ȳ)

n − 1

Here xi and yi are for instance x1 and x2 but could also be x1 and x1. If this is the case, that is if

xi == yi then the covariance is == the variance. This is the case for the elements on the diagonal

of the matrix.

Eigenvectors
_
The formula to find an eigenvectors is:
∑ ∗ ν = λν where ∑ is the covariance matrix, ν is the so called eigenvector and λ is the so called
eigenvalue which is a scalar.
Here we we have two types of multiplication. Vector multiplication on the left hand side and
multiplication of a scalar with a vector on the right hand side. To make this a little more equal,
we kind of multiply in the identity matrix on the right hand side which does not change the result
since the identity matrix has ones on its diagonal and zeros everywhere else. With this step we
can rewrite the above equation:
∑ ∗ ν = λI ∗ ν
(∑ ∗ ν) − (λI ∗ ν) = 0
(∑ − λI) ∗ ν = 0
Mind that the multiplication of λI is still a multiplication of a scalar with the identity matrix
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which results in a matrix with λ on its diagonal and zeros everywhere else. Each eigenvector
has a corresponding eigenvalue and together they are called an eigenpair. The eigenvector with
the largest eigenvalue is the Principal Component which points into the direction of the highest
variance where the magnitude of the eigenvalue indicates the magnitude of the variance of the
dataset in this direction. What does the formula tell us? We have to find a vector ν which gives,
"dot producted" with the covariance matrix ∑ the same result as when multiplied with a scalar λ.
So in 2D space, the multiplication of the 2D (covariance)matrix ∑ with a vector ν gives the same
result as multiplying the vector ν by a scalar λ.
So how can we solve this equation?
One obvious solution is to set ν = 0 but that's boring and trivial isn't it? So what other, non-trivial
solutions can we find? First of all, the above equation (we stay in 2 dimensions) gives us a linear
system of equations. From linear algebra we know, that the above linear system of equations has
only a nontrivial solution (ν ≠ 0) if det(∑ − λI) = 0
To make this a little bit more clear we use an example from Papula (2015).
Consider the the following equation which describes a homogeneous linear system of equations:
A ∗ x = 0 where you can assume that A is (∑ − λI) and x is ν
We can write this in matrix notation as:

[a11 a12

a21 a22 ] ∗ [x1

x2 ] = [0

0 ]
And as linear equations:
a11x1 + a12x2 = 0

a21x1 + a22x2 = 0

We solve this linear system of equations with:
(I) a11x1 + a12x2 = 0 | ∗ a22

(II) a21x1 + a22x2 = 0 | ∗ a12

(I − II) a11a22x1 − a21a12x1 = 0

(a11a22 − a21a12)x1 = 0

Doing the same for x2 by multiplying (I) with −a22 and (II) with a12 gives:

(a11a22 − a21a12)x2 = 0

Hence for x1 and x2 we have:

(a11a22 − a21a12)

?
Det(A)

x1 = 0
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(a11a22 − a21a12)

?
Det(A)

x2 = 0

As you can see, the first part of the equation is exactly the determinant for a two dimensional matrix and hence
only if Det(A) = 0 that is Det(∑ − λI) = 0 there is a nontrivial solution.

In a geometric sense, the determinant of a matrix represents the change in the area spanned by the unit vectors
when transformed with this matrix. Since we want to have (∑ − λI) ∗ ν = 0, the area spanned by the matrix
(∑ − λI) and the vector ν must be 0. Hence if a matrix has a determinant of 0, the area (==vector product) of
the unit vectors after applying the transformation is 0 ∗ oldarea. Further, we know that if the spanned area is
0, the vectors must align in one line. We can make this more clear by visualizing the above.

</div>

import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
import numpy as np
import matplotlib.patches as patches
def f(lamb):

# Unit vectors
e_x = np.array([1,0])
e_y = np.array([0,1])

# Area spanned by the unit vectors
print(np.cross(e_x,e_y)) # Area spanned by the unit vectors

== 1

# Any 2D matrix A of the shape (A-lambda*I)
A = np.array([[2-lamb,3],[3,0.5-lamb]])

# Transform the unit vectors by the matrix A --> Unsurprisingl
y this is exactly the matrix A but otherwise the notation

# of "the determinant describes the change of the area spanne
d by the unit vectors after trasnformation" makes no sense

# Plot the vectors
fig = plt.figure(figsize=(10,10))
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ax0 = fig.add_subplot(111)
ax0.set_xlim(-5,8)
ax0.set_ylim(-5,8)
ax0.set_aspect('equal')

# Vector of matrix A
ax0.arrow(0,0,A[0][0],A[0][1],color="red",linewidth=1,head_wid

th=0.05) #First vector
ax0.arrow(0,0,A[1][0],A[1][1],color="blue",linewidth=1,head_wi

dth=0.05) # Second vector

# Area spanned by the vectors**
ax0.arrow(A[0][0],A[0][1],A[1][0],A[1][1],color="blue",linesty

le='dashed',alpha=0.3,linewidth=1,head_width=0.05)
ax0.arrow(A[1][0],A[1][1],A[0][0],A[0][1],color="red",linestyl

e='dashed',alpha=0.3,linewidth=1,head_width=0.05)
ax0.add_patch(patches.Polygon(x

y=[[0,0],[A[0][0],A[0][1]],[A[0][0]+A[1][0],A[0][1]+A[1][1]],[A[1]
[0],A[1][1]]],fill=True,alpha=0.1,color='yellow'))

# Add text which shows the calculation of the determinant and
the area

ax0.text(3,-0,s=r'$determinant = a_{11}*a_{22}-a_{21}*a_{1
2}$'+'= {0}'.format(np.round(A[0][0]*A[1][1]-A[1][0]*A[0][1],3)))

#ax0.text(3,-1,s='area = {0}'.format(np.round(np.cros
s(A.T[0],A.T[1]),3)))

ax0.text(3,-0.5,s=r'$determinant$'+'= {0}*{1}-{2}*{3} = {4}'.f
ormat(A[0][0],A[1][1],A[1][0],A[0][1],np.roun
d(A[0][0]*A[1][1]-A[1][0]*A[0][1],3)))

ax0.text(3,-4,s='**Mind that in this case the value of the det
erminant \n and the area(cross product --> Yellow shaded) are the
same \n since the area spanned by the unit vectors is 1',fontsiz
e=8)

# Plot the eigenvectors
ax0.arrow(0,0,0.61505,-0.788491,color="black",linestyle='dashe

d',alpha=0.3,linewidth=1,head_width=0.05)
ax0.arrow(0,0,0.78771,0.6159,color="black",linestyle='dashe

d',alpha=0.3,linewidth=1,head_width=0.05)

# Caclulate (A-lambda I)*nu for different values of lambda usi
ng the found eigenvectors. The result must be
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# 0 when nu is perpendicular to (A-lambda I)
# Mind that for the calculation of v1 and v2 we have to solve

the linear system of equations (A-lambda I)*v=0
# for v1 and v2

v1 = -3*(((-1+0.5*lamb)/(-9-2*lamb+lamb**2)))/(2-lamb)
v2 = (-1+0.5*lamb)/(-9-2*lamb+lamb**2)
v = np.array((1/np.sqrt(v1**2+v2**2))*np.array([v1,v2]))
ax0.text(3,-1,s=r'$(A-$'+'{0}'.format(lamb)+r'$I)*\nu$'+'=

{0}'.format(np.round(np.dot(A,v),3)))
ax0.arrow(0,0,-v[0]*0.5,-v[1]*0.5,color="green",alpha=0.8,line

width=1,head_width=0.05) # We draw the eigenvector for lambda

# Mind v[0]*0.5 and v[1]*0.5 --> The *0.5

# is solely done for visualization purposes

plt.show()

interact(f,lamb=(-5,5,0.001))
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So as you can see, playing around with the sliders leads to two values for λ where the determinant is very close
to zero. To come back to our original question of solving the eigenvector equation:

A ∗ ν = λν

we should now be able to input these values into the equation and solve for ν to find the corresponding
eigenvectors to the found eigenvalues. Doing this leads to two unit-vectors (eigenvectors) which we call eλ1

and

eλ2
. Mind here, that these unit vectors are standardized with

1

| a |
a to have unit length.

1

Output: <function __main__.f(lamb)>
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So assuming, A is the covariance matrix of an arbitrarily dataset, we now have found the eigenvectors and
eigenvalues of this dataset. Uff.. We can check this by inserting the found values into the equation:
(A − λI) ∗ ν = 0

This must be true! As you can see in the illustration above, the eigenvectors are perpendicular to each other
and the vector (A − λI) any time the determinant of this vector is zero. This is claimed by (A − λI) ∗ ν = 0
since the dot product of two perpendicular vectors is zero. Also, the green vector which illustrates ν for different
values of λ aligns with the eigenvectors. As you can see, the moment the red and the green vectors align with
each other and the green vector aligns with one of the two black dashed arrows (eigenvectors), the equation is
fulfilled and the result of (A − λI) ∗ ν equals the zero vector.

If it is not totally clear to you how the eigenvectors and eigenvalues are calculated, the geometric interpretation
of eigenvectors and eigenvalues can be looked up in the [youtube playlist](https://www.youtube.com/
playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab). But if you think the understanding of
eigenvectors and eigenvalues as well as how they are calculated is not that important for you, and you just want
to remember that you have to find the eigenvectors and corresponding eigenvalues of the covariance matrix
to find the principal components of a dataset, that's ok. For the practical implementation, the most critical part
is indeed that you remember that you have to find the eigenvalues and eigenvectors of the covariance matrix
of a dataset to find the principal components of the dataset. The above calculations and illustrations should
help you to understand how eigenvectors and eigenvalues can be found by hand but normally you want to
use prepackaged methods which solve this for you as for instance the [np.linalg.eig](https://docs.scipy.org/doc/
numpy-1.14.0/reference/generated/numpy.linalg.eig.html) method which computes the eigenvalues as well as
the eigenvectors of a square matrix.

So let's quickly recapitulate where we are on our 5 steps:

1. Collect the data
2. Normalize the data
3. Calculate the covariance matrix
4. Find the eigenvalues and eigenvectors of the covariance matrix
5. Use the principal components to transform the data - Reduce the dimensionality of the data

Above we ran through steps 1 to 4, so the transformation of data using the eigenvectors is next.
Reduce the dimensionality of the data − Putting all together
_
Once we have found the eigenvectors and eigenvalues of a dataset we can finally use these vectors (which are
the principal components oft the dataset) to reduce the dimensionality of the data, that is to project the data onto
the principal components.
So let's do this and while doing so run through all of the above steps to show how dimensionality reduction
using the PCA can be accomplished with Python from scratch before we use the prepackaged sklearn PCA
method. To illustrate this, we will use the [UCI Iris dataset](https://archive.ics.uci.edu/ml/datasets/iris).

import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt
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from matplotlib import style
style.use('fivethirtyeight')
import pandas as pd

"""1. Collect the data"""

df = pd.read_table('data\Wine.txt',sep=',',names=['Alcohol','Mali
c_acid','Ash','Alcalinity of ash','Magnesium','Total phenols',

'Flavanoids','Non
flavanoid_phenols','Proanthocyanins','Color_intensity','Hue',

'OD280/OD315_of_d
iluted_wines','Proline'])

target = df.index

"""2. Normalize the data"""

df = StandardScaler().fit_transform(df)

"""3. Calculate the covariance matrix"""

COV = np.cov(df.T) # We have to transpose the data since the docum
entation of np.cov() sais

# Each row of `m` represents a variable, and ea
ch column a single

# observation of all those variables

"""4. Find the eigenvalues and eigenvectors of the covariance matr
ix"""

eigval,eigvec = np.linalg.eig(COV)
print(np.cumsum([i*(100/sum(eigval)) for i in eigval])) # As you c
an see, the first two principal components contain 55% of

# the tota
l variation while the first 8 PC contain 90%

"""5. Use the principal components to transform the data - Reduce
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the dimensionality of the data"""

# The wine dataset is 13 dimensional and we want to reduce the dim
ensionality to 2 dimensions
# Therefore we use the two eigenvectors with the two largest eigen
values and use this vectors
# to transform the original dataset.
# We want to have 2 Dimensions hence the resulting dataset should
be a 178x2 matrix.
# The original dataset is a 178x13 matrix and hence the "principa
l component matrix" must be of
# shape 13*2 where the 2 columns contain the covariance eigenvecto
rs with the two largest eigenvalues

PC = eigvec.T[0:2]

data_transformed = np.dot(df,PC.T) # We have to transpose PC becau
se it is of the format 2x178

# Plot the data

fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)

ax0.scatter(data_transformed.T[0],data_transformed.T[1])
for l,c in zip((np.unique(target)),['red','green','blue']):

ax0.scatter(data_transformed.T[0,target==l],data_transforme
d.T[1,target==l],c=c,label=l)

ax0.legend()

plt.show()
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As you can see, the 13 dimensional dataset has been reduced to a 2 dimensional dataset which still entails 55%
of the total variation and which we now can plot into a two dimensional coordinate system. Mind that normally
we do not have the target feature values of a dataset since the PCA is an unsupervised learning algorithm.
Though, we have included the target feature values here to show that the dataset is still very well separable with
only two dimensions. So what we have done above is that we have kind of created new features from the other
features by transforming the dataset using the principal components of the dataset and therewith reduced the
dimensionality of the dataset (the remaining columns of our transformed dataset serve as new features) without
loosing too much information.
The above code is a lot shorter and more convenient than searching for the principal components by hand. Next
we will (as always) make this even more efficient using the prepackaged [sklearn PCA](http://scikit-learn.org/
stable/modules/generated/sklearn.decomposition.PCA.html)

PCA USING SKLEARN
In [ ]:

from sklearn.decomposition import PCA
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
import pandas as pd

"""1. Collect the data"""

df1 = pd.read_table('data\Wine.txt',sep=',',names=['Alcohol','Mali
c_acid','Ash','Alcalinity of ash','Magnesium','Total phenols',

'Flavanoids','Non
flavanoid_phenols','Proanthocyanins','Color_intensity','Hue',

'OD280/OD315_of_d
iluted_wines','Proline'])

target1 = df1.index

---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-6-aaec72aea82f> in <module>

1 import numpy as np
2 from sklearn.preprocessing import StandardScaler

----> 3 from sklearn.cross_validation import train_test_split
4 import matplotlib.pyplot as plt
5 from matplotlib import style

ModuleNotFoundError: No module named 'sklearn.cross_validation'
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"""2. Normalize the data"""

df1 = StandardScaler().fit_transform(df)

"""3. Use the PCA and reduce the dimensionality"""

PCA_model = PCA(n_components=2,random_state=42) # We reduce the di
mensionality to two dimensions and set the

# rand
om state to 42
data_transformed = PCA_model.fit_transform(df1,target)*(-1) # If w
e omit the -1 we get the exact same result but rotated by 180 degr
ees --> -1 on the y axis turns to 1.

# Thi
s is due to the definition of the vectors. We can define a vector
a as [-1,-1] and as [1,1]

# the
lines spanned is the same --> remove the *(-1) and you will see

# Plot the data

fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)

ax0.scatter(data_transformed.T[0],data_transformed.T[1])
for l,c in zip((np.unique(target)),['red','green','blue']):

ax0.scatter(data_transformed.T[0,target==l],data_transforme
d.T[1,target==l],c=c,label=l)

ax0.legend()

plt.show()
As you can see, we need really just a few lines of code to accomplish PCA. Once you have understand the idea
behind the PCA you can use this really convenient prepackaged sklearn method without worries to reduce the
dimensionality of a dataset to make it either *plottable* or to reduce the size of your dataset without loosing
too much of the encoded information. Read the docs to see how you can use the attributes of this function.
For instance, you can print the principal axes in feature space as well as the explained variance of each of
the selected components. Just play around. Congratulations, if you can follow all the steps above you have
understand one of the more complicated machine learning algorithms. Done!
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L I N E A R  D I S C R I M I N A N T  A N A L Y S I S
( L D A )

WHAT IS LDA
(Fishers) Linear Discriminant Analysis (LDA) searches for the projection of a dataset which maximizes the

*between class scatter to within class scatter* (
SB

SW
) ratio of this projected dataset. The goal is to project/

transform a dataset A using a transformation matrix w such that the ratio of between class scatter to within class

scatter of the transformed dataset Y = wT ∗ A is maximized. Hence our goal is to find the transformation matrix
w that accomplishes this. In Fisher's terms:

*"Find the linear combination Z = aT ∗ X such that the between class variance is maximized relative to the
within class variance."*(Hastie, Tibshirani and Friedman, 2008, p.114). Therewith, LDA is like PCA which
we have introduced in the last chapter with the difference, that LDA aims to find the projection of maximum
separability. But slowly. Consider the following illustration which shows a dataset consisting of three different
classes. We now want to have the within and between class scatter of this dataset.
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So how do we get there? Let's take a look at the maths behind LDA.

MATHS BEHIND LDA
As we can see in the illustration, we want to have a measure of the within and between class scatters. Therefore,
we use the following two formulas for the between class scatter SB and the within class scatter SW. Let's derive

the meaning of them

1. Scatter Within (SW)

_

SW = ∑
classes c

∑
j∈ c

(xj − μc)(xj − μc)
T

Here classes c are the (in our case) three different classes (rectangle, triangles and circles). xj is the value vector

per instance per class (we have in our case two dimensions x and y, so for instance x1 has the dimensionality

2x1). μc represents the mean-vector of class c and is a vector which contains the values of each dimension for

each class. Hence, if for instance, class 1 is of shape 2x15 (15 values and two dimensions), the mean vector for
class 1 is of shape 2x1 and hence we can subtract μc from xj. We want to have this term as small as possible

since the closer the datapoints per class are together, the easier it is to separate this class from the other classes.
So figuratively speaking, we calculate the scatter matrix per class c to get the scatter within each class (within

the triangles, the rectangles and the circles --> Therefore we calculate (xj − μc)(xj − μc)
T for each j that is for

each instance, which gives us for each instance xj a mxm matrix assuming that each xj is of dimensionality mx1

where m is the number of features in the dataset. We then sum up all these matrices to get the scatter within
each class) and second sum up these scatter matrices to receive a measure of the scatter within the total dataset
SW. Mind that we calculated the scatter matrices and not the covariance matrices since then we must divide by

n respectively n-1 but we didn't do that here. Nevertheless, the dimensionality of the scatter matrix is the same
as for the covariance matrix. When a class has 2 dimensions, the scatter matrix is of shape (2x2) and consists of
the elements:
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[ scatterxx scatterxy

scatteryx scatteryy ]
As said, we calculate the scatter per class and then sum up all the per_class scatter matrices to receive a measure
for the scatter within (SW)

Let's derive this with Python code:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
np.random.seed(seed=42)

# Create data
rectangles = np.array([[1,1.5,1.7,1.45,1.1,1.6,1.8],[1.8,1.55,1.4
5,1.6,1.65,1.7,1.75]])
triangles = np.array([[0.1,0.5,0.25,0.4,0.3,0.6,0.35,0.1
5,0.4,0.5,0.48],[1.1,1.5,1.3,1.2,1.15,1.0,1.4,1.2,1.3,1.5,1.0]])
circles = np.array([[1.5,1.55,1.52,1.4,1.3,1.6,1.35,1.4
5,1.4,1.5,1.48,1.51,1.52,1.49,1.41,1.39,1.6,1.35,1.55,1.47,1.5
7,1.48,

1.55,1.555,1.525,1.45,1.35,1.65,1.355,1.45
5,1.45,1.55,1.485,1.515,1.525,1.495,1.415,1.395,1.65,1.355,1.55
5,1.475,1.575,1.485]

,[1.3,1.35,1.33,1.32,1.315,1.30,1.34,1.32,1.3
3,1.35,1.30,1.31,1.35,1.33,1.32,1.315,1.38,1.34,1.28,1.23,1.25,1.2
9,

1.35,1.355,1.335,1.325,1.3155,1.305,1.345,1.3
25,1.335,1.355,1.305,1.315,1.355,1.335,1.325,1.3155,1.385,1.34
5,1.285,1.235,1.255,1.295]])

#Plot the data
fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)

ax0.scatter(rectangles[0],rectangles[1],marker='s',c='grey',edgeco
lor='black')
ax0.scatter(triangles[0],triangles[1],marker='^',c='yellow',edgeco
lor='black')
ax0.scatter(circles[0],circles[1],marker='o',c='blue',edgecolor='b
lack')
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# Calculate the mean vectors per class
mean_rectangles = np.mean(rectangles,axis=1).reshape(2,1) # Create
s a 2x1 vector consisting of the means of the dimensions
mean_triangles = np.mean(triangles,axis=1).reshape(2,1)
mean_circles = np.mean(circles,axis=1).reshape(2,1)

# Calculate the scatter matrices for the SW (Scatter within) and s
um the elements up

scatter_rectangles = np.dot((rectangles-mean_rectangles),(rectangl
es-mean_rectangles).T)

# Mind that we do not calculate the covariance matrix here becaus
e then we have to divide by n or n-1 as shown below
#print((1/7)*np.dot((rectangles-mean_rectangles),(rectangles-mea
n_rectangles).T))
#print(np.var(rectangles[0],ddof=0))

scatter_triangles = np.dot((triangles-mean_triangles),(triangles-m
ean_triangles).T)
scatter_circles = np.dot((circles-mean_circles),(circles-mean_circ
les).T)

# Calculate the SW by adding the scatters within classes
SW = scatter_triangles+scatter_circles+scatter_rectangles
print(SW)

plt.show()
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2. Scatter Between (SB)

_

SB = ∑
classes c

Nc(μc − μ)(μc − μ)T

With this second formula figuratively speaking, we measure the scatter of the total dataset, that is the scatter
between the classes and therewith how "far away" the single class-clusters are. Here classes c are the different
classes of our dataset (rectangles, triangles, circles). μc is the mean per class which has dimensionality 2x1 since

for each dimension per class it consists one value. μ is the mean of the total dataset and has dimensionality 2x1

[[ 1.07646534 -0.05208045]
[-0.05208045  0.45007299]]
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as well, since it also contains one value per dimension with the difference that we now consider all datapoints in
the dataset and not only the datapoints belonging to one class c. The derivation of the SB is not that obvious but

can be derived with: Assume we create a total scatter matrix with ST = ∑
x

(x − μ)(x − μ)T where μ is the mean

of the total dataset. We know that (x − μ) = (μc − μ) + (x − μc). For illustration purposes look at the following

plot where we see that in a geometrical sense the equation holds true. Here the red line illustrates the left side
of the equation while the yellow bold line represents the right side of the equation. The two lines align.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
np.random.seed(seed=42)

x_j = np.array([3.5,4.5])
mu = np.array([7,5])
mu_k = np.array([4,3])

fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)
ax0.set_xlim(-1,10)
ax0.set_ylim(-1,10)

for i in [x_j,mu,mu_k]:
ax0.scatter(i[0],i[1],s=50)

ax0.annotate('x_j',x_j)
ax0.annotate('mu',mu)
ax0.annotate('mu_k',mu_k)
ax0.annotate('(x_j - mu) = (mu_k - mu) + (x_j - mu_k)',np.array(m
u)+np.array([1,1]))

# Draw the position vectors
for i in [x_j,mu,mu_k]:

ax0.arrow(0,0,i[0],i[1],head_width=0.01,width=0.05)

# Draw the vectors
ax0.arrow(mu[0],mu[1],(x_j-mu)[0],(x_j-mu)[1],head_width=0.05,widt
h=0.1,color='yellow') # xj_minus_mu
ax0.arrow(mu[0],mu[1],(mu_k-mu)[0],(mu_k-mu)[1],head_width=0.05,wi
dth=0.01,alpha=0.5,color='black') # mu_k_minus_mu
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ax0.arrow(mu_k[0],mu_k[1],(x_j-mu_k)[0],(x_j-mu_k)[1],head_widt
h=0.05,width=0.01,alpha=0.5,color='black') # xj_minus_mu_k

# If we now add up the vectors (mu_k-mu) and (x_j-mu_k) wee see th
at this vector alligns with the vector (x_k-mu)
mu_k_minus_mu = mu_k-mu
x_j_minus_mu_k = x_j-mu_k
res = (mu_k-mu)+(x_j-mu_k)
ax0.arrow(mu[0],mu[1],res[0],res[1],head_width=0.05,width=0.01,lin
estyle='-.',color='red')

plt.show()

If we insert this in our ST equation we get:

ST = ∑
classes c

∑
x∈Dc

(x − μc + μc − μ)(x − μc + μc − μ)T
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= ∑
classes c

∑
x∈Dc

(x − μc)(x − μc)
T

?
SW

+ ∑
classes c

∑
x∈Dc

(μc − μ)(μc − μ)T

= SW + ∑
classes c

nc(μc − μ)(μc − μ)T

?
SB

Where ∑
x∈Dc

was replaced by nc since x is a vector consisting of the values of one line of the dataset. Hence with

∑
x∈Dc

we sum up (μc − μ)(μc − μ)T as many times (nc) as there are rows in c and hence we can simply say

nc(μc − μ)(μc − μ)T.

Now it is sufficient to say that the total scatter (ST) is the sum of SW and SB and hence we can define the second

term of the equation above as SB.

Ok, now we know how we get SB and SW and we know that we want to maximize
SB

SW
to get a as good as possible

separation. Further we know that we want to achieve that by transforming our data to a lower dimensionality.
But what we do not know until know is *how to do that*.
Yet, we know that we can transform data using a transformation matrix w. How the transformation works
was described in the last chapter about [Principal Component Analysis](https://www.python-course.eu/
principal_component_analysis.php) and can be looked up there. So, if we denote the transformed dataset as Y,

we find Y with Y = wT ∗ X. From linear algebra we know, that we can say that the transformation using w is
applied to each point in the dataset. That is, also to μ and μk. This is illustrated in the following figure

where I have plotted an arbitrarily dataset (blue scatters) together with an arbitrarily μc and an arbitrarily μ

.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
np.random.seed(seed=42)

mu = np.array([7,5]).reshape(2,1)
mu_c = np.array([4,3]).reshape(2,1)

fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)
ax0.set_xlim(-1,10)
ax0.set_ylim(-1,10)

# Plot the meshgrid
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X,Y = np.meshgrid(np.linspace(-1,10,num=12),np.linspace(-1,10,nu
m=12))
data = np.array([X.reshape(1,144),Y.reshape(1,144)]).reshape(2,14
4)

ax0.scatter(X,Y)

# Transform the data using w
w = np.array([[0.5,0],[0,0.5]])

data_trans = np.dot(data.T,w)
mu_trans = np.dot(mu.reshape(2,1).T,w).reshape(2,1)
mu_c_trans = np.dot(mu_c.reshape(2,1).T,w).reshape(2,1)
ax0.scatter(data_trans[:,0],data_trans[:,1],alpha=0.8,color='gre
y',edgecolor='black')

# Plot mu, mu_trans, mu_k, and mu_k_trans
# Plot mu and mu_k

for i in [mu,mu_c,mu_trans,mu_c_trans]:
ax0.scatter(i[0],i[1],s=80)

ax0.annotate('mu',[mu[0],mu[1]])
ax0.annotate('mu_c',mu_k)
ax0.annotate('mu_c_transformed',mu_c_trans)
ax0.annotate('mu_transformed',mu_trans)

plt.show()
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As you can see, the above transformation using w squished the space by a factor of 0.5.

So applying this this transformation to our xj, μc and μ in our SW and SB equations gives (mind that ATT
= A):

SW = ∑
classes c

∑
j∈ c

(wT(xj − μc))(w
T(xj − μc))

T = wTSWw

and
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SB = ∑
classes c

Nc(w
T(μc − μ))(wT(μc − μ))T = wTSBw

Hence the equation
SB

SW
becomes

wTSBw

wTSWw

So what remains is how we can find the w that maximizes this equation. It turns out that w can be found
by calculating the Eigenvectors of S − 1

W
SB and how we can get here is for instance described in Marsland, S.

(2015) p.132 as well as [here](http://www.svcl.ucsd.edu/courses/ece271B-F09/handouts/Dimensionality2.pdf).
Nonetheless, when I got first in contact with this formula, it was kind of an obstacle and I wanted to
know how I can get there. Hence here is the derivation where the solution is taken from
[here](https://stats.stackexchange.com/questions/355054/derivation-of-s-w-1-s-b-during-the-calculation-of-
lda/355134#355134):
Finding the maximum of

wTSBw

wTSWw

is the same as maximizing the nominator while keeping the denominator constant and therewith can be denoted
as kind of a constrained optimization problem with:

max
w

wTSBw with the constraint wTSWw = K

Bringing this constrained optimization problem into Lagrangian form gives:

L = wTSBw − λ(wTSWw − K)

Finding the maximum of a function can be accomplished by calculating and setting the derivative equal to zero.

δL

δw
= SBw − λSWw = 0

or
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SBw = λSWw

This is called a generalized Eigenvalue problem and can (providing that S − 1
W

exists) be written as:

S − 1
W

SBw = λw

=

S − 1
W

SBw − λw = 0

Since λ is a scalar but we want to have only matrices in our equation (to make the maths more easy --> We want
to factorize w in the next line and not

_
multiplying λ with I would then lead to the situation that we must subtract

a scalar from a matrix which is not possible) we want to multiply this with the identity matrix I to get a matrix
with the value of λ on the diagonal.

S − 1
W

SBw − λIw = 0

=

(S − 1
W

SB − λI)w = 0

Solving this equation gives us the Eigenvalues (λ) and Eigenvectors (w) and can be accomplished using
[numpy.linalg.eig(a)](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eig.html)
setting S − 1

W
SB for **a** or manually by calculating det(S − 1

W
SB − λI) = 0, solving for λ which gives us the

Eigenvalues, and inserting these Eigenvalues (λ) into (S − 1
W

SB − λI)w = 0 gives us a linear set of equations.

Solving these equations for w gives us the corresponding Eigenvectors. But since numpy offers us a neat way to
do that with just one line of code, for convenience purposes, I recommend to use numpy over the manual
solution :).

Once we have found the w we can use this to transform our original dataset. The whole LDA process is
summarized/divided by Raschka, S. (2015) p.139-140 in six steps:

1. Standardize the dataset (zero mean, standard deviation of 1)
2. Compute the total mean vector μ as well as the mean vectors per class μc
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3. Compute the scatter withing and scatter between matrices SB and SW

4. Compute the eigenvalues and eigenvectors of S − 1
W

SB to find the w which maximizes
wTSBw

wTSWw

5. Select the Eigenvectors of the corresponding k largest Eigenvalues to create a dxk dimensional
transformation matrix w where the Eigenvectors are the columns of this matrix

6. Use w to transform the original nxd dimensional dataset x into a lower, nxk dimensional dataset y

So I think once we have now understand the concept behind LDA its time to make an example in Python
following the proposed six steps. Therefore, we use the [UCI wine dataset](https://archive.ics.uci.edu/ml/
datasets/wine) which has 13 dimensions. We want to find the transformation which makes the three different
classes best linearly separable and plot this transformation in 2 dimensional space.

LDA WITH PYTHON FROM SCRATCH
%%time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
from matplotlib import style
from sklearn.model_selection import train_test_split
style.use('fivethirtyeight')
from sklearn.neighbors import KNeighborsClassifier

# 0. Load in the data and split the descriptive and the target fea
ture
df = pd.read_csv('data/Wine.txt',sep=',',names=['target','Alcoho
l','Malic_acid','Ash','Akcakinity','Magnesium','Total_pheonols','F
lavanoids','Nonflavanoids','Proanthocyanins','Color_intensity','Hu
e','OD280','Proline'])
X = df.iloc[:,1:].copy()
target = df['target'].copy()

X_train, X_test, y_train, y_test = train_test_split(X,target,tes
t_size=0.3,random_state=0)

# 1. Standardize the data
for col in X_train.columns:

X_train[col] = StandardScaler().fit_transform(X_train[col].val
ues.reshape(-1,1))
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# 2. Compute the mean vector mu and the mean vector per class mu_k
mu = np.mean(X_train,axis=0).values.reshape(13,1) # Mean vector m
u --> Since the data has been standardized, the data means are zer
o

mu_k = []

for i,orchid in enumerate(np.unique(df['target'])):
mu_k.append(np.mean(X_train.where(df['target']==orchid),axi

s=0))
mu_k = np.array(mu_k).T

# 3. Compute the Scatter within and Scatter between matrices
data_SW = []
Nc = []
for i,orchid in enumerate(np.unique(df['target'])):

a = np.array(X_train.where(df['target']==orchid).dropna().valu
es-mu_k[:,i].reshape(1,13))

data_SW.append(np.dot(a.T,a))
Nc.append(np.sum(df['target']==orchid))

SW = np.sum(data_SW,axis=0)

SB = np.dot(Nc*np.array(mu_k-mu),np.array(mu_k-mu).T)

# 4. Compute the Eigenvalues and Eigenvectors of SW^-1 SB
eigval, eigvec = np.linalg.eig(np.dot(np.linalg.inv(SW),SB))

# 5. Select the two largest eigenvalues
eigen_pairs = [[np.abs(eigval[i]),eigvec[:,i]] for i in range(le
n(eigval))]
eigen_pairs = sorted(eigen_pairs,key=lambda k: k[0],reverse=True)
w = np.hstack((eigen_pairs[0][1][:,np.newaxis].real,eigen_pair
s[1][1][:,np.newaxis].real)) # Select two largest

# 6. Transform the data with Y=X*w
Y = X_train.dot(w)

# Plot the data
fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)
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ax0.set_xlim(-3,3)
ax0.set_ylim(-4,3)

for l,c,m in zip(np.unique(y_train),['r','g','b'],['s','x','o']):
ax0.scatter(Y[0][y_train==l],

Y[1][y_train==l],
c=c, marker=m, label=l,edgecolors='black')

ax0.legend(loc='upper right')

# Plot the voroni spaces
means = []

for m,target in zip(['s','x','o'],np.unique(y_train)):
means.append(np.mean(Y[y_train==target],axis=0))
ax0.scatter(np.mean(Y[y_train==target],axis=0)[0],np.mea

n(Y[y_train==target],axis=0)[1],marker=m,c='black',s=100)

mesh_x, mesh_y = np.meshgrid(np.linspace(-3,3),np.linspace(-4,3))
mesh = []

for i in range(len(mesh_x)):
for j in range(len(mesh_x[0])):

date = [mesh_x[i][j],mesh_y[i][j]]
mesh.append((mesh_x[i][j],mesh_y[i][j]))

NN = KNeighborsClassifier(n_neighbors=1)
NN.fit(means,['r','g','b'])
predictions = NN.predict(np.array(mesh))

ax0.scatter(np.array(mesh)[:,0],np.array(mesh)[:,1],color=predicti
ons,alpha=0.3)

plt.show()
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/home/bernd/anaconda3/lib/python3.6/site-packages/ipykernel_launch
er.py:21: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pan
das-docs/stable/indexing.html#indexing-view-versus-copy
/home/bernd/anaconda3/lib/python3.6/site-packages/sklearn/utils/va
lidation.py:475: DataConversionWarning: Data with input dtype int6
4 was converted to float64 by StandardScaler.

warnings.warn(msg, DataConversionWarning)
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As always, please interpret the above code as readible step by step implementation and do not claim it to be
100% efficient.

LDA WITH SKLEARN

In the following section we will use the prepackaged sklearn linear discriminant analysis method. The data
preparation is the same as above. That is, we use the same dataset, split it in 70% training and 30% test data
(Actually splitting the dataset is not mandatory in that case since we don't do any prediction - though, it is good
practice and it would not negatively affect our results in this case - so we do it -.)

CPU times: user 1.57 s, sys: 12 ms, total: 1.58 s
Wall time: 926 ms
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As you can see, the actual implementation of LDA using sklearn took us only two lines of code and we get the
same result as above. Congratulations, Done!
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U N S U P E R V I S E D  L E A R N I N G :
C L U S T E R I N G :  G A U S S I A N  M I X T U R E
M O D E L S  ( G M M )

CONTEXT AND KEY CONCEPTS

The Gaussian Mixture Models (GMM)
algorithm is an unsupervised learning
algorithm since we do not know any
values of a target feature. Further, the
GMM is categorized into the clustering
algorithms, since it can be used to find
clusters in the data. Key concepts you
should have heard about are:

• Multivariate Gaussian
Distribution

• Covariance Matrix
• Mean vector of multivariate

data

WHAT ARE GAUSSIAN
MIXTURE MODELS

We want to use Gaussian Mixture models to find clusters in a dataset from which we know (or assume to
know) the number of clusters enclosed in this dataset, but we do not know where these clusters are as well as
how they are shaped. Finding these clusters is the task of GMM and since we don't have any information
instead of the number of clusters, the GMM is an unsupervised approach. To accomplish that, we try to fit a
mixture of gaussians to our dataset. That is, we try to find a number of gaussian distributions which can be
used to describe the shape of our dataset. A critical point for the understanding is that these gaussian shaped
clusters must not be circular shaped as for instance in the KNN approach but can have all shapes a
multivariate Gaussian distribution can take. That is, a circle can only change in its diameter whilst a GMM
model can (because of its covariance matrix) model all ellipsoid shapes as well. See the following illustration
for an example in the two dimensional space.
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What I have omitted in this illustration is
that the position in space of KNN and
GMM models is defined by their mean
vector. Hence the mean vector gives the
space whilst the diameter respectively the
covariance matrix defines the shape of
KNN and GMM models.
So if we consider an arbitrary dataset like
the following:
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How precise can we fit a KNN model to
this kind of dataset, if we assume that
there are two clusters in the dataset? Well,
not so precise since we have overlapping
areas where the KNN model is not
accurate. This is due to the fact that the
KNN clusters are circular shaped whilst
the data is of ellipsoid shape. It may even
happen that the KNN totally fails as
illustrated in the following figure.

UNSUPERVISED LEARNING: CLUSTERING: GAUSSIAN MIXTURE MODELS (GMM) 518



If we would fit ellipsoids to the data, as
we do with the GMM approach, we
would be able to model the dataset well,
as illustrated in the following figure.
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Another weak point of KNN in its
original form is that each point is
allocated to one cluster, that is, each point
either belongs to cluster one or two in our
example. So assume, we add some more
datapoints in between the two clusters in
our illustration above. As you can see, we
can still assume that there are two
clusters, but in the space between the two
clusters are some points where it is not
totally clear to which cluster they belong.
Tackling this dataset with an classical
KNN approach would lead to the result,
that each datapoint is allocated to cluster
one or cluster two respectively and
therewith the KNN algorithm would find
a hard cut-off border between the two
clusters. Though, as you can see, this is
probably not correct for all datapoints
since we rather would say that for
instance datapoint 1 has a probability of
60% to belong to cluster one and a
probability of 40% to belong to cluster
two. Hence we want to assign
probabilities to the datapoints.
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In such a case, a classical KNN approach
is rather useless and we need something
let's say more flexible or smth. which
adds more likelihood to our clustering.
Fortunately,the GMM is such a model.
Since we do not simply try to model the
data with circles but add gaussians to our
data this allows us to allocate to each
point a likelihood to belong to each of the
gaussians. It is clear, and we know, that
the closer a datapoint is to one gaussian,
the higher is the probability that this point
actually belongs to this gaussian and the
less is the probability that this point
belongs to the other gaussian. Therefore,
consider the following illustration where
we have added a GMM to the above data
and highlighted point 2. This point is
much more likely to belong to cluster/
gaussian one (C1) than to cluster/gaussian
two (C2). Hence, if we would calculate
the probability for this point for each
cluster we would get smth. like: With a
probability of 99% This point belongs to cluster one, and with a probability of 1% to cluster two.
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So let's quickly summarize and
recapitulate in which cases we want to use
a GMM over a classical KNN approach.
If we have data where we assume that the
clusters are not defined by simple circles
but by more complex, ellipsoid shapes,
we prefer the GMM approach over the
KNN approach. Additionally, if we want
to have soft cut-off borders and therewith
probabilities, that is, if we want to know
the probability of a datapoint to belong to
each of our clusters, we prefer the GMM
over the KNN approach. Hence, if there
arise the two buzz words probabilities and
non-circular during our model selection
discussion, we should strongly check the
use of the GMM.

So now that we know that we should
check the usage of the GMM approach if
we want to allocate probabilities to our
clusterings or if there are non-circular
clusters, we should take a look at how we
can build a GMM model. This is derived
in the next section of this tutorial. So
much for that: We follow a approach
called Expectation Maximization (EM).

MATHS BEHIND GAUSSIAN MIXTURE MODELS (GMM)

To understand the maths behind the GMM concept I strongly recommend to watch the video of Prof.
Alexander Ihler about Gaussian Mixture Models and EM. This video gives a perfect insight into what is going
on during the calculations of a GMM and I want to build the following steps on top of that video. After you
have red the above section and watched this video you will understand the following pseudocode.
So we know that we have to run the E-Step and the M-Step iteratively and maximize the log likelihood
function until it converges. Though, we will go into more detail about what is going on during these two steps
and how we can compute this in python for one and more dimensional datasets.
I will quickly show the E, M steps here.

1. Decide how many sources/clusters (c) you want to fit to your data
2. Initialize the parameters mean μc, covariance Σc, and fraction_per_class πc per cluster c

E − Step
_
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1. Calculate for each datapoint xi the probability ric that datapoint xi belongs to cluster c with:

ric =
πcN(xi | μc, Σc)

ΣK
k = 1

πkN(xi | μk, Σk)

where N(x | μ, Σ) describes the mulitvariate Gaussian with:

N(xi, μc, Σc) =
1

(2π)
n

2 | Σc |
1

2

exp( −
1

2
(xi − μc)

TΣ − 1
c

(xi − μc))

ric gives us for each datapoint xi the measure of:
Probability that xi belongs to class c

Probability of xi over all classes
hence if xi is

very close to one gaussian c, it will get a high ric value for this gaussian and relatively low

values otherwise.

M − Step
_

For each cluster c: Calculate the total weight mc (loosely speaking the fraction of points

allocated to cluster c) and update πc, μc, and Σc using ric with:

mc = Σiric

πc =
mc

m

μc =
1

mc
Σiricxi

Σc =
1

mc
Σiric(xi − μc)

T(xi − μc)
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Mind that you have to use the updated means in this last formula.

Iteratively repeat the E and M step until the log-likelihood function of our model converges
where the log likelihood is computed with:

ln p(X | π, μ, Σ) = ΣN
i = 1

ln(ΣK
k = 1

πkN(xi | μk, Σk))

UNSUPERVISED LEARNING: CLUSTERING: GAUSSIAN MIXTURE MODELS (GMM) 524



G M M  I N  P Y T H O N  F R O M  S C R A T C H

To understand how we can implement the above in Python, we best go through the single steps, step by step.
Therefore, we best start with the following situation:

What can you say about this data? Well,
we may see that there are kind of three
data clusters. Further, we know that our
goal is to automatically fit gaussians (in
this case it should be three) to this dataset.
Now first of all, lets draw three randomly
drawn gaussians on top of that data and
see if this brings us any further.
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What do we have now? Well, we have the
datapoints and we have three randomly
chosen gaussian models on top of that
datapoints. Remember that we want to
have three gaussian models fitted to our
three data-clusters. So how can we cause
these three randomly chosen guassians to
fit the data automatically? Well, here we
use an approach called Expectation-
Maximization (EM). This approach can,
in principal, be used for many different
models but it turns out that it is especially
popular for the fitting of a bunch of
Gaussians to data. I won't go into detail
about the principal EM algorithm itself
and will only talk about its application for
GMM. If you want to read more about it I
recommend the chapter about General
Statement of EM Algorithm in Mitchel
(1997) pp.194. But don't panic, in
principal it works always the same.
Ok, now we know that we want to use
something called Expectation Maximization. This term consists of two parts: Expectation and Maximzation.
Well, how can we combine the data and above randomly drawn gaussians with the first term Expectation?
Lets try to simply calculate the probability for each datapoint in our dataset for each gaussian, that it the
probability that this datapoint belongs to each of the three gaussians. Since we have to store these
probabilities somewhere, we introduce a new variable and call this variable r. We use r for convenience
purposes to kind of have a container where we can store the probability that datapoint xi belongs to gaussian c

. We denote this probability with ric. What we get as result is an nxK array where n denotes the number of

datapoints in x and K denotes the number of clusters/gaussians. Hm let's try this for our data and see what we
get.
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Dimensionality = (60, 3)
[[2.97644006e-02 9.70235407e-01 1.91912550e-07]
[3.85713024e-02 9.61426220e-01 2.47747304e-06]
[2.44002651e-02 9.75599713e-01 2.16252823e-08]
[1.86909096e-02 9.81309090e-01 8.07574590e-10]
[1.37640773e-02 9.86235923e-01 9.93606589e-12]
[1.58674083e-02 9.84132592e-01 8.42447356e-11]
[1.14191259e-02 9.88580874e-01 4.48947365e-13]
[1.34349421e-02 9.86565058e-01 6.78305927e-12]
[1.11995848e-02 9.88800415e-01 3.18533028e-13]
[8.57645259e-03 9.91423547e-01 1.74498648e-15]
[7.64696969e-03 9.92353030e-01 1.33051021e-16]
[7.10275112e-03 9.92897249e-01 2.22285146e-17]
[6.36154765e-03 9.93638452e-01 1.22221112e-18]
[4.82376290e-03 9.95176237e-01 1.55549544e-22]
[7.75866904e-03 9.92241331e-01 1.86665135e-16]
[7.52759691e-03 9.92472403e-01 9.17205413e-17]
[8.04550643e-03 9.91954494e-01 4.28205323e-16]
[3.51864573e-03 9.96481354e-01 9.60903037e-30]
[3.42631418e-03 9.96573686e-01 1.06921949e-30]
[3.14390460e-03 9.96856095e-01 3.91217273e-35]
[1.00000000e+00 2.67245688e-12 1.56443629e-57]
[1.00000000e+00 4.26082753e-11 9.73970426e-49]
[9.99999999e-01 1.40098281e-09 3.68939866e-38]
[1.00000000e+00 2.65579518e-10 4.05324196e-43]
[9.99999977e-01 2.25030673e-08 3.11711096e-30]
[9.99999997e-01 2.52018974e-09 1.91287930e-36]
[9.99999974e-01 2.59528826e-08 7.72534540e-30]
[9.99999996e-01 4.22823192e-09 5.97494463e-35]
[9.99999980e-01 1.98158593e-08 1.38414545e-30]
[9.99999966e-01 3.43722391e-08 4.57504394e-29]
[9.99999953e-01 4.74290492e-08 3.45975850e-28]
[9.99999876e-01 1.24093364e-07 1.31878573e-25]
[9.99999878e-01 1.21709730e-07 1.17161878e-25]
[9.99999735e-01 2.65048706e-07 1.28402556e-23]
[9.99999955e-01 4.53370639e-08 2.60841891e-28]
[9.99999067e-01 9.33220139e-07 2.02379180e-20]
[9.99998448e-01 1.55216175e-06 3.63693167e-19]
[9.99997285e-01 2.71542629e-06 8.18923788e-18]
[9.99955648e-01 4.43516655e-05 1.59283752e-11]
[9.99987200e-01 1.28004505e-05 3.20565446e-14]
[9.64689131e-01 9.53405294e-03 2.57768163e-02]
[9.77001731e-01 7.96383733e-03 1.50344317e-02]
[9.96373670e-01 2.97775078e-03 6.48579562e-04]
[3.43634425e-01 2.15201653e-02 6.34845409e-01]
[9.75390877e-01 8.19866977e-03 1.64104537e-02]
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So you see that we got an array r where each row contains the probability that xi belongs to any of the

gaussians g. Hence for each xi we get three probabilities, one for each gaussian g. Ok, so good for now. We

now have three probabilities for each xi and that's fine. Recapitulate our initial goal: We want to fit as many

gaussians to the data as we expect clusters in the dataset. Now, probably it would be the case that one cluster
consists of more datapoints as another one and therewith the probability for each xi to belong to this "large"

cluster is much greater than belonging to one of the others. How can we address this issue in our above code?
Well, we simply code-in this probability by multiplying the probability for each ric with the fraction of points

we assume to belong to this cluster c. We denote this variable with πc.

For illustration purposes, look at the following figure:

[9.37822997e-01 1.19363656e-02 5.02406373e-02]
[4.27396946e-01 2.18816340e-02 5.50721420e-01]
[3.28570544e-01 2.14190231e-02 6.50010433e-01]
[3.62198108e-01 2.16303800e-02 6.16171512e-01]
[2.99837196e-01 2.11991858e-02 6.78963618e-01]
[2.21768797e-01 2.04809383e-02 7.57750265e-01]
[1.76497129e-01 2.01127714e-02 8.03390100e-01]
[8.23252013e-02 2.50758227e-02 8.92598976e-01]
[2.11943183e-01 2.03894641e-02 7.67667353e-01]
[1.50351209e-01 2.00499057e-02 8.29598885e-01]
[1.54779991e-01 2.00449518e-02 8.25175057e-01]
[7.92109803e-02 5.93118654e-02 8.61477154e-01]
[9.71905134e-02 2.18698473e-02 8.80939639e-01]
[7.60625670e-02 4.95831879e-02 8.74354245e-01]
[8.53513721e-02 2.40396004e-02 8.90609028e-01]]

[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
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So as you can see, the points are
approximately equally distributed over
the two clusters and hence each μc is ≈

0.5. If the fractions where more unequally
distributed like for instance if only two
datapoints would belong to cluster 1, we
would have more unbalanced μ's. The
fractions must some to one. So let's
implement these weighted classes in our
code above. Since we do not know the
actual values for our mu's we have to set
arbitrary values as well. We will set both
μc to 0.5 here and hence we don't get any

other results as above since the points are
assumed to be equally distributed over the
two clusters c.

GMM IN PYTHON FROM SCRATCH 529



Dimensionality = (60, 3)
[[2.97644006e-02 9.70235407e-01 1.91912550e-07]
[3.85713024e-02 9.61426220e-01 2.47747304e-06]
[2.44002651e-02 9.75599713e-01 2.16252823e-08]
[1.86909096e-02 9.81309090e-01 8.07574590e-10]
[1.37640773e-02 9.86235923e-01 9.93606589e-12]
[1.58674083e-02 9.84132592e-01 8.42447356e-11]
[1.14191259e-02 9.88580874e-01 4.48947365e-13]
[1.34349421e-02 9.86565058e-01 6.78305927e-12]
[1.11995848e-02 9.88800415e-01 3.18533028e-13]
[8.57645259e-03 9.91423547e-01 1.74498648e-15]
[7.64696969e-03 9.92353030e-01 1.33051021e-16]
[7.10275112e-03 9.92897249e-01 2.22285146e-17]
[6.36154765e-03 9.93638452e-01 1.22221112e-18]
[4.82376290e-03 9.95176237e-01 1.55549544e-22]
[7.75866904e-03 9.92241331e-01 1.86665135e-16]
[7.52759691e-03 9.92472403e-01 9.17205413e-17]
[8.04550643e-03 9.91954494e-01 4.28205323e-16]
[3.51864573e-03 9.96481354e-01 9.60903037e-30]
[3.42631418e-03 9.96573686e-01 1.06921949e-30]
[3.14390460e-03 9.96856095e-01 3.91217273e-35]
[1.00000000e+00 2.67245688e-12 1.56443629e-57]
[1.00000000e+00 4.26082753e-11 9.73970426e-49]
[9.99999999e-01 1.40098281e-09 3.68939866e-38]
[1.00000000e+00 2.65579518e-10 4.05324196e-43]
[9.99999977e-01 2.25030673e-08 3.11711096e-30]
[9.99999997e-01 2.52018974e-09 1.91287930e-36]
[9.99999974e-01 2.59528826e-08 7.72534540e-30]
[9.99999996e-01 4.22823192e-09 5.97494463e-35]
[9.99999980e-01 1.98158593e-08 1.38414545e-30]
[9.99999966e-01 3.43722391e-08 4.57504394e-29]
[9.99999953e-01 4.74290492e-08 3.45975850e-28]
[9.99999876e-01 1.24093364e-07 1.31878573e-25]
[9.99999878e-01 1.21709730e-07 1.17161878e-25]
[9.99999735e-01 2.65048706e-07 1.28402556e-23]
[9.99999955e-01 4.53370639e-08 2.60841891e-28]
[9.99999067e-01 9.33220139e-07 2.02379180e-20]
[9.99998448e-01 1.55216175e-06 3.63693167e-19]
[9.99997285e-01 2.71542629e-06 8.18923788e-18]
[9.99955648e-01 4.43516655e-05 1.59283752e-11]
[9.99987200e-01 1.28004505e-05 3.20565446e-14]
[9.64689131e-01 9.53405294e-03 2.57768163e-02]
[9.77001731e-01 7.96383733e-03 1.50344317e-02]
[9.96373670e-01 2.97775078e-03 6.48579562e-04]
[3.43634425e-01 2.15201653e-02 6.34845409e-01]
[9.75390877e-01 8.19866977e-03 1.64104537e-02]
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So this was the Expectation step. Let's quickly recapitulate what we have done and let's visualize the above
(with different colors due to illustration purposes).

[9.37822997e-01 1.19363656e-02 5.02406373e-02]
[4.27396946e-01 2.18816340e-02 5.50721420e-01]
[3.28570544e-01 2.14190231e-02 6.50010433e-01]
[3.62198108e-01 2.16303800e-02 6.16171512e-01]
[2.99837196e-01 2.11991858e-02 6.78963618e-01]
[2.21768797e-01 2.04809383e-02 7.57750265e-01]
[1.76497129e-01 2.01127714e-02 8.03390100e-01]
[8.23252013e-02 2.50758227e-02 8.92598976e-01]
[2.11943183e-01 2.03894641e-02 7.67667353e-01]
[1.50351209e-01 2.00499057e-02 8.29598885e-01]
[1.54779991e-01 2.00449518e-02 8.25175057e-01]
[7.92109803e-02 5.93118654e-02 8.61477154e-01]
[9.71905134e-02 2.18698473e-02 8.80939639e-01]
[7.60625670e-02 4.95831879e-02 8.74354245e-01]
[8.53513721e-02 2.40396004e-02 8.90609028e-01]]

[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
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So have fitted three arbitrarily chosen gaussian models to our dataset. Therefore we have introduced a new
variable which we called r and in which we have stored the probability for each point xi to belong to gaussian

g or to cluster c, respectively. Next we have plotted the xi points and colored according to their probabilities

for the three clusters. You can see that the points which have a very high probability to belong to one specific
gaussian, has the color of this gaussian while the points which are between two gaussians have a color which
is a mixture of the colors of the corresponding gaussians.

So in a more mathematical notation and for multidimensional cases (here the single mean value μ for the
calculation of each gaussian changes to a mean vector μ with one entry per dimension and the single variance

value σ2 per gaussian changes to a nxn covariance matrix Σ where n is the number of dimensions in the
dataset.) the Expectation step of the EM algorithm looks like:
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E − Step
_

1. Decide how many sources/clusters (c) you want to fit to your data --> Mind that each cluster c
is represented by gaussian g

2. Initialize the parameters mean μc, covariance Σc, and fraction_per_class πc per cluster c

3. Calculate for each datapoint xi the probability ric that datapoint xi belongs to cluster c with:

ric =
πcN(xi | μc, Σc)

ΣK
k = 1

πkN(xi | μk, Σk)

where N(x | μ, Σ) describes the mulitvariate Gaussian with:

N(xi, μc, Σc) =
1

(2π)
n

2 | Σc |
1

2

exp( −
1

2
(xi − μc)

TΣ − 1
c

(xi − μc))

ric gives us for each datapoint xi the measure of:
Probability that xi belongs to class c

Probability of xi over all classes
hence if xi is

very close to one gaussian g, it will get a high ric value for this gaussian and relatively low

values otherwise.

So why did this help us? Well, we now know the probability for each point to belong to each
gaussian.
What can we do with this information? Well, with this information we can calculate a new mean
as well as a new variance (in 1D) or covariance matrix in > 1D datasets. What will be the result
of that? Well, this would change the location of each gaussian in the direction of the "real"
mean and would re-shape each gaussian using a value for the variance which is closer to the
"real" variance. This procedure is called the Maximization step of the EM algorithm. The
Maximization step looks as follows:

M − Step
_

For each cluster c: Calculate the total weight mc (loosely speaking the fraction of points

allocated to cluster c) and update πc, μc, and Σc using ric with:

mc = Σiric
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πc =
mc

m

μc =
1

mc
Σiricxi

Σc = Σiric(xi − μc)
T(xi − μc)

Mind that you have to use the updated means in this last formula.

So here mc is simply the fraction of points allocated to cluster c. To understand this, assume that

in our r we don't have probabilities between 0 and 1 but simply 0 or 1. That is, a 1 if xi belongs

to c and a 0 otherwise (So each row would contain one 1 and two 0 in our example above). In
this case mc would be simply the number of 1s per column, that is, the number of xi allocated to

each cluster c. But since we have probabilities, we do not simply have ones and zeros but the
principal is the same --> We sum up the probabilities ric over all i to get mc. Then πc is simply

the fraction of points which belong to cluster c as above. We then calculate the new mean
(vector) μc by summing up the product of each value xi and the corresponding probability that

this point belongs to cluster c (ric) and divide this sum by "the number of points" in c (mc).

Remember that if we had zeros and ones, this would be a completely normal mean calculation
but since we have probabilities, we divide by the sum of these probabilities per cluster c. Also
the new covariance matrix (Σc) is updated by calculating the covariance matrix per class c (Σc)

weighted by the probability that point xi belongs to cluster c. We could also write

Σc = mc(x − μc)
T((x − μc)).

so let's look at our plot if we do the above updates, that is run the first EM iteration .
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So as you can see the occurrence of our gaussians changed dramatically after the first EM iteration. Let's
update r and illustrate the coloring of the points.
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As you can see, the colors of the datapoints changed due to the adjustment of r. This is logical since also the
means and the variances of the gaussians changed and therewith the allocation probabilities changed as well.
Though, after this first run of our EM algorithm, the results does not look better than our initial, arbitrary
starting results isn't it? Lets see what happens if we run the steps above multiple times. This is done by simply
looping through the EM steps after we have done out first initializations of μc, σ2

c
and μc. We run the EM for

10 loops and plot the result in each loop. You can observe the progress for each EM loop below.
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As you can see, our three randomly initialized gaussians have fitted the data. Beautiful, isn't it? The last step
would now be to plot the log likelihood function to show that this function converges as the number of
iterations becomes large and therewith there will be no improvement in our GMM and we can stop the
algorithm to iterate. Since I have introduced this in the multidimensional case below I will skip this step here.
But there isn't any magical, just compute the value of the loglikelihood as described in the pseudocode above
for each iteration, save these values in a list and plot the values after the iterations. As said, I have
implemented this step below and you will see how we can compute it in Python.

So we have now seen that, and how, the GMM works for the one dimensional case. But how can we
accomplish this for datasets with more than one dimension? Well, it turns out that there is no reason to be
afraid since once you have understand the one dimensional case, everything else is just an adaption and I still
have shown in the pseudocode above, the formulas you need for the multidimensional case. So the difference
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to the one dimensional case is that our datasets do no longer consist of one column but have multiple columns
and therewith our above xi is no longer a scalar but a vector (xi) consisting of as many elements as there are

columns in the dataset. Since there are multiple columns, also the mean per class is no longer a scalar but μc

but a vector μc consisting of as many elements as there are columns in the dataset. Also, the variance is no

longer a scalar for each cluster c (σ2) but becomes a covariance matrix Σc of dimensionality nxn where n is

the number of columns (dimensions) in the dataset. The calculations retain the same!

So let's derive the multi dimensional case in Python. I have added comments at all critical steps to help you to
understand the code. Additionally, I have wrote the code in such a way that you can adjust how many sources
(==clusters) you want to fit and how many iterations you want to run the model. By calling the EMM
function with different values for number_of_sources and iterations. The actual fitting of the GMM is done in
the run() function. I have also introduced a predict() function which allows us to predict the probabilities of
membership for a new, unseen datapoint to belong to the fitted gaussians (clusters). So in principal, the below
code is split in two parts: The run() part where we train the GMM and iteratively run through the E and M
steps, and the predict() part where we predict the probability for a new datapoint. I recommend to go through
the code line by line and maybe plot the result of a line with smth. like plot(result of line 44) if you are unsure
what is going on -This procedure has helped the author many times-.
I have to make a final side note: I have introduced a variable called self.reg_cov. This variable is smth. we
need to prevent singularity issues during the calculations of the covariance matrices. This is a mathematical
problem which could arise during the calculation of the covariance matrix and hence is not critical for the
understanding of the GMM itself. Though, it turns out that if we run into a singular covariance matrix, we get
an error. To prevent this, we introduce the mentioned variable. For those interested in why we get a
singularity matrix and what we can do against it, I will add the section "Singularity issues during the
calculations of GMM" at the end of this chapter.
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Output: : [3.5799079955839772e-06, 0.00013180910068621356, 0.999864610
9913182]
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So now we have seen that we can create an arbitrary dataset, fit a GMM to this data which is first finding
gaussian distributed clusters (sources) in this dataset and second allows us to predict the membership
probability of an unseen datapoint to these sources.

What can we do with this model at the end of the day? Well, imagine you get a dataset like the above where
someone tells you: "Hey I have a dataset and I know that there are 5 clusters. Unfortunately, I don't know
which label belongs to which cluster, and hence I have a unlabeled dataset. Can you help me to find the
clusters?". You can answer: "Yeah, I can by using a GMM approach!". Your opposite is delightful. A few
days later the same person knocks on your door and says: "Hey I want to thank you one more time for you
help. I want to let you know that I now have a new datapoint for for which I know it's target value. Can you
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do smth. useful with it?" you answer: "Well, I think I can. By using our created GMM model on this new
datapoint, I can calculate the probability of membership of this datapoint to belong to each of the clusters. If
we are lucky and our calculations return a very high probability for this datapoint for one cluster we can
assume that all the datapoints belonging to this cluster have the same target value as this datapoint. Therewith,
we can label all the unlabeled datapoints of this cluster (given that the clusters are tightly clustered -to be
sure-). Therewith we can make a unlabeled dataset a (partly) labeled dataset and use some kind of supervised
learning algorithms in the next step. Cool, isn't it?

GMM USING SKLEARN

So now we will create a GMM Model using the prepackaged sklearn.mixture.GaussianMixture method. As
we can see, the actual set up of the algorithm, that is the instantiation as well as the calling of the fit() method
does take us only one line of code. Cool isn't it?
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So as you can see, we get very nice results. Congratulations, Done!

SINGULARITY ISSUES DURING THE CALCULATIONS OF GMM

This section will give an insight into what is happening that leads to a singular covariance matrix during the
fitting of an GMM to a dataset, why this is happening, and what we can do to prevent that.

Converged: True
[[9.36305075e-82 1.94756664e-93 4.00098007e-33 5.02664415e-44

1.00000000e+00]]
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Therefore we best start by recapitulating the steps during the fitting of a Gaussian Mixture Model to a dataset.

1. Decide how many sources/clusters (c) you want to fit to your data
2. Initialize the parameters mean μc, covariance Σc, and fraction_per_class πc per cluster c

E − Step
_

1. Calculate for each datapoint xi the probability ric that datapoint xi belongs to cluster c with:

ric =
πcN(xi | μc, Σc)

ΣK
k = 1

πkN(xi | μk, Σk)

where N(x | μ, Σ) describes the mulitvariate Gaussian with:

N(xi, μc, Σc) =
1

(2π)
n

2 | Σc |
1

2

exp( −
1

2
(xi − μc)

TΣ − 1
c

(xi − μc))

ric gives us for each datapoint xi the measure of:
Probability that xi belongs to class c

Probability of xi over all classes
hence if xi is

very close to one gaussian c, it will get a high ric value for this gaussian and relatively low

values otherwise.

M − Step
_

For each cluster c: Calculate the total weight mc (loosely speaking the fraction of points

allocated to cluster c) and update πc, μc, and Σc using ric with:

mc = Σiric

πc =
mc

m
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μc =
1

mc
Σiricxi

Σc =
1

mc
Σiric(xi − μc)

T(xi − μc)

Mind that you have to use the updated means in this last formula.

Iteratively repeat the E and M step until the log-likelihood function of our model converges
where the log likelihood is computed with:

ln p(X | π, μ, Σ) = ΣN
i = 1

ln(ΣK
k = 1

πkN(xi | μk, Σk))

So now we have derived the single steps during the calculation we have to consider what it mean for a matrix
to be singular. A matrix is singular if it is not invertible. A matrix is invertible if there is a matrix X such that
AX = XA = I. If this is not given, the matrix is said to be singular. That is, a matrix like:

[0 0

0 0 ]

is not invertible and following singular. It is also plausible, that if we assume that the above matrix is matrix A
there could not be a matrix X which gives dotted with this matrix the identity matrix I (Simply take this zero
matrix and dot-product it with any other 2x2 matrix and you will see that you will always get the zero
matrix). But why is this a problem for us? Well, consider the formula for the multivariate normal above.
There you would find Σ − 1

c
which is the invertible of the covariance matrix. Since a singular matrix is not

invertible, this will throw us an error during the computation.
So now that we know how a singular, not invertible matrix looks like and why this is important to us during
the GMM calculations, how could we ran into this issue? First of all, we get this 0 covariance matrix above if
the Multivariate Gaussian falls into one point during the iteration between the E and M step. This could
happen if we have for instance a dataset to which we want to fit 3 gaussians but which actually consists only
of two classes (clusters) such that loosely speaking, two of these three gaussians catch their own cluster while
the last gaussian only manages it to catch one single point on which it sits. We will see how this looks like
below. But step by step: Assume you have a two dimensional dataset which consist of two clusters but you
don't know that and want to fit three gaussian models to it, that is c = 3. You initialize your parameters in the
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E step and plot the gaussians on top of your data which looks smth. like (maybe you can see the two relatively
scattered clusters on the bottom left and top right):
Having initialized the parameter, you
iteratively do the E, T steps. During this
procedure the three Gaussians are kind of
wandering around and searching for their
optimal place. If you observe the model
parameters, that is μc and πc you will

observe that they converge, that it after
some number of iterations they will no
longer change and therewith the
corresponding Gaussian has found its
place in space. In the case where you have
a singularity matrix you encounter smth.
like:
Where I have circled the third gaussian
model with red. So you see, that this
Gaussian sits on one single datapoint
while the two others claim the rest. Here I
have to notice that to be able to draw the
figure like that I already have used
covariance-regularization which is a
method to prevent singularity matrices
and is described below.

Ok , but now we still do not know why
and how we encounter a singularity
matrix. Therefore we have to look at the
calculations of the ric and the cov during

the E and M steps. If you look at the ric

formula again:

ric =
πcN(xi | μc, Σc)

ΣK
k = 1

πkN(xi | μk, Σk)

you see that there the ric's would have

large values if they are very likely under
cluster c and low values otherwise. To
make this more apparent consider the case
where we have two relatively spread
gaussians and one very tight gaussian and
we compute the ric for each datapoint xi

as illustrated in the figure:
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So go through the datapoints from left to
right and imagine you would write down
the probability for each xi that it belongs

to the red, blue and yellow gaussian.
What you can see is that for most of the xi

the probability that it belongs to the
yellow gaussian is very little. In the case
above where the third gaussian sits onto
one single datapoint, ric is only larger

than zero for this one datapoint while it is
zero for every other xi. (collapses onto

this datapoint --> This happens if all other
points are more likely part of gaussian
one or two and hence this is the only point
which remains for gaussian three --> The
reason why this happens can be found in
the interaction between the dataset itself
in the initializaion of the gaussians. That
is, if we had chosen other initial values
for the gaussians, we would have seen
another picture and the third gaussian
maybe would not collapse). This is
sufficient if you further and further spikes
this gaussian. The ric table then looks smth. like:
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As you can see, the ric of the third

column, that is for the third gaussian are
zero instead of this one row. If we look up
which datapoint is represented here we
get the datapoint: [ 23.38566343
8.07067598]. Ok, but why do we get a
singularity matrix in this case? Well, and
this is our last step, therefore we have to
once more consider the calculation of the
covariance matrix which is:

Σc = Σiric(xi − μc)
T(xi − μc)

we have seen that all ric are zero instead

for the one xi with [23.38566343

8.07067598]. Now the formula wants us
to calculate (xi − μc). If we look at the μc
for this third gaussian we get
[23.38566343 8.07067598]. Oh, but wait,
that exactly the same as xi and that's what

Bishop wrote with:"Suppose that one of
the components of the mixture model, let
us say the j th component, has its mean μj
exactly equal to one of the data points so
that μj = xn for some value of n" (Bishop,

2006, p.434). So what will happen? Well,
this term will be zero and hence this
datapoint was the only chance for the
covariance-matrix not to get zero (since
this datapoint was the only one where ric

>0), it now gets zero and looks like:

[0 0

0 0 ]

Consequently as said above, this is a singular matrix and will lead to an error during the calculations of the
multivariate gaussian. So how can we prevent such a situation. Well, we have seen that the covariance matrix
is singular if it is the 0 matrix. Hence to prevent singularity we simply have to prevent that the covariance
matrix becomes a 0 matrix. This is done by adding a very little value (in sklearn's GaussianMixture this value
is set to 1e-6) to the digonal of the covariance matrix. There are also other ways to prevent singularity such as
noticing when a gaussian collapses and setting its mean and/or covariance matrix to a new, arbitrarily high
value(s). This covariance regularization is also implemented in the code below with which you get the
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described results. Maybe you have to run the code several times to get a singular covariance matrix since, as
said. this must not happen each time but also depends on the initial set up of the gaussians.
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T E N S O R F L O W

TensorFlow is an open-source software library for machine learning across a range of tasks. It is a symbolic
math library, and also used as a system for building and training neural networks to detect and decipher
patterns and correlations, analogous to human learning and reasoning. It is used for both research and
production at Google often replacing its closed-source predecessor, DistBelief. TensorFlow was developed by
the Google Brain team for internal Google use. It was released under the Apache 2.0 open source license on 9
November 2015.

TensorFlow provides a Python API as well as C++, Haskell, Java, Go and Rust APIs.

A tensor can be represented as a
multidimensional array of numbers. A
tensor has its rank and shape, rank is its
number of dimensions and shape is the
size of each dimension.

All data of TensorFlow is represented as
tensors. It is the sole data structure:

tf.float32, tf.float64, tf.int8, tf.int16, …, tf.int64, tf.uint8, ...

Output:: [[[3, 4], [1, 2]],
[[3, 5], [8, 9]]]
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STRUCTURE OF TENSORFLOW PROGRAMS

TensorFlow programs consist of two
discrete sections:

1. A graph is created in the
construction phase.

2. The computational graph is
run in the execution phase,
which is a session.

EXAMPLE

A computational graph is a series of TensorFlow operations arranged into a graph of nodes. Let's build a
simple computational graph. Each node takes zero or more tensors as inputs and produces a tensor as an
output. Constant nodes take no input.

Printing the nodes does not output a numerical value. We have defined a computational graph but no
numerical evaluation has taken place!

To evaluate the nodes, we have to run the computational graph within a session. A session encapsulates the
control and state of the TensorFlow runtime. The following code creates a Session object and then invokes its
run method to run enough of the computational graph to evaluate node1 and node2. By running the
computational graph in a session as follows. We have to create a session object:

Now, we can evaluate the computational graph by starting the run method of the session object:

34.0012 <class 'numpy.fl
oat32'>

34.001156 <class 'nump
y.float64'>

[  23.12  165.62    2.88  162.  ] <class 'numpy.ndarray'>

Tensor("Const_6:0", shape=(4,), dtype=float64)
Tensor("Mul_6:0", shape=(4,), dtype=float64)
Tensor("Add_3:0", shape=(4,), dtype=float64)

[  23.12  165.62    2.88  162.  ]
<class 'numpy.ndarray'>
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Of course, we will have to close the session, when we are finished:

It is usually a better idea to work with the with statement, as we did in the introductory examples!

SIMILARITY TO NUMPY

We will rewrite the following program with Numpy.

Now a similar Numpy version:

TENSORBOARD

• TensorFlow provides functions to debug and optimize programs with the help of a visualization
tool called TensorBoard.

• TensorFlow creates the necessary data during its execution.
• The data are stored in trace files.
• Tensorboard can be viewed from a browser using http://localhost:6006/

We can run the following example program, and it will create the directory "output" We can run now
tensorboard: tensorboard --logdir output

which will create a webserver: TensorBoard 0.1.8 at http://marvin:6006 (Press CTRL+C to quit)

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[12 15 18 21]
[[ 1.  0.  0.  0.  0.]
[ 0.  1.  0.  0.  0.]
[ 0.  0.  1.  0.  0.]
[ 0.  0.  0.  1.  0.]
[ 0.  0.  0.  0.  1.]]

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[12 15 18 21]
[[ 1.  0.  0.  0.  0.]
[ 0.  1.  0.  0.  0.]
[ 0.  0.  1.  0.  0.]
[ 0.  0.  0.  1.  0.]
[ 0.  0.  0.  0.  1.]]

1069.16
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The computational graph is included in the TensorBoard:

PLACEHOLDERS

A computational graph can be parameterized to accept external inputs, known as placeholders. The values for
placeholders are provided when the graph is run in a session.

Another example:

placeholder( dtype, shape=None, name=None )

Inserts a placeholder for a tensor that will be always fed. It returns a Tensor that may be used as a handle for

193.458
[ 12.  40.]

[ 21.  20.  30.]
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feeding a value, but not evaluated directly.

Important: This tensor will produce an error if evaluated. Its value must be fed using the feed_dict optional
argument to

Session.run()

Tensor.eval()

Operation.run()

Args:

Parameter Description

dtype: The type of elements in the tensor to be fed.

shape: The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a tensor of any shape.

name: A name for the operation (optional).

VARIABLES

Variables are used to add trainable parameters to a graph. They are constructed with a type and initial value.
Variables are not initialized when you call tf.Variable. To initialize the variables of a TensorFlow graph, we
have to call global_variables_initializer:

DIFFERENCE BETWEEN VARIABLES AND PLACEHOLDERS

The difference between tf.Variable and tf.placeholder consists in the time when the values are passed. If you
use tf.Variable, you have to provide an initial value when you declare it. With tf.placeholder you don't have to
provide an initial value.

The value can be specified at run time with the feed_dict argument inside Session.run

A placeholder is used for feeding external data into a Tensorflow computation, i.e. from outside of the graph!

If you are training a learning algorithm, a placeholder is used for feeding in your training data. This means
that the training data is not part of the computational graph. The placeholder behaves similar to the Python
"input" statement. On the other hand a TensorFlow variable behaves more or less like a Python variable!

Example:

[-0.5  0.   0.5  1. ]
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Calculating the loss:

REASSIGNING VALUES TO VARIABLES

CREATING DATA SETS

We will create data sets for a larger example for the GradientDescentOptimizer.

3.5

3.5
0.0

[array([  3.91378126e-06], dtype=float32), array([ 0.99998844], d
type=float32)]
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In [ ]:
In [ ]:

Bias vector:  [-0.78089082  0.78089082]
Weight matrix:
[[-0.80193734  0.8019374 ]
[-0.831303    0.831303  ]]

Applying model to first data set:
[[-1.05999994 -1.55999994]]

Wx + b:  [[ 1.36599553 -1.36599553]]
softmax(Wx + b):  [[ 0.93888813  0.06111182]]
Accuracy on test data:  0.97
Accuracy on training data:  0.9725
[1 1 1 1 0]
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