class Classifier:
def __init__(self, *nbclasses):
self.nbclasses = nbclasses
def prob(self, *d, best_only=True):
nbclasses = self.nbclasses
probability_list = []
for nbclass in nbclasses:
ftrs = nbclass.features
prob = 1
for i in range(len(ftrs)):
prob *= nbclass.probability_value_given_feature(d[i], ftrs[i])
probability_list.append( (prob, nbclass.name) )
prob_values = [f[0] for f in probability_list]