First page Back Continue Last page Overview Graphics

Exercise

Create a Neural

Network for the

previous data set.

from itertools import chain

p = Perceptron(2)

def lin1(x):

return x + 4

for point in class1:

p.adjust(1, p(point), point)

for point in class2:

p.adjust(0, p(point), point)

evaluation = Counter()

for point in chain(class1, class2):

if p(point) == 1:

evaluation["correct"] += 1

else:

evaluation["wrong"] += 1

testpoints = [(3.9, 6.9), (-2.9, -5.9)]

for point in testpoints:

print(p(point))

print(evaluation.most_common())