
bodenseo

Python
Tutorial

by
Bernd Klein

© 2021 Bernd Klein

All rights reserved. No portion of this book may be reproduced or used in any
manner without written permission from the copyright owner.

For more information, contact address: bernd.klein@python-course.eu

www.python-course.eu

mailto:bernd.klein@python-course.eu

Python Course
Python Tutorial by

Bernd Klein
Strings...10
Execute a Python script ..11
Start a Python program...12
Loops ..136
Iterators and Iterables ...150
Coffee, Dictionary and a Loop ...171
Parameters and Arguments ...226
Global, Local and nonlocal Variables...237
Regular Expressions ...305
Lambda, filter, reduce and map ..340
content of test_foobar.py ..428
Deeper into Properties ..482
Descriptors..487
Multiple Inheritance: Example ...535
Polynomials ..570
Metaclasses...597
Count Method Calls Using a Metaclass ...602
Abstract Classes..607

2

H I S T O R Y O F P Y T H O N

EASY AS ABC

What do the alphabet and the programming language Python have in
common? Right, both start with ABC. If we are talking about ABC in the
Python context, it's clear that the programming language ABC is meant.
ABC is a general-purpose programming language and programming
environment, which was developed in the Netherlands, Amsterdam, at the
CWI (Centrum Wiskunde & Informatica). The greatest achievement of
ABC was to influence the design of Python.

Python was conceptualized in the late 1980s. Guido van Rossum worked
that time in a project at the CWI, called Amoeba, a distributed operating
system. In an interview with Bill Venners1, Guido van Rossum said: "In
the early 1980s, I worked as an implementer on a team building a language
called ABC at Centrum voor Wiskunde en Informatica (CWI). I don't know
how well people know ABC's influence on Python. I try to mention ABC's
influence because I'm indebted to everything I learned during that project and to the people who worked on it."

Later on in the same Interview, Guido van Rossum continued: "I remembered all my experience and some of
my frustration with ABC. I decided to try to design a simple scripting language that possessed some of ABC's
better properties, but without its problems. So I started typing. I created a simple virtual machine, a simple
parser, and a simple runtime. I made my own version of the various ABC parts that I liked. I created a basic
syntax, used indentation for statement grouping instead of curly braces or begin-end blocks, and developed a
small number of powerful data types: a hash table (or dictionary, as we call it), a list, strings, and numbers."

COMEDY, SNAKE OR PROGRAMMING LANGUAGE

So, what about the name "Python"? Most people think about snakes, and even the logo depicts two snakes, but
the origin of the name has its root in British humour. Guido van Rossum, the creator of Python, wrote in 1996
about the origin of the name of his programming language1: "Over six years ago, in December 1989, I was
looking for a 'hobby' programming project that would keep me occupied during the week around Christmas.
My office ... would be closed, but I had a home computer, and not much else on my hands. I decided to write
an interpreter for the new scripting language I had been thinking about lately: a descendant of ABC that would
appeal to Unix/C hackers. I chose Python as a working title for the project, being in a slightly irreverent mood
(and a big fan of Monty Python's Flying Circus)."

THE ZEN OF PYTHON

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

HISTORY OF PYTHON 3

Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one -- and preferably only one -- obvious way to d
o it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

DEVELOPMENT STEPS OF PYTHON

Guido Van Rossum published the first version of Python code (version 0.9.0) at alt.sources in February 1991.
This release included already exception handling, functions, and the core data types of list, dict, str and others.
It was also object oriented and had a module system.

Python version 1.0 was released in January 1994. The major new features included in this release were the
functional programming tools lambda, map, filter and reduce, which Guido Van Rossum never liked.

Six and a half years later in October 2000, Python 2.0 was introduced. This release included list
comprehensions, a full garbage collector and it was supporting unicode.

Python flourished for another 8 years in the versions 2.x before the next major release as Python 3.0 (also
known as "Python 3000" and "Py3K") was released. Python 3 is not backwards compatible with Python 2.x.
The emphasis in Python 3 had been on the removal of duplicate programming constructs and modules, thus
fulfilling or coming close to fulfilling the 13th law of the Zen of Python: "There should be one -- and
preferably only one -- obvious way to do it."

SOME CHANGES IN PYTHON 3.0:

Print is now a function
Views and iterators instead of lists
The rules for ordering comparisons have been simplified. E.g. a het
erogeneous list cannot be sorted, because all the elements of a lis
t must be comparable to each other.
There is only one integer type left, i.e. int. long is int as well.
The division of two integers returns a float instead of an intege
r. "//" can be used to have the "old" behaviour.
Text Vs. Data Instead Of Unicode Vs. 8-bit

HISTORY OF PYTHON 4

T H E I N T E R P R E T E R , A N
I N T E R A C T I V E S H E L L

THE TERMS 'INTERACTIVE' AND 'SHELL'

The term "interactive" traces back to the Latin expression "inter agere".
The verb "agere" means amongst other things "to do something" and "to
act", while "inter" denotes the spatial and temporal position to things and
events, i.e. "between" or "among" objects, persons, and events. So "inter
agere" means "to act between" or "to act among" these.

With this in mind, we can say that the interactive shell is between the user
and the operating system (e.g. Linux, Unix, Windows or others). Instead of
an operating system an interpreter can be used for a programming language
like Python as well. The Python interpreter can be used from an interactive
shell.

The interactive shell is also interactive in the way that it stands between the commands or actions and their
execution. In other words, the shell waits for commands from the user, which it executes and returns the result
of the execution. Afterwards, the shell waits for the next input.

A shell in biology is a calcium carbonate "wall" which protects snails or mussels from its environment or its
enemies. Similarly, a shell in operating systems lies between the kernel of the operating system and the user.
It's a "protection" in both directions. The user doesn't have to use the complicated basic functions of the OS
but is capable of using the interactive shell which is relatively simple and easy to understand. The kernel is
protected from unintentional and incorrect usages of system functions.

Python offers a comfortable command line interface with the Python Shell, which is also known as the
"Python Interactive Shell". It looks like the term "Interactive Shell" is a tautology, because "shell" is
interactive on its own, at least the kind of shells we have described in the previous paragraphs.

USING THE PYTHON INTERACTIVE SHELL

With the Python interactive interpreter it is easy to check Python commands. The Python interpreter can be
invoked by typing the command "python" without any parameter followed by the "return" key at the shell
prompt:

python

Python comes back with the following information:

$ python
Python 2.7.11 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0] :: Anaconda, Inc. on linux

THE INTERPRETER, AN INTERACTIVE SHELL 5

Type "help", "copyright", "credits" or "license" for more informati
on.

A closer look at the output above reveals that we have the wrong Python version. We wanted to use Python
3.x, but what we got is the installed standard of the operating system, i.e. version 2.7.11+.

The easiest way to check if a Python 3.x version is installed: Open a Terminal. Type in python but no return.
Instead, type the "Tab" key. You will see possible extensions and other installed versions, if there are some:

bernd@venus:~$ $ python
python python3 python3.7-config python-con
fig
python2 python3.6 python3.7m pythontex
python2.7 python3.6-config python3.7m-config pythontex3
python2.7-config python3.6m python3-config python-whi
teboard
python2-config python3.6m-config python3m
python2-pbr python3.7 python3m-config
bernd@venus:~$ python

If no other Python version shows up, python3.x has to be installed. Afterwards, we can start the newly
installed version by typing python3:

$ python3
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more informati
on.

Once the Python interpreter is started, you can issue any command at the command prompt ">>>". Let's see,
what happens, if we type in the word "hello":

hello

NameError Traceback (most recent call last)
<ipython-input-1-f572d396fae9> in <module>
----> 1 hello

NameError: name 'hello' is not defined

THE INTERPRETER, AN INTERACTIVE SHELL 6

Of course, "hello" is not a proper Python command, so the interactive shell returns ("raises") an error.

The first real command we will use is the print command. We will create the mandatory "Hello World"
statement:

print("Hello World")

It couldn't have been easier, could it? Oh yes, it can be written in a even simpler way. In the Interactive Python
Interpreter - but not in a program - the print is not necessary. We can just type in a string or a number and it
will be "echoed"

"Hello World"

3

HOW TO QUIT THE PYTHON SHELL

So, we have just started, and we are already talking about quitting the shell. We do this, because we know,
how annoying it can be, if you don't know how to properly quit a program.

It's easy to end the interactive session: You can either use exit() or Ctrl-D (i.e. EOF) to exit. The brackets
behind the exit function are crucial. (Warning: Exit without brackets works in Python2.x but doesn't work
anymore in Python3.x)

THE SHELL AS A SIMPLE CALCULATOR

In the following example we use the interpreter as a simple calculator by typing an arithmetic expression:

4.567 * 8.323 * 17

Python follows the usual order of operations in expressions. The standard order of operations is expressed in
the following enumeration:

• exponents and roots
• multiplication and division
• addition and subtraction

Hello World

Output: 'Hello World'

Output: 3

Output: 646.189397

THE INTERPRETER, AN INTERACTIVE SHELL 7

In other words, we don't need parentheses in the expression "3 + (2 * 4)":

3 + 2 * 4

The most recent output value is automatically stored by the interpreter in a special variable with the name "_".
So we can print the output from the recent example again by typing an underscore after the prompt:

_

The underscore can be used in other expressions like any other variable:

_ * 3

The underscore variable is only available in the Python shell. It's NOT available in Python scripts or programs.

USING VARIABLES

It's simple to use variables in the Python shell. If you are an absolute beginner and if you don't know anything
about variables, please refer to our chapter about variables and data types. Values can be saved in variables.
Variable names don't require any special tagging, like they do in Perl, where you have to use dollar signs,
percentage signs and at signs to tag variables:

maximal = 124
width = 94
print(maximal - width)

MULTILINE STATEMENTS

We haven't introduced multiline statements so far. So beginners can skip the rest of this chapter and can
continue with the following chapters.

We will show how the interactive prompt deals with multiline statements like for loops.

l = ["A", 42, 78, "Just a String"]
for character in l:

print(character)

Output: 11

Output: 11

Output: 33

30

THE INTERPRETER, AN INTERACTIVE SHELL 8

https://www.python-course.eu/python3_variables.php

After having input "for character in l: " the interpretor expects the input of the next line to be indented. In
other words: the interpretor expects an indented block, which is the body of the loop. This indented block will
be iterated. The interpretor shows this "expectation" by displaying three dots "..." instead of the standard
Python interactive prompt ">>>". Another special feature of the interactive shell: when we are done with the
indented lines, i.e. the block, we have to enter an empty line to indicate that the block is finished. Attention:
the additional empty line is only necessary in the interactive shell! In a Python program, it is enough to return
to the indentation level of the "for" line, the one with the colon ":" at the end.

A
42
78
Just a String

THE INTERPRETER, AN INTERACTIVE SHELL 9

S T R I N G S

Strings are created by putting a sequence of characters in quotes. Strings can be surrounded by single quotes,
double quotes or triple quotes, which are made up of three single or three double quotes. Strings are
immutable. In other words, once defined, they cannot be changed. We will cover this topic in detail in another
chapter.

"Hello" + " " + "World"

A string in triple quotes can span several lines without using the escape character:

city = """
... Toronto is the largest city in Canada
... and the provincial capital of Ontario.
... It is located in Southern Ontario on the
... northwestern shore of Lake Ontario.
... """
print(city)

Multiplication on strings is defined, which is essentially a multiple concatenation:

".-." * 4

Output: 'Hello World'

Toronto is the largest city in Canada
and the provincial capital of Ontario.
It is located in Southern Ontario on the
northwestern shore of Lake Ontario.

Output: '.-..-..-..-.'

STRINGS 10

E X E C U T E A P Y T H O N S C R I P T

So far we have played around with Python commands in the Python shell. We want to write now our first
serious Python program. You will hardly find any beginner's textbook on programming, which doesn't start
with the "almost mandatory" "Hello World" program, i.e. a program which prints the string "Hello World". We
start a Python interactive shell in a terminal with the command "python". It might be necessary to use
"python3" to get a Python3 shell:

$ python3
(base) bernd@moon:~$ python
Python 3.7.1 (default, Dec 14 2018, 19:28:38)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more informati
on.
>>> print("Hello World!")
Hello World!
>>>

But, as we said at the beginning, we want to write a "serious" program now, i.e. a program which resides in a
file. This way, we can use a program over and over again without having to type it in again. Some may like to
call such a little program "script". We will use a slight variation of the "Hello World" theme. We have to
include our print function into a file. To save and edit our program in a file we need an editor. There are lots of
editors, but you should choose one, which supports syntax highlighting and indentation. For Linux you can
use vi, vim, emacs, geany, gedit and umpteen others. The Emacs works for Windows as well, but Notepad++
may be the better choice in many cases. Of course, you can also use an IDE (Integrated Development
Environment) like PyCharm or Spyder for this purpose.

So, after you have found the editor or the IDE of your choice, you are ready to develop your mini program, i.e.

print("My first simple Python script!")

and save it as my_first_simple_program.py. The suffix .py is not really necessary for Linux but it's good to use
it since the extension is essential, if you want to write modules.

My first simple Python script!

EXECUTE A PYTHON SCRIPT 11

S T A R T A P Y T H O N P R O G R A M

Let's assume our script is in a subdirectory under the home directory of the user monty:

monty@python:~$ cd python
monty@python:~/python$ python my_first_simple_program.py
My first simple Python script!
monty@python:~/python$

It can be started in a Command Prompt in Windows as well (start -> All Programs -> Accessories ->
Command Prompt). You may notice that we called our little program "hello.py" and not
my_first_simple_program.py:

START A PYTHON PROGRAM 12

S T A R T I N G A P Y T H O N S C R I P T
U N D E R W I N D O W S

PYTHON INTERNALS

Most probably you have read somewhere that the Python language is an interpreted programming or a script
language. The truth is: Python is both an interpreted and a compiled language. But calling Python a compiled
language would be misleading. (At the end of this chapter, you will find the definitions for Compilers and
Interpreters, in case you are not already familiar with the concepts!) People would assume that the compiler
translates the Python code into machine language. Python code is translated into intermediate code, which has
to be executed by a virtual machine, known as the PVM, the Python Virtual Machine. This is a similar
approach to the one taken by Java. There is even a way of translating Python programs into Java byte code for
the Java Virtual Machine (JVM). This can be achieved with Jython.

The question is, do I have to compile my Python scripts to make them faster or how can I compile them? The
answer is easy: normally, you don't need to do anything and you shouldn't bother, because "Python" is already
doing the thinking for you, i.e. it takes the necessary steps automatically.

For whatever reason you want to compile a python program manually? No problem. It can be done with the
module py_compile, either using the interpreter shell

import py_compile
py_compile.compile('my_first_simple_program.py')

or using the following command at the shell prompt

python -m py_compile my_first_simple_program.py

Either way, you may notice two things: first, there will be a new subdirectory " __pycache__ ", if it doesn't
already exist. You will find a file "my_first_simple_script.cpython-34.pyc" in this subdirectory. This is the
compiled version of our file in byte code.

You can also automatically compile all Python files using the compileall module. You can do it from the shell
prompt by running compileall.py and providing the path of the directory containing the Python files to
compile:

monty@python:~/python$ python -m compileall .
Listing

But as we have said, you don't have to and shouldn't bother about compiling Python code. The compilation is
hidden from the user for a good reason. Some newbies wonder sometimes where these ominous files with the
.pyc suffix might come from. If Python has write-access for the directory where the Python program resides, it
will store the compiled byte code in a file that ends with a .pyc suffix. If Python has no write access, the

Output: '__pycache__/my_first_simple_program.cpython-37.pyc'

STARTING A PYTHON SCRIPT UNDER WINDOWS 13

program will work anyway. The byte code will be produced but discarded when the program exits. Whenever
a Python program is called, Python will check, if a compiled version with the .pyc suffix exists. This file has
to be newer than the file with the .py suffix. If such a file exists, Python will load the byte code, which will
speed up the start up time of the script. If there is no byte code version, Python will create the byte code before
it starts the execution of the program. Execution of a Python program means execution of the byte code on the
Python.

STARTING A PYTHON SCRIPT UNDER WINDOWS 14

V I R T U A L M A C H I N E (P V M) .

COMPILATION OF A PYTHON SCRIPT

Every time a Python script is executed, a byte code is created. If a Python script is imported as a module, the
byte code will be stored in the corresponding .pyc file. So, the following will not create a byte code file:

monty@python:~/python$ python my_first_simple_program.py
My first simple Python script!
monty@python:~/python$

The import in the following Python2 session will create a byte code file with the name
"my_first_simple_program.pyc":

monty@python:~/tmp$ ls
my_first_simple_program.py
monty@python:~/tmp$ python
Python 2.6.5 (r265:79063, Apr 16 2010, 13:57:41)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more informati
on.
>>> import my_first_simple_script
My first simple Python script!
>>> exit()
monty@python:~/tmp$ ls
my_first_simple_program.py my_first_simple_program.pyc
monty@python:~/tmp$

RUNNABLE SCRIPTS UNDER LINUX

This chapter can be skipped by Windows users. Don't worry! It is not essential!

So far, we have started our Python scripts with

python3 my_file.py

on the bash command line. A Python script can also be started like any other script under Linux, e.g. Bash
scripts. Two steps are necessary for this purpose: the shebang line #!/usr/bin/env python3 has to be added as
the first line of your Python code file. Alternatively, this line can be #!/usr/bin/python3, if this is the location
of your Python interpreter. Instead using env as in the first shebang line, the interpreter is searched for and
located at the time the script is run. This makes the script more portable. Yet, it also suffers from the same
problem: The path to env may also be different on a per-machine basis. The file has to be made executable:
The command "chmod +x scriptname" has to be executed on a Linux shell, e.g. bash. "chmod 755 scriptname"
can also be used to make your file executable. In our example:

VIRTUAL MACHINE (PVM). 15

$ chmod +x my_first_simple_program.py

We illustrate this in a bash session:

bernd@marvin:~$ more my_first_simple_script.py
#!/usr/bin/env python3
print("My first simple Python script!")
bernd@marvin:~$ ls -ltr my_first_simple_script.py
-rw-r--r-- 1 bernd bernd 63 Nov 4 21:17 my_first_simple_script.py
bernd@marvin:~$ chmod +x my_first_simple_script.py
bernd@marvin:~$ ls -ltr my_first_simple_script.py
-rwxr-xr-x 1 bernd bernd 63 Nov 4 21:17 my_first_simple_script.py
bernd@marvin:~$./my_first_simple_script.py
My first simple Python script!

VIRTUAL MACHINE (PVM). 16

D I F F E R E N C E S B E T W E E N
C O M P I L E R S A N D I N T E R P R E T E R S

COMPILER

Definition: a compiler is a computer program that transforms (translates) source code of a programming
language (the source language) into another computer language (the target language). In most cases compilers
are used to transform source code into executable program, i.e. they translate code from high-level
programming languages into low (or lower) level languages, mostly assembly or machine code.

INTERPRETER

Definition: an interpreter is a computer program that executes instructions written in a programming language.
It can either execute the source code directly or translate the source code in a first step into a more efficient
representation and execute this code.

DIFFERENCES BETWEEN COMPILERS AND INTERPRETERS 17

S T R U C T U R I N G W I T H
I N D E N T A T I O N

BLOCKS

A block is a group of statements in a program or script. Usually, it consists of at
least one statement and declarations for the block, depending on the programming
or scripting language. A language which allows grouping with blocks, is called a
block structured language. Generally, blocks can contain blocks as well, so we get a
nested block structure. A block in a script or program functions as a means to group
statements to be treated as if they were one statement. In many cases, it also serves
as a way to limit the lexical scope of variables and functions.

Initially, in simple languages like Basic and Fortran, there was no way of explicitly
using block structures. Programmers had to rely on "go to" structures, nowadays
frowned upon, because "Go to programs" turn easily into spaghetti code, i.e.
tangled and inscrutable control structures.

Block structures were first formalized in ALGOL as a compound statement.

Programming languages, such as ALGOL, Pascal, and others, usually use certain methods to group statements
into blocks:

• begin ... end

A code snippet in Pascal to show this usage of blocks:

with ptoNode^ do
begin

x := 42;
y := 'X';

end;

• do ... done

• if ... fi e.g. Bourne and Bash shell

• Braces (also called curly brackets): { ... } By far the most common approach, used by C, C++,
Perl, Java, and many other programming languages, is the use of braces. The following example
shows a conditional statement in C:

if (x==42) {
printf("The Answer to the Ultimate Question of Life, the Univer

STRUCTURING WITH INDENTATION 18

se, and Everything\n");
} else {

printf("Just a number!\n");
}

The indentations in this code fragment are not necessary. So the code could be written - offending common
decency - as

if (x==42) {printf("The Answer to the Ultimate Question of Life,
the Universe, and Everything\n");} else {printf("Just a numbe
r!\n");}

Please, keep this in mind to understand the advantages of Python!

INDENTING CODE

Python uses a different principle. Python programs get
structured through indentation, i.e. code blocks are defined
by their indentation. Okay that's what we expect from any
program code, isn't it? Yes, but in the case of Python it's a
language requirement, not a matter of style. This principle
makes it easier to read and understand other people's
Python code.

So, how does it work? All statements with the same
distance to the right belong to the same block of code, i.e.
the statements within a block line up vertically. The block
ends at a line less indented or the end of the file. If a block
has to be more deeply nested, it is simply indented further
to the right.

Beginners are not supposed to understand the following example, because we haven't introduced most of the
used structures, like conditional statements and loops. Please see the following chapters about loops and
conditional statements for explanations. The program implements an algorithm to calculate Pythagorean
triples. You will find an explanation of the Pythagorean numbers in our chapter on for loops.

from math import sqrt
n = input("Maximum Number? ")
n = int(n)+1
for a in range(1,n):

for b in range(a,n):
c_square = a**2 + b**2
c = int(sqrt(c_square))
if ((c_square - c**2) == 0):

STRUCTURING WITH INDENTATION 19

https://www.python-course.eu/python3_for_loop.php

print(a, b, c)

There is another aspect of structuring in Python, which we haven't mentioned so far, which you can see in the
example. Loops and Conditional statements end with a colon ":" - the same is true for functions and other
structures introducing blocks. All in all, Python structures by colons and indentation.

3 4 5
5 12 13
6 8 10
8 15 17
9 12 15
12 16 20
15 20 25

STRUCTURING WITH INDENTATION 20

D A T A T Y P E S A N D V A R I A B L E S

INTRODUCTION

Have you programmed low-level languages like C, C++ or other similar
programming languages? If so, you might think you know already enough
about data types and variables. You know a lot, that's right, but not enough
for Python. So it's worth to go on reading this chapter on data types and
variables in Python. There are dodgy differences in the way Python and C
deal with variables. There are integers, floating point numbers, strings, and
many more, but things are not the same as in C or C++.

If you want to use lists or associative arrays in C e.g., you will have to
construe the data type list or associative arrays from scratch, i.e., design
memory structure and the allocation management. You will have to
implement the necessary search and access methods as well. Python
provides power data types like lists and associative arrays called "dict", as a genuine part of the language.

So, this chapter is worth reading both for beginners and for advanced programmers in other programming
languages.

VARIABLES

GENERAL CONCEPT OF VARIABLES

This subchapter is especially intended for C, C++ and Java programmers, because the way these programming
languages treat basic data types is different from the way Python does. Those who start learning Python as
their first programming language may skip this and read the next subchapter.

So, what's a variable? As the name implies, a variable is something which can change. A variable is a way of
referring to a memory location used by a computer program. In many programming languages a variable is a
symbolic name for this physical location. This memory location contains values, like numbers, text or more
complicated types. We can use this variable to tell the computer to save some data in this location or to
retrieve some data from this location.

DATA TYPES AND VARIABLES 21

A variable can be seen as a container (or some say a pigeonhole) to store certain values. While the program is
running, variables are accessed and sometimes changed, i.e., a new value will be assigned to a variable.

What we have said so far about variables best fits the way variables are implemented in C, C++ or Java.
Variable names have to be declared in these languages before they can be used.

int x;

int y;

Such declarations make sure that the program reserves memory for two variables with the names x and y. The
variable names stand for the memory location. It's like the two empty shoeboxes, which you can see in the
picture above. These shoeboxes are labeled with x and y. Like the two shoeboxes, the memory is empty as
well.

Putting values into the variables can be realized with assignments. The way you assign values to variables is
nearly the same in all programming languages. In most cases, the equal "=" sign is used. The value on the
right side will be saved in the variable name on the left side.

We will assign the value 42 to both variables and we can see that two numbers are physically saved in the
memory, which correspond to the two shoeboxes in the following picture.

DATA TYPES AND VARIABLES 22

x = 42;

y = 42;

We think that it is easy to understand what happens. If we assign a new value to one of the variables, let's say
the value 78 to y:

y = 78;

DATA TYPES AND VARIABLES 23

We have exchanged the content of the memory location of y.

We have seen now that in languages like C, C++ or Java every variable has and must have a unique data type.
E.g., if a variable is of type integer, solely integers can be saved in the variable for the duration of the
program. In those programming languages every variable has to be declared before it can be used. Declaring a
variable means binding it to a data type.

VARIABLES IN PYTHON

There is no declaration of variables required in Python, which makes it quite easy. It's not even possible to
declare the variables. If there is need for a variable, you should think of a name and start using it as a variable.

Another remarkable aspect of Python: Not only the value of a variable may change during program execution,
but the type as well. You can assign an integer value to a variable, use it as an integer for a while and then
assign a string to the same variable. In the following line of code, we assign the value 42 to a variable:

i = 42

The equal "=" sign in the assignment shouldn't be seen as "is equal to". It should be "read" or interpreted as "is
set to", meaning in our example "the variable i is set to 42". Now we will increase the value of this variable by
1:

i = i + 1
print(i)

As we have said above, the type of a variable can change during the execution of a script. Or, to be precise, a
new object, which can be of any type, will be assigned to it. We illustrate this in our following example:

i = 42 # data type is implicitly set to integer
i = 42 + 0.11 # data type is changed to float
i = "forty" # and now it will be a string

When Python executes an assignment like "i = 42", it evaluates the right side of the assignment and recognizes
that it corresponds to the integer number 42. It creates an object of the integer class to save this data. If you
want to have a better understanding of objects and classes, you can but you don't have to start with our chapter
on Object-Oriented Programming.

In other words, Python automatically takes care of the physical representation for the different data types.

43

DATA TYPES AND VARIABLES 24

https://www.python-course.eu/python3_object_oriented_programming.php

OBJECT REFERENCES

We want to take a closer look at variables now. Python variables are references to objects, but the actual data
is contained in the objects:

As variables are pointing to objects and objects can be of arbitrary data types, variables cannot have types
associated with them. This is a huge difference from C, C++ or Java, where a variable is associated with a
fixed data type. This association can't be changed as long as the program is running.

Therefore it is possible to write code like the following in Python:

x = 42
print(x)

x = "Now x references a string"
print(x)

We want to demonstrate something else now. Let's look at the following code:

x = 42
y = x

We created an integer object 42 and assigned it to the variable x. After this we assigned x to the variable y.
This means that both variables reference the same object. The following picture illustrates this:

42

Now x references a string

DATA TYPES AND VARIABLES 25

What will happen when we execute

y = 78

after the previous code?

Python will create a new integer object with the content 78 and then the variable y will reference this newly
created object, as we can see in the following picture:

Most probably, we will see further changes to the variables in the flow of our program. There might be, for
example, a string assignment to the variable x. The previously integer object "42" will be orphaned after this

DATA TYPES AND VARIABLES 26

assignment. It will be removed by Python, because no other variable is referencing it.

You may ask yourself, how can we see or prove that x and y really reference the same object after the
assignment y = x of our previous example?

The identity function id() can be used for this purpose. Every instance (object or variable) has an identity, i.e.,
an integer which is unique within the script or program, i.e., other objects have different identities. So, let's
have a look at our previous example and how the identities will change:

x = 42
id(x)

y = x
id(x), id(y)

y = 78
id(x), id(y)

Output: 140709828470448

Output: (140709828470448, 140709828470448)

Output: (140709828470448, 140709828471600)

DATA TYPES AND VARIABLES 27

VALID VARIABLE NAMES

The naming of variables follows the more general concept of an identifier. A Python identifier is a name used
to identify a variable, function, class, module or other object.

A variable name and an identifier can consist of the uppercase letters "A" through "Z", the lowercase letters
"a" through "z", the underscore _ and, except for the first character, the digits 0 through 9. Python 3.x is based
on Unicode. That is, variable names and identifier names can additionally contain Unicode characters as well.

Identifiers are unlimited in length. Case is significant. The fact that identifier names are case-sensitive can
cause problems to some Windows users, where file names are case-insensitive, for example.

Exceptions from the rules above are the special Python keywords, as they are described in the following
paragraph.

The following variable definitions are all valid:

height = 10
maximum_height = 100

υψος = 10
μεγιστη_υψος = 100

MinimumHeight = 1

PYTHON KEYWORDS

No identifier can have the same name as one of the Python keywords, although they are obeying the above
naming conventions:

and, as, assert, break, class, continue, def, del, elif, else,
except, False, finally, for, from, global, if, import, in, is,
lambda, None, nonlocal, not, or, pass, raise, return, True, try,
while, with, yield

There is no need to learn them by heart. You can get the list of Python keywords in the interactive shell by
using help. You type help() in the interactive, but please don't forget the parenthesis:

help()

Welcome to Python 3.4's help utility!

If this is your first time using Python, you should definitely chec
k out

DATA TYPES AND VARIABLES 28

the tutorial on the Internet at http://docs.python.org/3.4/tutoria
l/.

Enter the name of any module, keyword, or topic to get help on writ
ing
Python programs and using Python modules. To quit this help utilit
y and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, symbols, or topics, t
ype
"modules", "keywords", "symbols", or "topics". Each module also co
mes
with a one-line summary of what it does; to list the modules whose
name
or summary contain a given string such as "spam", type "modules spa
m".

help>

What you see now is the help prompt, which allows you to query help on lots of things, especially on
"keywords" as well:

help> keywords

Here is a list of the Python keywords. Enter any keyword to get mo
re help.

False def if raise
None del import return
True elif in try
and else is while
as except lambda with
assert finally nonlocal yield
break for not
class from or
continue global pass

help>

NAMING CONVENTIONS

We saw in our chapter on "Valid Variable Names" that we sometimes need names which consist of more than
one word. We used, for example, the name "maximum_height". The underscore functioned as a word
separator, because blanks are not allowed in variable names. Some people prefer to write variable names in the

DATA TYPES AND VARIABLES 29

so-called CamelCase notation. We defined the variable MinimumHeight in this naming style.

There is a permanent "war" going on between the camel case followers and the underscore lovers. Personally,
I definitely prefer "the_natural_way_of_naming_things" to "TheNaturalWayOfNamingThings". I think that
the first one is more readable and looks more natural language like. In other words: CamelCase words are
harder to read than their underscore counterparts, EspeciallyIfTheyAreVeryLong. This is my personal opinion
shared by many other programmers but definitely not everybody. The Style Guide for Python Code
recommends underscore notation for variable names as well as function names.

Certain names should be avoided for variable names: Never use the characters 'l' (lowercase letter "L"), 'O'
("O" like in "Ontario"), or 'I' (like in "Indiana") as single character variable names. They should be avoided,
because these characters are indistinguishable from the numerals one and zero in some fonts. When tempted to
use 'l', use 'L' instead, if you cannot think of a better name anyway. The Style Guide has to say the following
about the naming of identifiers in standard modules: "All identifiers in the Python standard library MUST use
ASCII-only identifiers, and SHOULD use English words wherever feasible (in many cases, abbreviations and
technical terms are used which aren't English). In addition, string literals and comments must also be in
ASCII. The only exceptions are (a) test cases testing the non-ASCII features, and (b) names of authors.
Authors whose names are not based on the latin alphabet MUST provide a latin transliteration of their names."

Companies, institutes, organizations or open source projects aiming at an international audience should adopt
a similar notation convention!

CHANGING DATA TYPES AND STORAGE LOCATIONS

Programming means data processing. Data in a Python program is represented by objects. These objects can
be

•built-in, i.e., objects provided by Python,
•objects from extension libraries,
•created in the application by the programmer.

So we have different "kinds" of objects for different data types. We will have a look at the different built-in
data types in Python.

NUMBERS

Python's built-in core data types are in some cases also called object types. There are four built-in data types
for numbers:

•Integer
∙Normal integers
e.g., 4321
∙Octal literals (base 8)
A number prefixed by 0o (zero and a lowercase "o" or uppercase

"O") will be interpreted as an octal number
example:

DATA TYPES AND VARIABLES 30

a = 0o10

print(a)

∙Hexadecimal literals (base 16)
Hexadecimal literals have to be prefixed either by "0x" or "0

X".
example:

hex_number = 0xA0F

print(hex_number)

∙Binary literals (base 2)
Binary literals can easily be written as well. They have to be

prefixed by a leading "0", followed by a "b" or "B":

x = 0b101010
x

The functions hex, bin, oct can be used to convert an integer number into the corresponding string
representation of the integer number:

x = hex(19)
x

type(x)

x = bin(65)
x

x = oct(65)
x

8

2575

Output: 42

Output: '0x13'

Output: str

Output: '0b1000001'

DATA TYPES AND VARIABLES 31

oct(0b101101)

Integers in Python3 can be of unlimited size

x = 787366098712738903245678234782358292837498729182728
print(x)

x * x * x

•Long integers

Python 2 has two integer types: int and long. There is no "long int" in Python3 anymore. There is only one
"int" type, which contains both "int" and "long" from Python2. That's why the following code fails in Python
3:

1L
File "<stdin>", line 1

1L
^

x = 43
long(x)

Output: '0o101'

Output: '0o55'

787366098712738903245678234782358292837498729182728

Output: 4881239700706382159867701621057313155388275860919486179978711
2295022889112396090191830861828631152328223931370827558978712
3005317148968569797875581092352

File "<ipython-input-27-315518d611d8>", line 1
1L
^

SyntaxError: invalid syntax

NameError Traceback (most recent call last)
<ipython-input-49-bad7871d6042> in <module>

1 x = 43
----> 2 long(x)
NameError: name 'long' is not defined

DATA TYPES AND VARIABLES 32

•Floating-point numbers

For example: 42.11, 3.1415e-10

•Complex numbers

Complex numbers are written as

<real part> + <imaginary part>

Examples:

x = 3 + 4j

y = 2 - 3j

z = x + y

print(z)

INTEGER DIVISION

There are two kinds of division operators:

•"true division" performed by "/"
•"floor division" performed by "//"

TRUE DIVISION

True division uses the slash (/) character as the operator sign. Most probably it is what you expect "division" to
be. The following examples are hopefully self-explanatory:

10 / 3

10.0 / 3.0

10.5 / 3.5

(5+1j)

Output: 3.3333333333333335

Output: 3.3333333333333335

DATA TYPES AND VARIABLES 33

FLOOR DIVISION

The operator "//" performs floor division, i.e., the dividend is divided by the divisor - like in true division - but
the floor of the result will be returned. The floor is the largest integer number smaller than the result of the true
division. This number will be turned into a float, if either the dividend or the divisor or both are float values. If
both are integers, the result will be an integer as well. In other words, "//" always truncates towards negative
infinity.

Connection to the floor function: In mathematics and computer science, the floor function is the function that
takes as input a real number x and returns the greatest integer floor (x) = ⌊ x ⌋ that is less than or equal to x.

If you are confused now by this rather mathematical and theoretical definition, the following examples will
hopefully clarifiy the matter:

9 // 3

10 // 3

11 // 3

12 // 3

10.0 // 3

-7 // 3

-7.0 // 3

Output: 3.0

Output: 3

Output: 3

Output: 3

Output: 4

Output: 3.0

Output: -3

Output: -3.0

DATA TYPES AND VARIABLES 34

STRINGS

The task of the first-generation computers
in the forties and fifties had been - due to
technical restraints - focused on number
processing. Text processing had been just
a dream at that time. Nowadays, one of
the main tasks of computers is text
processing in all its varieties; the most
prominent applications are search engines
like Google. To enable text processing
programming languages need suitable
data types. Strings are used in all modern
programming languages to store and
process textual information. Logically, a
string - like any text - is a sequence of
characters. The question remains what a
character consists of. In a book, or in a
text like the one your are reading now, characters consist of graphical shapes, so-called graphemes, consisting
of lines, curves and crossings in certain angles or positions and so on. The ancient Greeks associated the word
with the engravings on coins or the stamps on seals.

In computer science or computer technology, a character is a unit of
information. These characters correspond to graphemes, the fundamental
units of written or printed language. Before Unicode came into usage, there
was a one to one relationship between bytes and characters, i.e., every
character - of a national variant, i.e. not all the characters of the world - was
represented by a single byte. Such a character byte represents the logical
concept of this character and the class of graphemes of this character. The
image above depicts various representations of the letter "A", i.e., "A" in
different fonts. So in printing there are various graphical representations or
different "encodings" of the abstract concept of the letter A. (By the way,
the letter "A" can be ascribed to an Egyptian hieroglyph with a pictogram
of an ox.) All of these graphical representations have certain features in
common. In other words, the meaning of a character or a written or printed
text doesn't depend on the font or writing style used. On a computer the
capital A is encoded in binary form. If we use ASCII it is encoded - like all the other characters - as the byte
65.

ASCII is restricted to 128 characters and "Extended ASCII" is is still limited to 256 bytes or characters. This is
good enough for languages like English, German and French, but by far not sufficient for Chinese, Japanese
and Korean. That's where Unicode gets into the game. Unicode is a standard designed to represent every
character from every language, i.e., it can handle any text of the world's writing systems. These writing
systems can also be used simultaneously, i.e., Roman alphabet mixed with Cyrillic or even Chinese characters.

There is a different story about Unicode. A character maps to a code point. A code point is a theoretical
concept. That is, for example, that the character "A" is assigned a code point U+0041. The "U+" means
"Unicode" and the "0041" is a hexadecimal number, 65 in decimal notation.

DATA TYPES AND VARIABLES 35

You can transform it like this in Python:

hex(65)

int(0x41)

Up to four bytes are possible per character in Unicode. Theoretically, this means a huge number of
4294967296 possible characters. Due to restrictions from UTF-16 encoding, there are "only" 1,112,064
characters possible. Unicode version 8.0 has assigned 120,737 characters. This means that there are slightly
more than 10 % of all possible characters assigned, in other words, we can still add nearly a million characters
to Unicode.

UNICODE ENCODINGS

Name

UTF-32
It's a one to one encoding, i.e., it takes each Unicode character (a 4-byte number) and stores it in 4 bytes. One advantage of this encoding is that you

can find the Nth character of a string in linear time, because the Nth character starts at the 4×Nth byte. A serious disadvantage of this approach is due
to the fact that it needs four bytes for every character

UTF-16
UTF-16 (16-bit Unicode Transformation Format) is a character encoding capable of encoding all 1,112,064 valid code points of Unicode. The

encoding is variable-length, as code points are encoded with one or two 16-bit code units.

UTF-8

UTF8 is a variable-length encoding system for Unicode, i.e., different characters take up a different number of bytes. ASCII characters use solely one
byte per character. This means that the first 128 characters UTF-8 are indistinguishable from ASCII. But the so-called "Extended Latin" characters

like the Umlaute ä, ö and so on take up two bytes. Chinese characters need three bytes. Finally, the very seldom used characters of the "astral plane"
need four bytes to be encoded in UTF-8. W3Techs (Web Technology Surveys) writes that "UTF-8 is used by 94.3% of all the websites whose

character encoding we know

STRING, UNICODE AND PYTHON

After this lengthy but necessary introduction, we finally come to Python and the way it deals with strings. All
strings in Python 3 are sequences of "pure" Unicode characters, no specific encoding like UTF-8.

There are different ways to define strings in Python:

Output: '0x41'

Output: 65

DATA TYPES AND VARIABLES 36

https://w3techs.com/technologies/overview/character_encoding

s = 'I am a string enclosed in single quotes.'
s2 = "I am another string, but I am enclosed in double quotes."

Both s and s2 of the previous example are variables referencing string objects. We can see that string literals
can either be enclosed in matching single (') or in double quotes ("). Single quotes will have to be escaped with
a backslash \ , if the string is defined with single quotes:

s3 = 'It doesn\'t matter!'

This is not necessary, if the string is represented by double quotes:

s3 = "It doesn't matter!"

Analogously, we will have to escape a double quote inside a double quoted string:

txt = "He said: \"It doesn't matter, if you enclose a string in si
ngle or double quotes!\""
print(txt)

They can also be enclosed in matching groups of three single or double quotes. In this case they are called
triple-quoted strings. The backslash () character is used to escape characters that otherwise have a special
meaning, such as newline, backslash itself, or the quote character.

txt = '''A string in triple quotes can extend
over multiple lines like this one, and can contain
'single' and "double" quotes.'''

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three
unescaped quotes in a row terminate the string. (A "quote" is the character used to open the string, i.e., either '
or ".)

He said: "It doesn't matter, if you enclose a string in single or
double quotes!"

DATA TYPES AND VARIABLES 37

A string in Python consists of a series or sequence of characters - letters, numbers, and special characters.
Strings can be subscripted or indexed. Similar to C, the first character of a string has the index 0.

s = "Hello World"
s[0]

s[5]

The last character of a string can be accessed this way:

s[len(s)-1]

Yet, there is an easier way in Python. The last character can be accessed with -1, the second to last with -2 and
so on:

s[-1]

s[-2]

Some readers might find it confusing when we use "to subscript" as a synonym for "to index". Usually, a
subscript is a number, figure, symbol, or indicator that is smaller than the normal line of type and is set slightly
below or above it. When we wrote s[0] or s[3] in the previous examples, this can be seen as an alternative way
for the notation s0 or s3. So, both s3 and s[3] describe or denote the 4th character. By the way, there is no
character type in Python. A character is simply a string of size one.

It's possible to start counting the indices from the right, as we have mentioned previously. In this case negative
numbers are used, starting with -1 for the most right character.

Output: 'H'

Output: ' '

Output: 'd'

Output: 'd'

Output: 'l'

DATA TYPES AND VARIABLES 38

SOME OPERATORS AND FUNCTIONS FOR STRINGS

•Concatenation

Strings can be glued together (concatenated) with the + operator: "Hello" + "World" will result in
"HelloWorld"

•Repetition

String can be repeated or repeatedly concatenated with the asterisk operator "": "-" 3 will result in "---"

•Indexing

"Python"[0] will result in "P"

•Slicing

Substrings can be created with the slice or slicing notation, i.e., two indices in square brackets separated by a
colon: "Python"[2:4] will result in "th"

•Size

len("Python") will result in 6

IMMUTABLE STRINGS

Like strings in Java and unlike C or C++, Python strings cannot be changed. Trying to change an indexed
position will raise an error:

s = "Some things are immutable!"
s[-1] = "."

Beginners in Python are often confused, when they see the following codelines:

TypeError Traceback (most recent call last)
<ipython-input-53-2fa9c6f1b317> in <module>

1 s = "Some things are immutable!"
----> 2 s[-1] = "."
TypeError: 'str' object does not support item assignment

DATA TYPES AND VARIABLES 39

txt = "He lives in Berlin!"
txt = "He lives in Hamburg!"

The variable "txt" is a reference to a string object. We define a completely new string object in the second
assignment. So, you shouldn't confuse the variable name with the referenced object!

A STRING PECULIARITY

Strings show a special effect, which we will illustrate in the following example. We will need the "is"-
Operator. If both a and b are strings, "a is b" checks if they have the same identity, i.e., share the same memory
location. If "a is b" is True, then it trivially follows that "a == b" has to be True as well. Yet, "a == b" True
doesn't imply that "a is b" is True as well!

Let's have a look at how strings are stored in Python:

a = "Linux"
b = "Linux"
a is b

Okay, but what happens, if the strings are longer? We use the longest village name in the world in the
following example. It's a small village with about 3000 inhabitants in the South of the island of Anglesey in
the North-West of Wales:

a = "Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch"
b = "Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch"
a is b

Nothing has changed in our first "Linux" example. But what works for Wales doesn't work e.g., for Baden-
Württemberg in Germany:

a = "Baden-Württemberg"
b = "Baden-Württemberg"
a is b

a == b

Output: True

Output: True

Output: False

Output: True

DATA TYPES AND VARIABLES 40

You are right, it has nothing to do with geographical places. The special character, i.e., the hyphen, is to
"blame".

a = "Baden!"
b = "Baden!"
a is b

a = "Baden1"
b = "Baden1"
a is b

ESCAPE SEQUENCES IN STRINGS

To end our coverage of strings in this chapter, we will introduce some escape characters and sequences. The
backslash () character is used to escape characters, i.e., to "escape" the special meaning, which this character
would otherwise have. Examples for such characters are newline, backslash itself, or the quote character.
String literals may optionally be prefixed with a letter 'r' or 'R'; these strings are called raw strings. Raw strings
use different rules for interpreting backslash escape sequences.

Escape Sequence Meaning

\newline Ignored

\\ Backslash (\)

\' Single quote (')

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace(BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\N{name} Character named name in the Unicode database (Unicode only)

Output: False

Output: True

DATA TYPES AND VARIABLES 41

Escape Sequence Meaning

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\uxxxx Character with 16-bit hex value xxxx (Unicode only)

\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (Unicode only)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo

\xhh Character with hex value hh

BYTE STRINGS

Python 3.0 uses the concepts of text and (binary) data instead of Unicode strings and 8-bit strings. Every string
or text in Python 3 is Unicode, but encoded Unicode is represented as binary data. The type used to hold text
is str, the type used to hold data is bytes. It's not possible to mix text and data in Python 3; it will raise
TypeError. While a string object holds a sequence of characters (in Unicode), a bytes object holds a sequence
of bytes, out of the range 0 to 255, representing the ASCII values. Defining bytes objects and casting them
into strings:

x = "Hallo"
t = str(x)
u = t.encode("UTF-8")
print(u)
b'Hallo'

DATA TYPES AND VARIABLES 42

A R I T H M E T I C A N D C O M P A R I S O N
O P E R A T O R S

INTRODUCTION

This chapter covers the various built-in operators, which Python has to offer.

OPERATORS

These operations (operators) can be applied to all numeric types:

Operator Description Example

+, - Addition, Subtraction 10 -3

*, % Multiplication, Modulo 27 % 7
Result: 6

/ Division
This operation brings about different

results for Python 2.x (like floor
division) and Python 3.x

Python3:

10 / 3
3.3333333333333335

and in Python 2.x:

10 / 3
3

// Truncation Division (also known as
floordivision or floor division)

The result of this division is the integral
part of the result, i.e. the fractional part

is truncated, if there is any.
It works both for integers and floating-
point numbers, but there is a difference
between the type of the results: If both

the dividend and the divisor are integers,
the result will also be an integer. If either

the divident or the divisor is a float, the
result will be the truncated result as a

float.

10 // 3
3

If at least one of the operands is a float
value, we get a truncated float value as

the result.

10.0 // 3
3.0

>>>

A note about efficiency:
The results of int(10 / 3) and 10 // 3 are
equal. But the "//" division is more than
two times as fast! You can see this here:

In [9]: %%timeit

ARITHMETIC AND COMPARISON OPERATORS 43

for x in range(1, 10
0):

y = int(100 / x)
:

100000 loops, best o
f 3: 11.1 μs per loo

p

In [10]: %%timeit
for x in range(1, 10

0):
y = 100 // x

:
100000 loops, best o
f 3: 4.48 μs per loo

p

+x, -x Unary minus and Unary plus (Algebraic
signs)

-3

~x Bitwise negation ~3 - 4
Result: -8

** Exponentiation 10 ** 3
Result: 1000

or, and, not Boolean Or, Boolean And, Boolean Not (a or b) and c

in "Element of" 1 in [3, 2, 1]

<, ≤, >, ≥, !=, == The usual comparison operators 2 ≤ 3

|, &, ^ Bitwise Or, Bitwise And, Bitwise XOR 6 ^ 3

<, > Shift Operators 6 < 3

In []:

ARITHMETIC AND COMPARISON OPERATORS 44

S E Q U E N T I A L D A T A T Y P E S

INTRODUCTION

Sequences are one of the principal built-in data types besides numerics,
mappings, files, instances and exceptions. Python provides for six sequence
(or sequential) data types:

strings
byte sequences
byte arrays
lists
tuples
range objects

Strings, lists, tuples, bytes and range objects may look like utterly different things, but they still have some
underlying concepts in common:

The items or elements of strings, lists and tuples are ordered in
a defined sequence
The elements can be accessed via indices

text = "Lists and Strings can be accessed via indices!"
print(text[0], text[10], text[-1])

Accessing lists:

cities = ["Vienna", "London", "Paris",
"Berlin", "Zurich", "Hamburg"]

print(cities[0])
print(cities[2])
print(cities[-1])

Unlike other programming languages Python uses the same syntax and function names to work on sequential
data types. For example, the length of a string, a list, and a tuple can be determined with a function called
len():

L S !

Vienna
Paris
Hamburg

SEQUENTIAL DATA TYPES 45

countries = ["Germany", "Switzerland", "Austria",
"France", "Belgium", "Netherlands",
"England"]

len(countries) # the length of the list, i.e. the number of objec
ts

fib = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
len(fib)

BYTES

The byte object is a sequence of small integers. The elements of a byte object are in the range 0 to 255,
corresponding to ASCII characters and they are printed as such.

s = "Glückliche Fügung"
s_bytes = s.encode('utf-8')
s_bytes

PYTHON LISTS

So far we had already used some lists, and here comes a proper introduction. Lists are related to arrays of
programming languages like C, C++ or Java, but Python lists are by far more flexible and powerful than
"classical" arrays. For example, not all the items in a list need to have the same type. Furthermore, lists can
grow in a program run, while in C the size of an array has to be fixed at compile time.

Generally speaking a list is a collection of objects. To be more precise: A list in Python is an ordered group of
items or elements. It's important to notice that these list elements don't have to be of the same type. It can be
an arbitrary mixture of elements like numbers, strings, other lists and so on. The list type is essential for
Python scripts and programs, in other words, you will hardly find any serious Python code without a list.

The main properties of Python lists:

• They are ordered
• The contain arbitrary objects
• Elements of a list can be accessed by an index
• They are arbitrarily nestable, i.e. they can contain other lists as sublists
• Variable size
• They are mutable, i.e. the elements of a list can be changed

Output: 7

Output: 10

Output: b'Gl\xc3\xbcckliche F\xc3\xbcgung'

SEQUENTIAL DATA TYPES 46

LIST NOTATION AND EXAMPLES

List objects are enclosed by square brackets and separated by commas. The following table contains some
examples of lists:

List Description

[] An empty list

[1,1,2,3,5,8] A list of integers

[42, "What's the question?", 3.1415] A list of mixed data types

["Stuttgart", "Freiburg",
"München", "Nürnberg",

"Würzburg",
"Ulm","Friedrichshafen", Zürich",

"Wien"]

A list of Strings

[["London","England", 7556900],
["Paris","France",2193031],

["Bern", "Switzerland", 123466]]

A nested list

["High up", ["further down", ["and
down", ["deep down", "the answer",

42]]]]

A deeply nested list

ACCESSING LIST ELEMENTS

Assigning a list to a variable:

In []:

languages = ["Python", "C", "C++", "Java", "Perl"]

There are different ways of accessing the elements of a list. Most probably the easiest way for C programmers
will be through indices, i.e. the numbers of the lists are enumerated starting with 0:

languages = ["Python", "C", "C++", "Java", "Perl"]
print(languages[0] + " and " + languages[1] + " are quite differen
t!")
print("Accessing the last element of the list: " + languages[-1])
Python and C are quite different!
Accessing the last element of the list: Perl

SEQUENTIAL DATA TYPES 47

The previous example of a list has been a list with elements of equal data types. But as we saw before, lists
can have various data types, as shown in the following example:

group = ["Bob", 23, "George", 72, "Myriam", 29]

SUBLISTS

Lists can have sublists as elements. These sublists may contain sublists as well, i.e. lists can be recursively
constructed by sublist structures.

person = [["Marc", "Mayer"],
["17, Oxford Str", "12345", "London"],
"07876-7876"]

name = person[0]
print(name)

first_name = person[0][0]
print(first_name)

last_name = person[0][1]
print(last_name)

address = person[1]
print(address)

street = person[1][0]
print(street)

We could have used our variable address as well:

street = address[0]
print(street)

['Marc', 'Mayer']

Marc

Mayer

['17, Oxford Str', '12345', 'London']

17, Oxford Str

17, Oxford Str

SEQUENTIAL DATA TYPES 48

The next example shows a more complex list with a deeply structured list:

complex_list = [["a", ["b", ["c", "x"]]]]
complex_list = [["a", ["b", ["c", "x"]]], 42]
complex_list[0][1]

complex_list[0][1][1][0]

CHANGING LIST
languages = ["Python", "C", "C++", "Java", "Perl"]
languages[4] = "Lisp"
languages

languages.append("Haskell")
languages

languages.insert(1, "Perl")
languages

shopping_list = ['milk', 'yoghurt', 'egg', 'butter', 'bread', 'ban
anas']

We go to a virtual supermarket. Fetch a cart and start shopping:

shopping_list = ['milk', 'yoghurt', 'egg', 'butter', 'bread', 'ban
anas']
cart = []
"pop()"" removes the last element of the list and returns it
article = shopping_list.pop()
print(article, shopping_list)
cart.append(article)
print(cart)

we go on like this:
article = shopping_list.pop()

Output: ['b', ['c', 'x']]

Output: 'c'

Output: ['Python', 'C', 'C++', 'Java', 'Lisp']

Output: ['Python', 'C', 'C++', 'Java', 'Lisp', 'Haskell']

Output: ['Python', 'Perl', 'C', 'C++', 'Java', 'Lisp', 'Haskell']

SEQUENTIAL DATA TYPES 49

print("shopping_list:", shopping_list)
cart.append(article)
print("cart: ", cart)

With a while loop:

shopping_list = ['milk', 'yoghurt', 'egg', 'butter', 'bread', 'ban
anas']
cart = []
while shopping_list != []:

article = shopping_list.pop()
cart.append(article)
print(article, shopping_list, cart)

print("shopping_list: ", shopping_list)
print("cart: ", cart)

TUPLES

A tuple is an immutable list, i.e. a tuple cannot be changed in any way, once it has been created. A tuple is
defined analogously to lists, except the set of elements is enclosed in parentheses instead of square brackets.
The rules for indices are the same as for lists. Once a tuple has been created, you can't add elements to a tuple
or remove elements from a tuple.

Where is the benefit of tuples?

•Tuples are faster than lists.
•If you know that some data doesn't have to be changed, you should
use tuples instead of lists, because this protects your data agains
t accidental changes.
•The main advantage of tuples is that tuples can be used as keys i
n dictionaries, while lists can't.

bananas ['milk', 'yoghurt', 'egg', 'butter', 'bread']
['bananas']
shopping_list: ['milk', 'yoghurt', 'egg', 'butter']
cart: ['bananas', 'bread']

bananas ['milk', 'yoghurt', 'egg', 'butter', 'bread'] ['bananas']
bread ['milk', 'yoghurt', 'egg', 'butter'] ['bananas', 'bread']
butter ['milk', 'yoghurt', 'egg'] ['bananas', 'bread', 'butter']
egg ['milk', 'yoghurt'] ['bananas', 'bread', 'butter', 'egg']
yoghurt ['milk'] ['bananas', 'bread', 'butter', 'egg', 'yoghurt']
milk [] ['bananas', 'bread', 'butter', 'egg', 'yoghurt', 'milk']
shopping_list: []
cart: ['bananas', 'bread', 'butter', 'egg', 'yoghurt', 'milk']

SEQUENTIAL DATA TYPES 50

The following example shows how to define a tuple and how to access a tuple. Furthermore, we can see that
we raise an error, if we try to assign a new value to an element of a tuple:

t = ("tuples", "are", "immutable")
t[0]

t[0] = "assignments to elements are not possible"

SLICING

In many programming languages it can be quite tough to slice a part of a string and even harder, if you like to
address a "subarray". Python makes it very easy with its slice operator. Slicing is often implemented in other
languages as functions with possible names like "substring", "gstr" or "substr".

So every time you want to extract part of a string or a list in Python, you should use the slice operator. The
syntax is simple. Actually it looks a little bit like accessing a single element with an index, but instead of just
one number, we have more, separated with a colon ":". We have a start and an end index, one or both of them
may be missing. It's best to study the mode of operation of slice by having a look at examples:

slogan = "Python is great"
first_six = slogan[0:6]
first_six

starting_at_five = slogan[5:]
starting_at_five

a_copy = slogan[:]
without_last_five = slogan[0:-5]
without_last_five

Output: 'tuples'

TypeError Traceback (most recent call last)
<ipython-input-13-fa4ace6c4d57> in <module>
----> 1 t[0]="assignments to elements are not possible"
TypeError: 'tuple' object does not support item assignment

Output: 'Python'

Output: 'n is great'

Output: 'Python is '

SEQUENTIAL DATA TYPES 51

Syntactically, there is no difference on lists. We will return to our previous example with European city names:

cities = ["Vienna", "London", "Paris", "Berlin", "Zurich", "Hambur
g"]
first_three = cities[0:3]
or easier:
...
first_three = cities[:3]
print(first_three)

Now we extract all cities except the last two, i.e. "Zurich" and "Hamburg":

all_but_last_two = cities[:-2]
print(all_but_last_two)

Slicing works with three arguments as well. If the third argument is for example 3, only every third element of
the list, string or tuple from the range of the first two arguments will be taken.

If s is a sequential data type, it works like this:

s[begin: end: step]

The resulting sequence consists of the following elements:

s[begin], s[begin + 1 * step], ... s[begin + i * step] for all (be
gin + i * step) < end.

In the following example we define a string and we print every third character of this string:

slogan = "Python under Linux is great"
slogan[::3]

The following string, which looks like a letter salad, contains two sentences. One of them contains covert
advertising of my Python courses in Canada:

['Vienna', 'London', 'Paris']

['Vienna', 'London', 'Paris', 'Berlin']

Output: 'Ph d n e'

SEQUENTIAL DATA TYPES 52

"TPoyrtohnotno ciosu rtshees lianr gTeosrto nCtiot yb yi nB oCda
ennasdeao"

Try to find out the hidden sentence using Slicing. The solution consists of 2 steps!

s = "TPoyrtohnotno ciosu rtshees lianr gTeosrto nCtiot yb yi nB
oCdaennasdeao"
print(s)

s[::2]

s[1::2]

You may be interested in how we created the string. You have to understand list comprehension to understand
the following:

s = "Toronto is the largest City in Canada"
t = "Python courses in Toronto by Bodenseo"
s = "".join(["".join(x) for x in zip(s,t)])
s

LENGTH

Length of a sequence, i.e. a list, a string or a tuple, can be determined with the function
len(). For strings it counts the number of characters, and for lists or tuples the number of
elements are counted, whereas a sublist counts as one element.

txt = "Hello World"
len(txt)

a = ["Swen", 45, 3.54, "Basel"]
len(a)

TPoyrtohnotno ciosu rtshees lianr gTeosrto nCtiot yb yi nB oCdae
nnasdeao

Output: 'Toronto is the largest City in Canada'

Output: 'Python courses in Toronto by Bodenseo'

Output: 'TPoyrtohnotno ciosu rtshees lianr gTeosrto nCtiot yb yi n
B oCdaennasdeao'

Output: 11

SEQUENTIAL DATA TYPES 53

CONCATENATION OF SEQUENCES

Combining two sequences like strings or lists is as easy as adding two numbers together. Even the operator
sign is the same. The following example shows how to concatenate two strings into one:

firstname = "Homer"
surname = "Simpson"
name = firstname + " " + surname
print(name)

It's as simple for lists:

colours1 = ["red", "green","blue"]
colours2 = ["black", "white"]
colours = colours1 + colours2
print(colours)

The augmented assignment "+=" which is well known for arithmetic assignments work for sequences as well.

s += t

is syntactically the same as:

s = s + t

But it is only syntactically the same. The implementation is different: In the first case the left side has to be
evaluated only once. Augment assignments may be applied for mutable objects as an optimization.

CHECKING IF AN ELEMENT IS CONTAINED IN LIST

It's easy to check, if an item is contained in a sequence. We can use the "in" or the "not in" operator for this
purpose. The following example shows how this operator can be applied:

abc = ["a","b","c","d","e"]
"a" in abc

"a" not in abc

Output: 4

Homer Simpson

['red', 'green', 'blue', 'black', 'white']

Output: True

SEQUENTIAL DATA TYPES 54

"e" not in abc

"f" not in abc

slogan = "Python is easy!"
"y" in slogan

"x" in slogan

REPETITIONS

So far we had a " + " operator for sequences. There is a " * " operator available as well. Of course, there is no
"multiplication" between two sequences possible. " * " is defined for a sequence and an integer, i.e. "s * n"
or "n * s". It's a kind of abbreviation for an n-times concatenation, i.e.

str * 4

is the same as

str + str + str + str

Further examples:

3 * "xyz-"

"xyz-" * 3

3 * ["a","b","c"]

The augmented assignment for "" can be used as well: s = n is the same as s = s * n.

Output: False

Output: False

Output: True

Output: True

Output: False

Output: 'xyz-xyz-xyz-'

Output: 'xyz-xyz-xyz-'

Output: ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']

SEQUENTIAL DATA TYPES 55

THE PITFALLS OF REPETITIONS

In our previous examples we applied the repetition operator on strings and flat lists. We can apply it to nested
lists as well:

x = ["a","b","c"]
y = [x] * 4
y

y[0][0] = "p"
y

This result is quite astonishing for beginners of Python programming. We
have assigned a new value to the first element of the first sublist of y, i.e.
y[0][0] and we have "automatically" changed the first elements of all the
sublists in y, i.e. y[1][0], y[2][0], y[3][0].

The reason is that the repetition operator "* 4" creates 4 references to the
list x: and so it's clear that every element of y is changed, if we apply a new
value to y[0][0].

Output: [['a', 'b', 'c'], ['a', 'b', 'c'], ['a', 'b', 'c'], ['a',
'b', 'c']]

Output: [['p', 'b', 'c'], ['p', 'b', 'c'], ['p', 'b', 'c'], ['p',
'b', 'c']]

SEQUENTIAL DATA TYPES 56

L I S T S

CHANGING LISTS

This chapter of our tutorial deals with further aspects of lists. You will learn
how to append and insert objects to lists and you will also learn how to
delete and remove elements by using 'remove' and 'pop'.

A list can be seen as a stack. A stack in computer science is a data
structure, which has at least two operations: one which can be used to put
or push data on the stack, and another one to take away the most upper
element of the stack. The way of working can be imagined with a stack of
plates. If you need a plate you will usually take the most upper one. The
used plates will be put back on the top of the stack after cleaning. If a
programming language supports a stack like data structure, it will also
supply at least two operations:

•push
This method is used to put a new object on the
stack. Depending on the point of view, we say t
hat we "push" the object on top or attach it t
o the right side. Python doesn't offer - contra
ry to other programming languages - no method with the name "pus
h", but the method "append" has the same functionality.
•pop
This method returns the top element of the stack. The object will b
e removed from the stack as well.
•peek
Some programming languages provide another method, which can be use
d to view what is on the top of the stack without removing this ele
ment. The Python list class doesn't possess such a method, because
it is not needed. A peek can be simulated by accessing the element
with the index -1:

lst = ["easy", "simple", "cheap", "free"]
lst[-1]

POP AND APPEND

•lst.append(x)

This method appends an element to the end of the list "lst".

lst = [3, 5, 7]

Output: 'free'

LISTS 57

lst.append(42)
lst

It's important to understand that append returns "None". In other words, it usually doesn't make sense to
reassign the return value:

lst = [3, 5, 7]
lst = lst.append(42)
print(lst)

•lst.pop(i)

'pop' returns the (i)th element of a list "lst". The element will be removed from the list as well.

cities = ["Hamburg", "Linz", "Salzburg", "Vienna"]
cities.pop(0)

cities

cities.pop(1)

cities

The method 'pop' raises an IndexError exception, if the list is empty or the index is out of range.

•s.pop()

The method 'pop' can be called without an argument. In this case, the last element will be returned. So s.pop()
is equivalent to s.pop(-1).

cities = ["Amsterdam", "The Hague", "Strasbourg"]
cities.pop()

Output: [3, 5, 7, 42]

None

Output: 'Hamburg'

Output: ['Linz', 'Salzburg', 'Vienna']

Output: 'Salzburg'

Output: ['Linz', 'Vienna']

Output: 'Strasbourg'

LISTS 58

cities

EXTEND

We saw that it is easy to append an object to a list. What about adding more than one element to a list? Maybe,
you want to add all the elements of another list to your list. If you use append, the other list will be appended
as a sublist, as we can see in the following example:

lst = [42,98,77]
lst2 = [8,69]
lst.append(lst2)
lst

For this purpose, Python provides the method 'extend'. It extends a list by appending all the elements of an
iterable like a list, a tuple or a string to a list:

lst = [42,98,77]
lst2 = [8,69]
lst.extend(lst2)
lst

As we have mentioned, the argument of 'extend' doesn't have to be a list. It can be any kind of iterable. That is,
we can use tuples and strings as well:

lst = ["a", "b", "c"]
programming_language = "Python"
lst.extend(programming_language)
print(lst)

Now with a tuple:

lst = ["Java", "C", "PHP"]
t = ("C#", "Jython", "Python", "IronPython")
lst.extend(t)
lst

Output: ['Amsterdam', 'The Hague']

Output: [42, 98, 77, [8, 69]]

Output: [42, 98, 77, 8, 69]

['a', 'b', 'c', 'P', 'y', 't', 'h', 'o', 'n']

Output: ['Java', 'C', 'PHP', 'C#', 'Jython', 'Python', 'IronPython']

LISTS 59

EXTENDING AND APPENDING LISTS WITH THE '+' OPERATOR

There is an alternative to 'append' and 'extend'. '+' can be used to combine lists.

level = ["beginner", "intermediate", "advanced"]
other_words = ["novice", "expert"]
level + other_words

Be careful. Never ever do the following:

L = [3, 4]
L = L + [42]
L

Even though we get the same result, it is not an alternative to 'append' and 'extend':

L = [3, 4]
L.append(42)
L

L = [3, 4]
L.extend([42])
L

The augmented assignment (+=) is an alternative:

L = [3, 4]
L += [42]
L

In the following example, we will compare the different approaches and calculate their run times. To
understand the following program, you need to know that time.time() returns a float number, the time in
seconds since the so-called ,,The Epoch''1. time.time() - start_time calculates the time in seconds used for the
for loops:

Output: ['beginner', 'intermediate', 'advanced', 'novice', 'expert']

Output: [3, 4, 42]

Output: [3, 4, 42]

Output: [3, 4, 42]

Output: [3, 4, 42]

LISTS 60

import time
n= 100000

start_time = time.time()
l = []
for i in range(n):

l = l + [i * 2]
print(time.time() - start_time)

start_time = time.time()
l = []
for i in range(n):

l += [i * 2]
print(time.time() - start_time)

start_time = time.time()
l = []
for i in range(n):

l.append(i * 2)
print(time.time() - start_time)

This program returns shocking results:

We can see that the "+" operator is about 1268 times slower than the append method. The explanation is easy:
If we use the append method, we will simply append a further element to the list in each loop pass. Now we
come to the first loop, in which we use l = l + [i * 2]. The list will be copied in every loop pass. The new
element will be added to the copy of the list and result will be reassigned to the variable l. After that, the old
list will have to be removed by Python, because it is not referenced anymore. We can also see that the version
with the augmented assignment ("+="), the loop in the middle, is only slightly slower than the version using
"append".

REMOVING AN ELEMENT WITH REMOVE

It is possible to remove a certain value from a list without knowing the position with the method "remove" .

s.remove(x)

29.277812480926514

0.04687356948852539

0.03689885139465332

LISTS 61

This call will remove the first occurrence of 'x' from the list 's'. If 'x' is not in the list, a ValueError will be
raised. We will call the remove method three times in the following example to remove the colour "green". As
the colour "green" occurrs only twice in the list, we get a ValueError at the third time:

colours = ["red", "green", "blue", "green", "yellow"]
colours.remove("green")
colours

colours.remove("green")
colours

colours.remove("green")

FIND THE POSITION OF AN ELEMENT IN A LIST

The method "index" can be used to find the position of an element within a list:

s.index(x[, i[, j]])

It returns the first index of the value x. A ValueError will be raised, if the value is not present. If the optional
parameter i is given, the search will start at the index i. If j is also given, the search will stop at position j.

colours = ["red", "green", "blue", "green", "yellow"]
colours.index("green")

colours.index("green", 2)

colours.index("green", 3,4)

Output: ['red', 'blue', 'green', 'yellow']

Output: ['red', 'blue', 'yellow']

ValueError Traceback (most recent call last)
<ipython-input-26-278a6b3f3483> in <module>
----> 1 colours.remove("green")
ValueError: list.remove(x): x not in list

Output: 1

Output: 3

Output: 3

LISTS 62

colours.index("black")

INSERT

We have learned that we can put an element to the end of a list by using the method "append". To work
efficiently with a list, we need also a way to add elements to arbitrary positions inside of a list. This can be
done with the method "insert":

s.insert(index, object)

An object "object" will be included in the list "s". "object" will be placed before the element s[index]. s[index]
will be "object" and all the other elements will be moved one to the right.

lst = ["German is spoken", "in Germany,", "Austria", "Switzerlan
d"]
lst.insert(3, "and")
lst

The functionality of the method "append" can be simulated with insert in the following way:

abc = ["a","b","c"]
abc.insert(len(abc),"d")
abc

Footnotes:

1 Epoch time (also known as Unix time or POSIX time) is a system for describing instants in time, defined as
the number of seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1
January 1970, not counting leap seconds.

ValueError Traceback (most recent call last)
<ipython-input-30-b6026e7dbb87> in <module>
----> 1 colours.index("black")
ValueError: 'black' is not in list

Output: ['German is spoken', 'in Germany,', 'Austria', 'and', 'Switze
rland']

Output: ['a', 'b', 'c', 'd']

LISTS 63

S H A L L O W A N D D E E P C O P Y

INTRODUCTION

In this chapter, we will cover the question of how to copy
lists and nested lists. The problems which we will
encounter are general problems of mutable data types.
Trying to copy lists can be a stumping experience for
newbies. But before, we would like to summarize some
insights from the previous chapter "Data Types and
Variables". Python even shows a strange behaviour for the
beginners of the language - in comparison with some other
traditional programming languages - when assigning and
copying simple data types like integers and strings. The difference between shallow and deep copying is only
relevant for compound objects, i.e. objects containing other objects, like lists or class instances.

In the following code snippet, y points to the same memory location as X. We can see this by applying the id()
function on x and y. However, unlike "real" pointers like those in C and C++, things change, when we assign a
new value to y. In this case y will receive a separate memory location, as we have seen in the chapter "Data
Types and Variables" and can see in the following example:

x = 3
y = x
print(id(x), id(y))

y = 4
print(id(x), id(y))

print(x,y)

But even if this internal behaviour appears strange compared to programming languages like C, C++, Perl or
Java, the observable results of the previous assignments are what we exprected, i.e. if you do not look at the id
values. However, it can be problematic, if we copy mutable objects like lists and dictionaries.

Python creates only real copies, if it has to, i.e. if the user, the programmer, explicitly demands it.

We will introduce you to the most crucial problems, which can occur when copying mutable objects such as
lists and dictionaries.

94308023129184 94308023129184

94308023129184 94308023129216

3 4

SHALLOW AND DEEP COPY 64

VARIABLES SHARING AN OBJECT

You are on this page to learn about copying objects, especially lists. Nevertheless, you need to exercise
patience. We want to show something that looks like a copy to many beginners but has nothing to do with
copies.

colours1 = ["red", "blue"]
colours2 = colours1
print(colours1, colours2)

Both variables reference the same list object. If we look at the identities of the variables colours1 and
colours2 , we can see that both are references to the same object:

print(id(colours1), id(colours2))

In the example above a simple list is assigned to colours1. This list is a so-called "shallow list", because it
doesn't have a nested structure, i.e. no sublists are contained in the list. In the next step we assign colours1 to
colours2.

The id() function shows us that both variables point at the same list object, i.e. they share this object.

We have two variable names
colours1 and colours2 , which

we have depicted as yellow ovals. The
blue box symbolizes the list object. A list
object consists of references to other
objects. In our example the list object,
which is referenced by both variables,
references two string objects, i.e. "red"
and "blue". Now we have to examine,
what will happen, if we change just one
element of the list of colours2 or
colours1 .

Now we want to see, what happens, if we assign a new object to colours2 . As expected, the values of
colours1 remain unchanged. Like it was in our example in the chapter "Data Types and Variables", a new

memory location had been allocated for colours2 , as we have assigned a completely new list, i.e. a new
list object to this variable.

colours1 = ["red", "blue"]
colours2 = colours1

['red', 'blue'] ['red', 'blue']

139720054914312 139720054914312

SHALLOW AND DEEP COPY 65

https://www.python-course.eu/python3_variables.php

print(id(colours1), id(colours2))

colours2 = "green"
print(colours1)

print(colours1)

print(colours2)

We assigned a new object to the variable 'colours2'. In the following code, we will change the list object
internally by assigning a new value to the second element of the list.

colours1 = ["red", "blue"]
colours2 = colours1

colours2[1] = "green"

Let's see, what has happened in detail in
the previous code. We assigned a new
value to the second element of colours2,
i.e. the element with the index 1. Lots of
beginners will be surprised as the list of
colours1 has been "automatically"
changed as well. Of course, we don't have
two lists: We have only two names for the
same list!

The explanation is that we didn't assign a new object to the variable colours2 . We changed the object
referenced by colours2 internally or as it is usually called "in-place". Both variables colours1 and
colours2 still point to the same list object.

COPYING LISTS

We have finally arrived at the topic of copying lists. The list class offers the method copy for this
purpose. Even though the name seems to be clear, this path also has a catch.

The catch can be seen, if we use help on copy :

139720055355208 139720055355208

['red', 'blue']

['red', 'blue']

green

SHALLOW AND DEEP COPY 66

help(list.copy)

Many beginners overlook the word "shallow" here. help tells us that a new list will be created by the
copy method. This new list will be a 'shallow' copy of the original list.

In principle, the word "shallow" is unnecessary or even misleading in this definition.

First you should remember what a list is in Python. A list in Python is an object consisting of an ordered
sequence of references to Python objects. The following is a list of strings:

The list which the variable firstnames is referencing is a list of strings. Basically, the list object is solely
the blue box with the arrows, i.e. the references to the strings. The strings itself are not part of the list.

firstnames = ['Kevin', 'Jamina', 'Lars', 'Maria']

The previous example the list of first names firstnames is homogeneous, i.e. it consists only of strings,
so all elements have the same data type. But you should be aware of the fact that the references of a list can
refer to any objects. The following list whatever is such a more general list:

Help on method_descriptor:

copy(self, /)
Return a shallow copy of the list.

SHALLOW AND DEEP COPY 67

whatever = ["Kevin", "Pythonista", 7.8, [3.54, "rkm"]]

When a list is copied, we copy the references. In our examples, these are the blue boxes referenced by
firstnames and by whatever . The implications of this are shown in the following subchapter.

PROBLEMS OF COPYING LISTS

Copying lists can easily be misunderstood, and this misconception can lead to unpleasant errors. We will
present this in the form of a slightly different love story.

SHALLOW AND DEEP COPY 68

Imagine a person living in the city of Constance. The city is located in the South of Germany at the banks of
Lake Constance (Bodensee in German). The river Rhine, which starts in the Swiss Alps, passes through Lake
Constance and leaves it, considerably larger. This person called Swen lives in "Seestrasse", one of the most
expensive streets of Constance. His apartment has a direct view of the lake and the city of Constance. We put
some information about Swen in the following list structure:

person1 = ["Swen", ["Seestrasse", "Konstanz"]]

One beautiful day, the good-looking Sarah meets Swen, her Prince Charming. To cut the story short: Love at
first sight and she moves in with Swen.

Now it is up to us to create a data set for Sarah. We are lazy and we will recycle Swen's data, because she will
live now with him in the same apartment.

We will copy Swen's data and change the name to Sarah:

person2 = person1.copy()
person2[0] = "Sarah"
print(person2)

They live in perfect harmony and deep love for a long time, let's say a whole weekend. She suddenly realizes
that Swen is a monster: He stains the butter with marmelade and honey and even worse, he spreads out his
worn socks in the bedroom. It doesn't take long for her to make a crucial decision: She will leave him and the
dream apartment.

['Sarah', ['Seestrasse', 'Konstanz']]

SHALLOW AND DEEP COPY 69

She moves into a street called Bücklestrasse. A residential area that is nowhere near as nice, but at least she is
away from the monster.

How can we arrange this move from the Python point of view?

The street can be accessed with person2[1][0] . So we set this to the new location:

person2[1][0] = "Bücklestraße"

We can see that Sarah successfully moved to the new location:

print(person2)

Is this the end of our story? Will she never see Swen again? Let's check Swen's data:

print(person1)

Swen is clingy. She cannot get rid of him! This might be quite surprising for some. Why is it like this? The list
person1 consists of two references: One to a string object ("Swen") and the other one to nested list (the

address ['Seestrasse', 'Konstanz'] . When we used copy , we copied only these references.
This means that both person1[1] and person2[1] reference the same list object. When we change
this nested list, it is visible in both lists.

DEEPCOPY FROM THE MODULE COPY

A solution to the described problem is provided by the module copy . This module provides the method
"deepcopy", which allows a complete or deep copy of an arbitrary list, i.e. shallow and other lists.

['Sarah', ['Bücklestraße', 'Konstanz']]

['Swen', ['Bücklestraße', 'Konstanz']]

SHALLOW AND DEEP COPY 70

Let us redo the previous example with the function deepcopy :

from copy import deepcopy
person1 = ["Swen", ["Seestrasse", "Konstanz"]]

person2 = deepcopy(person1)
person2[0] = "Sarah"

After this the implementation structure looks like this:

We can see that the nested list with the address was copied as well. We are now well prepared for Sarah's
escape-like move.

person2[1][0] = "Bücklestrasse"

She successfully moved out and left Swen for good, as we can see in the following:

print(person1, person2)

For the sake of clarity, we also provide a diagram here.

['Swen', ['Seestrasse', 'Konstanz']] ['Sarah', ['Bücklestrasse',
'Konstanz']]

SHALLOW AND DEEP COPY 71

We can see by using the id function that the sublist has been copied, because id(person1[1]) is
different from id(person2[1]) . An interesting fact is that the strings are not copied: person1[1]
and person2[1] reference the same string.

print(id(person1[1]), id(person2[1]))
139720051192456 139720054073864

SHALLOW AND DEEP COPY 72

D I C T I O N A R I E S

INTRODUCTION

We have already become acquainted with lists in the previous chapter. In
this chapter of our online Python course we will present the dictionaries,
the operators and the methods on dictionaries. Python programs or scripts
without lists and dictionaries are nearly inconceivable. Dictionaries and
their powerful implementations are part of what makes Python so effective
and superior. Like lists, they can be easily changed, can be shrunk and
grown ad libitum at run time. They shrink and grow without the necessity
of making copies. Dictionaries can be contained in lists and vice versa.

But what's the difference between lists and dictionaries? A list is an ordered sequence of objects, whereas
dictionaries are unordered sets. However, the main difference is that items in dictionaries are accessed via keys
and not via their position.

More theoretically, we can say that dictionaries are the Python implementation of an abstract data type, known
in computer science as an associative array. Associative arrays consist - like dictionaries of (key, value) pairs,
such that each possible key appears at most once in the collection. Any key of the dictionary is associated (or
mapped) to a value. The values of a dictionary can be any type of Python data. So, dictionaries are unordered
key-value-pairs. Dictionaries are implemented as hash tables, and that is the reason why they are known as
"Hashes" in the programming language Perl.

Dictionaries don't support the sequence operation of the sequence data types like strings, tuples and lists.
Dictionaries belong to the built-in mapping type, but so far, they are the sole representative of this kind!

At the end of this chapter, we will demonstrate how a dictionary can be turned into one list, containing
(key,value)-tuples or two lists, i.e. one with the keys and one with the values. This transformation can be done
reversely as well.

EXAMPLES OF DICTIONARIES

Our first example is a dictionary with cities located in the US and Canada and their corresponding population.
We have taken those numbers out the "List of North American cities by population" from Wikipedia
(https://en.wikipedia.org/wiki/List_of_North_American_cities_by_population)

If we want to get the population of one of those cities, all we have to do is to use the name of the city as an
index. We can see that dictonaries are enclosed in curly brackets. They contain key value pairs. A key and its
corresponding value are separated by a colon:

city_population = {"New York City": 8_550_405,
"Los Angeles": 3_971_883,
"Toronto": 2_731_571,
"Chicago": 2_720_546,

DICTIONARIES 73

https://en.wikipedia.org/wiki/List_of_North_American_cities_by_population

"Houston": 2_296_224,
"Montreal": 1_704_694,
"Calgary": 1_239_220,
"Vancouver": 631_486,
"Boston": 667_137}

We can access the value for a specific key by putting this key in brackets following the name of the dictionary:

city_population["New York City"]

city_population["Toronto"]

city_population["Boston"]

What happens, if we try to access a key, i.e. a city in our example, which is not contained in the dictionary?
We raise a KeyError:

city_population["Detroit"]

A frequently asked question is if dictionary objects are ordered. The uncertainty arises from the fact that
dictionaries were not sorted in versions before Python 3.7. In Python 3.7 and all later versions, dictionaries are
sorted by the order of item insertion. In our example this means the dictionary keeps the order in which we
defined the dictionary. You can see this by printing the dictionary:

city_population

Output: 8550405

Output: 8550405

Output: 2731571

Output: 667137

KeyError Traceback (most recent call last)
<ipython-input-5-80e422418d76> in <module>
----> 1 city_population["Detroit"]

KeyError: 'Detroit'

DICTIONARIES 74

Yet, ordering doesn't mean that you have a way of directly calling the nth element of a dictionary. So trying to
access a dictionary with a number - like we do with lists - will result in an exception:

city_population[0]

It is very easy to add another entry to an existing dictionary:

city_population["Halifax"] = 390096
city_population

So, it's possible to create a dictionary incrementally by starting with an empty dictionary. We haven't
mentioned so far, how to define an empty one. It can be done by using an empty pair of brackets. The
following defines an empty dictionary called city:

In []:

city_population = {}
city_population

Output: {'New York City': 8550405,
'Los Angeles': 3971883,
'Toronto': 2731571,
'Chicago': 2720546,
'Houston': 2296224,
'Montreal': 1704694,
'Calgary': 1239220,
'Vancouver': 631486,
'Boston': 667137}

KeyError Traceback (most recent call last)
<ipython-input-7-a4816f909f86> in <module>
----> 1 city_population[0]

KeyError: 0

Output: {'New York City': 8550405,
'Los Angeles': 3971883,
'Toronto': 2731571,
'Chicago': 2720546,
'Houston': 2296224,
'Montreal': 1704694,
'Calgary': 1239220,
'Vancouver': 631486,
'Boston': 667137,
'Halifax': 390096}

DICTIONARIES 75

In []:

city_population['New York City'] = 8550405
city_population['Los Angeles'] = 3971883
city_population

Looking at our first examples with the cities and their population, you might have gotten the wrong impression
that the values in the dictionaries have to be different. The values can be the same, as you can see in the
following example. In honour to the patron saint of Python "Monty Python", we'll have now some special food
dictionaries. What's Python without "bacon", "egg" and "spam"?

In []:

food = {"bacon": "yes", "egg": "yes", "spam": "no" }
food

Keys of a dictionary are unique. In casse a keys is defined multiple times, the value of the last "wins":

In []:

food = {"bacon" : "yes", "spam" : "yes", "egg" : "yes", "spam" :
"no" }
food

Our next example is a simple English-German dictionary:

In []:

en_de = {"red" : "rot", "green" : "grün", "blue" : "blau", "yello
w":"gelb"}
print(en_de)
print(en_de["red"])

What about having another language dictionary, let's say German-French?

Now it's even possible to translate from English to French, even though we don't have an English-French-
dictionary. de_fr[en_de["red"]] gives us the French word for "red", i.e. "rouge":

In []:

de_fr = {"rot": "rouge", "grün": "vert", "blau": "bleu", "gelb":
"jaune"}
en_de = {"red": "rot", "green": "grün", "blue": "blau", "yellow":
"gelb"}
print(en_de)

In []:

print(en_de["red"])

DICTIONARIES 76

In []:

de_fr = {"rot" : "rouge", "grün" : "vert", "blau" : "bleu", "gel
b":"jaune"}
print("The French word for red is: " + de_fr[en_de["red"]])

We can use arbitrary types as values in a dictionary, but there is a restriction for the keys. Only immutable data
types can be used as keys, i.e. no lists or dictionaries can be used: If you use a mutable data type as a key, you
get an error message:

In []:

dic = {[1,2,3]: "abc"}

Tuple as keys are okay, as you can see in the following example:

In []:

dic = {(1, 2, 3): "abc", 3.1415: "abc"}
dic

Let's improve our examples with the natural language dictionaries a bit. We create a dictionary of dictionaries:

In []:

en_de = {"red" : "rot", "green" : "grün", "blue" : "blau", "yello
w":"gelb"}
de_fr = {"rot" : "rouge", "grün" : "vert", "blau" : "bleu", "gel
b":"jaune"}
de_tr = {"rot": "kırmızı", "grün": "yeşil", "blau": "mavi", "gel
b": "jel"}
en_es = {"red" : "rojo", "green" : "verde", "blue" : "azul", "yell
ow":"amarillo"}

dictionaries = {"en_de" : en_de, "de_fr" : de_fr, "de_tr": de_tr,
"en_es": en_es}
dictionaries

In []:

cn_de = {"红": "rot", "绿" : "grün", "蓝" : "blau", "黄" : "gelb"}
de_ro = {'rot': 'roșu', 'gelb': 'galben', 'blau': 'albastru', 'grü
n': 'verde'}
de_hex = {"rot" : "#FF0000", "grün" : "#00FF00", "blau" : "0000F
F", "gelb":"FFFF00"}
en_pl = {"red" : "czerwony", "green" : "zielony",

"blue" : "niebieski", "yellow" : "żółty"}
de_it = {"rot": "rosso", "gelb": "giallo", "blau": "blu", "grün":
"verde"}

DICTIONARIES 77

dictionaries["cn_de"] = cn_de
dictionaries["de_ro"] = de_ro
dictionaries["de_hex"] = de_hex
dictionaries["en_pl"] = en_pl
dictionaries["de_it"] = de_it
dictionaries

A dictionary of dictionaries.

In []:

dictionaries["en_de"] # English to German dictionary

In []:

dictionaries["de_fr"] # German to French

In []:

print(dictionaries["de_fr"]["blau"]) # equivalent to de_fr['bla
u']

In []:

de_fr['blau']
In []:

lang_pair = input("Which dictionary, e.g. 'de_fr', 'en_de': ")
word_to_be_translated = input("Which colour: ")

d = dictionaries[lang_pair]
if word_to_be_translated in d:

print(word_to_be_translated + " --> " + d[word_to_be_translate
d])

In []:

dictionaries['de_fr'][dictionaries['en_de']['red']]
In []:

de_fr
In []:

for value in de_fr.values():
print(value)

In []:

for key, value in de_fr.items():
print(key, value)

In []:

DICTIONARIES 78

fr_de = {}
fr_de['rouge'] = 'rot'
fr_de['vert'] = "grün"

In []:

fr_de = {}
for key, value in de_fr.items():

fr_de[value] = key # key and value are swapped

fr_de
In []:

de_cn = {}
for key, value in cn_de.items():

de_cn[value] = key
de_cn

OPERATORS IN DICTIONARIES

Operator Explanation

len(d) returns the number of stored entries, i.e. the number of (key,value) pairs.

del d[k] deletes the key k together with his value

k in d True, if a key k exists in the dictionary d

k not in d True, if a key k doesn't exist in the dictionary d

Examples: The following dictionary contains a mapping from latin characters to morsecode.

In []:

morse = {
"A" : ".-",
"B" : "-...",
"C" : "-.-.",
"D" : "-..",
"E" : ".",
"F" : "..-.",
"G" : "--.",
"H" : "....",
"I" : "..",
"J" : ".---",

DICTIONARIES 79

"K" : "-.-",
"L" : ".-..",
"M" : "--",
"N" : "-.",
"O" : "---",
"P" : ".--.",
"Q" : "--.-",
"R" : ".-.",
"S" : "...",
"T" : "-",
"U" : "..-",
"V" : "...-",
"W" : ".--",
"X" : "-..-",
"Y" : "-.--",
"Z" : "--..",
"0" : "-----",
"1" : ".----",
"2" : "..---",
"3" : "...--",
"4" : "....-",
"5" : ".....",
"6" : "-....",
"7" : "--...",
"8" : "---..",
"9" : "----.",
"." : ".-.-.-",
"," : "--..--"
}

If you save this dictionary as morsecode.py, you can easily follow the following examples. At first you have to
import this dictionary:

In []:

from morsecode import morse

The numbers of characters contained in this dictionary can be determined by calling the len function:

In []:

len(morse)
38

The dictionary contains only upper case characters, so that "a" returns False, for example:

DICTIONARIES 80

In []:

"a" in morse
In []:

"A" in morse
In []:

"a" not in morse
In []:

word = input("Your word: ")

for char in word.upper():
print(char, morse[char])

In []:

word = input("Your word: ")

morse_word = ""
for char in word.upper():

if char == " ":
morse_word += " "

else:
if char not in morse:

continue # continue with next char, go back t
o for

morse_word += morse[char] + " "

print(morse_word)
In []:

for i in range(15):
if i == 13:

continue
print(i)

POP() AND POPITEM()

POP

Lists can be used as stacks and the operator pop() is used to take an element from the stack. So far, so good for
lists, but does it make sense to have a pop() method for dictionaries? After all, a dict is not a sequence data
type, i.e. there is no ordering and no indexing. Therefore, pop() is defined differently with dictionaries. Keys
and values are implemented in an arbitrary order, which is not random, but depends on the implementation. If
D is a dictionary, then D.pop(k) removes the key k with its value from the dictionary D and returns the

DICTIONARIES 81

corresponding value as the return value, i.e. D[k].

In []:

en_de = {"Austria":"Vienna", "Switzerland":"Bern", "Germany":"Berl
in", "Netherlands":"Amsterdam"}
capitals = {"Austria":"Vienna", "Germany":"Berlin", "Netherland
s":"Amsterdam"}
capital = capitals.pop("Austria")
print(capital)

If the key is not found, a KeyError is raised:

In []:

print(capitals)
{'Netherlands': 'Amsterdam', 'Germany': 'Berlin'}
capital = capitals.pop("Switzerland")

If we try to find out the capital of Switzerland in the previous example, we raise a KeyError. To prevent these
errors, there is an elegant way. The method pop() has an optional second parameter, which can be used as a
default value:

In []:

capital = capitals.pop("Switzerland", "Bern")
print(capital)

In []:

capital = capitals.pop("France", "Paris")
print(capital)

In []:

capital = capitals.pop("Germany", "München")
print(capital)

POPITEM

popitem() is a method of dict, which doesn't take any parameter and removes and returns an arbitrary
(key,value) pair as a 2-tuple. If popitem() is applied on an empty dictionary, a KeyError will be raised.

In []:

capitals = {"Springfield": "Illinois",
"Augusta": "Maine",
"Boston": "Massachusetts",
"Lansing": "Michigan",

DICTIONARIES 82

"Albany": "New York",
"Olympia": "Washington",
"Toronto": "Ontario"}

(city, state) = capitals.popitem()
(city, state)

In []:

print(capitals.popitem())
In []:

print(capitals.popitem())
In []:

print(capitals.popitem())
In []:

print(capitals.popitem())

ACCESSING NON-EXISTING KEYS

If you try to access a key which doesn't exist, you will get an error message:

In []:

locations = {"Toronto": "Ontario", "Vancouver": "British Columbi
a"}
locations["Ottawa"]

You can prevent this by using the "in" operator:

In []:

province = "Ottawa"

if province in locations:
print(locations[province])

else:
print(province + " is not in locations")

Another method to access the values via the key consists in using the get() method. get() is not raising an
error, if an index doesn't exist. In this case it will return None. It's also possible to set a default value, which
will be returned, if an index doesn't exist:

In []:

proj_language = {"proj1":"Python", "proj2":"Perl", "proj3":"Java"}
proj_language["proj1"]

In []:

DICTIONARIES 83

proj_language.get("proj2")
In []:

proj_language.get("proj4")
print(proj_language.get("proj4"))

In []:

setting a default value:
proj_language.get("proj4", "Python")

IMPORTANT METHODS

A dictionary can be copied with the method copy():

COPY()
In []:

words = {'house': 'Haus', 'cat': 'Katze'}
w = words.copy()
words["cat"]="chat"
print(w)

In []:

print(words)

This copy is a shallow copy, not a deep copy. If a value is a complex data type like a list, for example, in-place
changes in this object have effects on the copy as well:

In []:

trainings = { "course1":{"title":"Python Training Course for Begin
ners",

"location":"Frankfurt",
"trainer":"Steve G. Snake"},

"course2":{"title":"Intermediate Python Training",
"location":"Berlin",
"trainer":"Ella M. Charming"},

"course3":{"title":"Python Text Processing Course",
"location":"München",
"trainer":"Monica A. Snowdon"}

}

trainings2 = trainings.copy()

trainings["course2"]["title"] = "Perl Training Course for Beginner
s"

DICTIONARIES 84

print(trainings2)

If we check the output, we can see that the title of course2 has been changed not only in the dictionary training
but in trainings2 as well.

Everything works the way you expect it, if you assign a new value, i.e. a new object, to a key:

In []:

trainings = { "course1": {"title": "Python Training Course for Beg
inners",

"location": "Frankfurt",
"trainer": "Steve G. Snake"},

"course2": {"title": "Intermediate Python Training",
"location": "Berlin",
"trainer": "Ella M. Charming"},

"course3": {"title": "Python Text Processing Cours
e",

"location": "München",
"trainer": "Monica A. Snowdon"}

}

trainings2 = trainings.copy()

trainings["course2"] = {"title": "Perl Seminar for Beginners",
"location": "Ulm",
"trainer": "James D. Morgan"}

print(trainings2["course2"])

If you want to understand the reason for this behaviour, we recommend our chapter "Shallow and Deep
Copy".

CLEAR()

The content of a dictionary can be cleared with the method clear(). The dictionary is not deleted, but set to an
empty dictionary:

In []:

w.clear()
print(w)

DICTIONARIES 85

UPDATE: MERGING DICTIONARIES

What about concatenating dictionaries, like we did with lists? There is someting similar for dictionaries: the
update method update() merges the keys and values of one dictionary into another, overwriting values of the
same key:

In []:

knowledge = {"Frank": {"Perl"}, "Monica":{"C","C++"}}
knowledge2 = {"Guido":{"Python"}, "Frank":{"Perl", "Python"}}
knowledge.update(knowledge2)
knowledge

ITERATING OVER A DICTIONARY

No method is needed to iterate over the keys of a dictionary:

In []:

d = {"a":123, "b":34, "c":304, "d":99}
for key in d:

print(key)

However, it's possible to use the method keys(), we will get the same result:

In []:

for key in d.keys():
print(key)

The method values() is a convenient way for iterating directly over the values:

In []:

for value in d.values():
print(value)

The above loop is logically equivalent to the following one:

In []:

for key in d:
print(d[key])

We said logically, because the second way is less efficient!

If you are familiar with the timeit possibility of ipython, you can measure the time used for the two
alternatives:

DICTIONARIES 86

In []:

%%timeit d = {"a":123, "b":34, "c":304, "d":99}
for key in d.keys():

x = d[key]
In []:

%%timeit d = {"a":123, "b":34, "c":304, "d":99}
for value in d.values():

x = value

CONNECTION BETWEEN LISTS AND DICTIONARIES

If you have worked for a while with Python, nearly inevitably the moment
will come, when you want or have to convert lists into dictionaries or vice
versa. It wouldn't be too hard to write a function doing this. But Python
wouldn't be Python, if it didn't provide such functionalities.

If we have a dictionary

In []:

D = {"list": "Liste", "dictionary": "Wörterbu
ch", "function": "Funktion"}

we could turn this into a list with two-tuples:

In []:

L = [("list", "Liste"), ("dictionary", "Wörterbuch"), ("functio
n", "Funktion")]

The list L and the dictionary D contain the same content, i.e. the information content, or to express "The
entropy of L and D is the same" sententiously. Of course, the information is harder to retrieve from the list L
than from the dictionary D. To find a certain key in L, we would have to browse through the tuples of the list
and compare the first components of the tuples with the key we are looking for. The dictionary search is
implicitly implemented for maximum efficiency

LISTS FROM DICTIONARIES

It's possible to create lists from dictionaries by using the methods items(), keys() and values(). As the name
implies the method keys() creates a list, which consists solely of the keys of the dictionary. values() produces a
list consisting of the values. items() can be used to create a list consisting of 2-tuples of (key,value)-pairs:

In []:

w = {"house": "Haus", "cat": "", "red": "rot"}
items_view = w.items()
items = list(items_view)

DICTIONARIES 87

items
In []:

keys_view = w.keys()
keys = list(keys_view)
keys

In []:

values_view = w.values()
values = list(values_view)
values

In []:

values_view
In []:

items_view
In []:

keys_view

If we apply the method items() to a dictionary, we don't get a list back, as it used to be the case in Python 2,
but a so-called items view. The items view can be turned into a list by applying the list function. We have no
information loss by turning a dictionary into an item view or an items list, i.e. it is possible to recreate the
original dictionary from the view created by items(). Even though this list of 2-tuples has the same entropy, i.e.
the information content is the same, the efficiency of both approaches is completely different. The dictionary
data type provides highly efficient methods to access, delete and change the elements of the dictionary, while
in the case of lists these functions have to be implemented by the programmer.

TURN LISTS INTO DICTIONARIES

Now we will turn our attention to the art of cooking, but don't be afraid, this remains a python course and not a
cooking course. We want to show you, how to turn lists into dictionaries, if these lists satisfy certain
conditions. We have two lists, one containing the dishes and the other one the corresponding countries:

Now we will create a dictionary, which assigns a dish, a country-specific dish, to a country; please forgive us
for resorting to the common prejudices. For this purpose, we need the function zip(). The name zip was well

chosen, because the two lists get combined, functioning like a zipper. The result is a list iterator.1 This means
that we have to wrap a list() casting function around the zip call to get a list so that we can see what is going
on:

In []:

dishes = ["pizza", "sauerkraut", "paella", "hamburger"]
countries = ["Italy", "Germany", "Spain", "USA"]
country_specialities_iterator = zip(countries, dishes)

DICTIONARIES 88

country_specialities_iterator
In []:

country_specialities = list(country_specialities_iterator)
print(country_specialities)

Alternatively, you could have iteras over the zip object in a for loop. This way we are not creating a list, which
is more efficient, if we only want to iterate over the values and don't need a list.

In []:

for country, dish in zip(countries, dishes):
print(country, dish)

Now our country-specific dishes are in a list form, - i.e. a list of two-tuples, where the first components are
seen as keys and the second components as values - which can be automatically turned into a dictionary by
casting it with dict().

In []:

country_specialities_dict = dict(country_specialities)
print(country_specialities_dict)

Yet, this is very inefficient, because we created a list of 2-tuples to turn this list into a dict. This can be done
directly by applying dict to zip:

In []:

dishes = ["pizza", "sauerkraut", "paella", "hamburger"]
countries = ["Italy", "Germany", "Spain", "USA"]
dict(zip(countries, dishes))

There is still one question concerning the function zip(). What happens, if one of the two argument lists
contains more elements than the other one?

It's easy to answer: The superfluous elements, which cannot be paired, will be ignored:

In []:

dishes = ["pizza", "sauerkraut", "paella", "hamburger"]
countries = ["Italy", "Germany", "Spain", "USA"," Switzerland"]
country_specialities = list(zip(countries, dishes))
country_specialities_dict = dict(country_specialities)
print(country_specialities_dict)

So in this course, we will not answer the question about what the national dish of Switzerland is.

DICTIONARIES 89

EVERYTHING IN ONE STEP

Normally, we recommend not implementing too many steps in one programming expression, though it looks
more impressive and the code is more compact. Using "talking" variable names in intermediate steps can
enhance legibility. Though it might be alluring to create our previous dictionary just in one go:

In []:

country_specialities_dict = dict(zip(["pizza", "sauerkraut", "pael
la", "hamburger"],

["Italy", "Germany", "Spai
n", "USA"," Switzerland"]))
print(country_specialities_dict)

Of course, it is more readable like this:

In []:

dishes = ["pizza", "sauerkraut", "paella", "hamburger"]
countries = ["Italy", "Germany", "Spain", "USA"]
country_specialities_zip = zip(dishes,countries)
country_specialities_dict = dict(country_specialities_zip)
print(country_specialities_dict)

We get the same result, as if we would have called it in one go.

DANGER LURKING

Especialy for those migrating from Python 2.x to Python 3.x: zip() used to return a list, now it's returning an
iterator. You have to keep in mind that iterators exhaust themselves, if they are used. You can see this in the
following interactive session:

In []:

l1 = ["a","b","c"]
l2 = [1,2,3]
c = zip(l1, l2)
for i in c:

print(i)

This effect can be seen by calling the list casting operator as well:

In []:

l1 = ["a","b","c"]
l2 = [1,2,3]

DICTIONARIES 90

c = zip(l1,l2)
z1 = list(c)
z2 = list(c)
print(z1)

In []:

print(z2)

As an exercise, you may muse about the following script. Why do we get an empty directory by calling
dict(country_specialities_zip) ?

In []:

dishes = ["pizza", "sauerkraut", "paella", "hamburger"]
countries = ["Italy", "Germany", "Spain", "USA"]
country_specialities_zip = zip(dishes,countries)
print(list(country_specialities_zip))

country_specialities_dict = dict(country_specialities_zip)
print(country_specialities_dict)

EXERCISES

EXERCISE 1

Write a function dict_merge_sum that takes two dictionaries d1 and d2 as parameters. The values of both
dictionaries are numerical. The function should return the merged sum dictionary m of those dictionaries. If a
key k is both in d1 and d2 , the corresponding values will be added and included in the dictionary m If
k is only contained in one of the dictionaries, the k and the corresponding value will be included in m

EXERCISE 2

Given is the following simplified data of a supermarket:

In []:

supermarket = { "milk": {"quantity": 20, "price": 1.19},
"biscuits": {"quantity": 32, "price": 1.45},
"butter": {"quantity": 20, "price": 2.29},
"cheese": {"quantity": 15, "price": 1.90},
"bread": {"quantity": 15, "price": 2.59},
"cookies": {"quantity": 20, "price": 4.99},
"yogurt": {"quantity": 18, "price": 3.65},
"apples": {"quantity": 35, "price": 3.15},
"oranges": {"quantity": 40, "price": 0.99},

DICTIONARIES 91

"bananas": {"quantity": 23, "price": 1.29}}

To be ready for an imminent crisis you decide to buy everything. This isn't particularly social behavior, but for
the sake of the task, let's imagine it. The question is how much will you have to pay?

EXERCISE 3

• Create a virtual supermarket. For every article there is a price per article and a quantity, i.e. the
stock. (Hint: you can use the one from the previous exercise!)

• Create shopping lists for customers. The shopping lists contain articles plus the quantity.
• The customers fill their carts, one after the other. Check if enough goods are available! Create a

receipt for each customer.

EXERCISE 4

Given is the island of Vannoth

DICTIONARIES 92

Create a

dictionary, where we get for every city of Vannoth the distance to the capital city of Rogeburgh

EXERCISE 5

Create a dictionary where you can get the distance between two arbitrary cities

DICTIONARIES 93

SOLUTIONS

SOLUTION TO EXERCISE 1

We offer two solutions to this exercise:

The first one is only using things you will have learned, if you followed our Python course sequentially. The
second solution uses techniques which will be covered later in our tutorial.

First solution:

In []:

def dict_merge_sum(d1, d2):
""" Merging and calculating the sum of two dictionaries:
Two dicionaries d1 and d2 with numerical values and
possibly disjoint keys are merged and the values are added if
the exist in both values, otherwise the missing value is take

n to
be 0"""

merged_sum = d1.copy()
for key, value in d2.items():

if key in d1:
d1[key] += value

else:
d1[key] = value

return merged_sum

d1 = dict(a=4, b=5, d=8)
d2 = dict(a=1, d=10, e=9)

dict_merge_sum(d1, d2)

Second solution:

In []:

def dict_sum(d1, d2):
""" Merging and calculating the sum of two dictionaries:
Two dicionaries d1 and d2 with numerical values and
possibly disjoint keys are merged and the values are added if
the exist in both values, otherwise the missing value is take

n to
be 0"""

DICTIONARIES 94

return { k: d1.get(k, 0) + d2.get(k, 0) for k in set(d1) | se
t(d2) }

d1 = dict(a=4, b=5, d=8)
d2 = dict(a=1, d=10, e=9)

dict_merge_sum(d1, d2)

SOLUTION TO EXERCISE 2:
In []:

total_value = 0
for article in supermarket:

quantity = supermarket[article]["quantity"]
price = supermarket[article]["price"]
total_value += quantity * price

print(f"The total price for buying everything: {total_value:7.2
f}")

SOLUTION TO EXERCISE 3:
In []:

supermarket = { "milk": {"quantity": 20, "price": 1.19},
"biscuits": {"quantity": 32, "price": 1.45},
"butter": {"quantity": 20, "price": 2.29},
"cheese": {"quantity": 15, "price": 1.90},
"bread": {"quantity": 15, "price": 2.59},
"cookies": {"quantity": 20, "price": 4.99},
"yogurt": {"quantity": 18, "price": 3.65},
"apples": {"quantity": 35, "price": 3.15},
"oranges": {"quantity": 40, "price": 0.99},
"bananas": {"quantity": 23, "price": 1.2

9}
}

customers = ["Frank", "Mary", "Paul"]
shopping_lists = {

"Frank" : [('milk', 5), ('apples', 5), ('butter', 1), ('cookie
s', 1)],

"Mary": [('apples', 2), ('cheese', 4), ('bread', 2), ('pear
s', 3),

DICTIONARIES 95

('bananas', 4), ('oranges', 1), ('cherries', 4)],
"Paul": [('biscuits', 2), ('apples', 3), ('yogurt', 2), ('pear

s', 1),
('butter', 3), ('cheese', 1), ('milk', 1), ('cookie

s', 4)]}

filling the carts
carts = {}
for customer in customers:

carts[customer] = []
for article, quantity in shopping_lists[customer]:

if article in supermarket:
if supermarket[article]["quantity"] < quantity:

quantity = supermarket[article]["quantity"]
if quantity:

supermarket[article]["quantity"] -= quantity
carts[customer].append((article, quantity))

for customer in customers:
print(carts[customer])

print("checkout")
for customer in customers:

print("\ncheckout for " + customer + ":")
total_sum = 0
for name, quantity in carts[customer]:

unit_price = supermarket[name]["price"]
item_sum = quantity * unit_price
print(f"{quantity:3d} {name:12s} {unit_price:8.2f} {item_s

um:8.2f}")
total_sum += item_sum

print(f"Total sum: {total_sum:11.2f}")

Alternative solution to exercise 3, in which we create the chopping lists randomly:

In []:

import random
supermarket = { "milk": {"quantity": 20, "price": 1.19},

"biscuits": {"quantity": 32, "price": 1.45},
"butter": {"quantity": 20, "price": 2.29},
"cheese": {"quantity": 15, "price": 1.90},
"bread": {"quantity": 15, "price": 2.59},

DICTIONARIES 96

"cookies": {"quantity": 20, "price": 4.99},
"yogurt": {"quantity": 18, "price": 3.65},
"apples": {"quantity": 35, "price": 3.15},
"oranges": {"quantity": 40, "price": 0.99},
"bananas": {"quantity": 23, "price": 1.2

9}
}

articles4shopping_lists = list(supermarket.keys()) + ["pears", "ch
erries"]

max_articles_per_customer = 5 # not like a real supermarket :-)
customers = ["Frank", "Mary", "Paul", "Jennifer"]
shopping_lists = {}
for customer in customers:

no_of_items = random.randint(1, len(articles4shopping_lists))
shopping_lists[customer] = []
for article_name in random.sample(articles4shopping_lists, n

o_of_items):
quantity = random.randint(1, max_articles_per_customer)
shopping_lists[customer].append((article_name, quantity))

let's look at the shopping lists
print("Shopping lists:")
for customer in customers:

print(customer + ": " + str(shopping_lists[customer]))

filling the carts
carts = {}
for customer in customers:

carts[customer] = []
for article, quantity in shopping_lists[customer]:

if article in supermarket:
if supermarket[article]["quantity"] < quantity:

quantity = supermarket[article]["quantity"]
if quantity:

supermarket[article]["quantity"] -= quantity
carts[customer].append((article, quantity))

print("\nCheckout")
for customer in customers:

print("\ncheckout for " + customer + ":")
total_sum = 0

DICTIONARIES 97

for name, quantity in carts[customer]:
unit_price = supermarket[name]["price"]
item_sum = quantity * unit_price
print(f"{quantity:3d} {name:12s} {unit_price:8.2f} {item_s

um:8.2f}")
total_sum += item_sum

print(f"Total sum: {total_sum:11.2f}")

SOLUTION TO EXERCISE 4:
In []:

rogerburgh = {'Smithstad': 5.2, 'Scottshire': 12.3, 'Clarkhaven':
14.9, 'Dixonshire': 12.7, 'Port Carol': 3.4}

SOLUTION TO EXERCISE 5:
In []:

distances = {'Rogerburgh': {'Smithstad': 5.2, 'Scottshire': 12.3,
'Clarkhaven': 14.9, 'Dixonshire': 12.7, 'Port Carol': 3.4},

'Smithstad': {'Rogerburh': 5.2, 'Scottshire': 11.1,
'Clarkhaven': 19.1, 'Dixonshire': 17.9, 'Port Carol': 8.6},

'Scottshire': {'Smithstad': 11.1, 'Rogerburgh': 1
2.3, 'Clarkhaven': 18.1, 'Dixonshire': 19.3, 'Port Carol': 15.7},

'Clarkshaven': {'Smithstad': 19.1, 'Scottshire': 1
8.1, 'Rogerburgh': 14.9, 'Dixonshire': 6.8, 'Port Carol': 17.1},

'Dixonshire': {'Smithstad': 5.2, 'Scottshire': 12.3,
'Clarkhaven': 14.9, 'Rogerburg': 12.7, 'Port Carol': 16.1},

'Port Carol': {'Smithstad': 8.6, 'Scottshire': 15.7,
'Clarkhaven': 17.1, 'Dixonshire': 16.1, 'Rogerburgh': 3.4}

}

FOOTNOTES
1 If you would like to learn more about how iterators work and how to use them, we recommend that you go
through our Iterators and Generators chapter.

DICTIONARIES 98

https://www.python-course.eu/python3_generators.php

Z I P I N T R O D U C T I O N

INTRODUCTION

ZIP INTRODUCTION 99

In this chapter of our Python tutorial we deal with the
wonderful and extremely useful functionality 'zip'.
Unfortunately, beginners of Python are quite often
unnecessarily confused and frightened by zip. First of all
the name is confusing. Lots of people confuse the zip of
Python with the well-known archive file format ZIP, which
is used for lossless data compression. Since this data
compression not only keeps the required storage space
very small, but is also carried out very quickly, the name
'zip' was chosen. In this context, "zip" means "to act
quickly or move quickly".

The 'zip' of Python has absolutely nothing to do with it.
The functionality 'zip' in Python is based on another
meaning of the English word 'zip', "closing something
with a zipper".

We will see that zip can be very easy to understand.
However, this does not apply if you come up with the idea
of using the Python help function. The help text is
certainly partly responsible for this and frightens the
novices away:

Return a zip object whose .next() me
thod returns a tuple where the i-th
element comes from the i-th iterabl
e argument. The .next() method conti
nues until the shortest iterable in
the argument sequence is exhausted a
nd then it raises StopIteration.

This text is correct but it is hard to understand. Let us start
with simple examples before we try to simplify the theory
behind zip.

We will start with two lists and apply zip to those two lists:

a_couple_of_letters = ["a", "b",
"c", "d", "e", "f"]
some_numbers = [5, 3, 7, 9, 11, 2]

print(zip(a_couple_of_letters, som
e_numbers))
<zip object at 0x7efc8724f9b0>

ZIP INTRODUCTION 100

The result is a zip object and you are not wiser than before, if you don't know zip. The application of zip
returns an iterator, which is capable of producing tuples. It is combining the first items of each iterable (in our
example lists) into a tuple, after this it combines the second items and so on. It stops when one of them is
exhausted, i.e. there are no more items available.

The best way to see what it creates is to use it in a for loop.

for t in zip(a_couple_of_letters, some_numbers):
print(t)

If you look closely at the output above and the following picture, you will hopefully understand why zip has
something to do with a zipper and why they had chosen the name.

zip can have an arbitrary number of iterable
arguments as we can see in the following
example:

location = ["Helgoland", "Kie
l",

"Berlin-Tegel", "K
onstanz",

"Hohenpeißenberg"]
air_pressure = [1021.2, 101
9.9, 1023.7, 1023.1, 1027.7]
temperatures = [6.0, 4.3,
2.7, -1.4, -4.4]
altitude = [4, 27, 37, 443, 977]

for t in zip(location, air_pressure, temperatures, altitude):
print(t)

The use of zip is not restricted to lists and tuples. It can be applied to all iterable objects like lists, tuples,

('a', 5)
('b', 3)
('c', 7)
('d', 9)
('e', 11)
('f', 2)

('Helgoland', 1021.2, 6.0, 4)
('Kiel', 1019.9, 4.3, 27)
('Berlin-Tegel', 1023.7, 2.7, 37)
('Konstanz', 1023.1, -1.4, 443)
('Hohenpeißenberg', 1027.7, -4.4, 977)

ZIP INTRODUCTION 101

strings, dictionaries, sets, range and many more of course.

food = ["ham", "spam", "cheese"]

for item in zip(range(1000, 1003), food):
print(item)

CALLING ZIP WITH NO ARGUMENT

Let us have a look at what happens, if we call zip without any parameter:

for i in zip():
print("This will not be printed")

The body of the loop was not being executed!

CALLING ZIP WITH ONE ITERABLE

What happens if we call zip with just one argument, e.g. a string:

s = "Python"
for t in zip(s):

print(t)

So this call creates an iterator which produces tuples with one single element, in our case the characters of the
string.

PARAMETERS WITH DIFFERENT LENGTHS

As we have seen, zip can be called with an arbitrary number of iterable objects as arguments. So far the
number of elements or the length of these iterables had been the same. This is not necessary. If the Lengths are
different, zip will stop producing an output as soon as one of the argument sequences is exhausted. "stop

(1000, 'ham')
(1001, 'spam')
(1002, 'cheese')

('P',)
('y',)
('t',)
('h',)
('o',)
('n',)

ZIP INTRODUCTION 102

producing an output" actually means it will raise a StopIteration exception like all other iterators do. This
exception is caught by the for loop. You will find more about this way of working in the chapter "Iterators and
Iterables" of our Python tutorial.

The following example is a zip call with two list with different lenghts:

colors = ["green", "red", "blue"]
cars = ["BMW", "Alfa Romeo"]

for car, color in zip(cars, colors):
print(car, color)

ADVANCED USAGES OF ZIP

We have a list with the six largest cities in Switzerland. It consists of tuples with the pairs, city and population
number:

cities_and_population = [("Zurich", 415367),
("Geneva", 201818),
("Basel", 177654),
("Lausanne", 139111),
("Bern", 133883),
("Winterthur", 111851)]

The task consists of creating two lists: One with the city names and one with the population numbers. zip is
the solution to this problem, but we also have to use the star operator to unpack the list:

cities, populations = list(zip(*cities_and_population))
print(cities)
print(populations)

This is needed e.g., if we want to plot these data. The following example is just used for illustrating purposes.
It is not necessary to understand it completely. You have to be familiar with Pandas. In the following program,
we assume that only the combined list is available at the beginning:

import pandas as pd
cities_and_population = [("Zurich", 415367),

BMW green
Alfa Romeo red

('Zurich', 'Geneva', 'Basel', 'Lausanne', 'Bern', 'Winterthur')
(415367, 201818, 177654, 139111, 133883, 111851)

ZIP INTRODUCTION 103

("Geneva", 201818),
("Basel", 177654),
("Lausanne", 139111),
("Bern", 133883),
("Winterthur", 111851)]

cities, populations = list(zip(*cities_and_population))
s = pd.Series(populations, index=cities)

s.plot(kind="bar")

CONVERTING TWO ITERABLES INTO A DICTIONARY

zip also offers us an excellent opportunity to convert two iterables into a dictionary. Of course, only if these
iterables meet certain requirements. The iterable, which should be used as keys, must be unique and can only
consist of immutables. We demonstrate this with the following morse code example. The full morse code
alphabet can be found in our chapter on dictionaries:

abc = "abcdef"
morse_chars = [".-", "-...", "-.-.", "-..", ".", "..-."]

text2morse = dict(zip(abc, morse_chars))
print(text2morse)

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fdd6494e490>

{'a': '.-', 'b': '-...', 'c': '-.-.', 'd': '-..', 'e': '.', 'f':
'..-.'}

ZIP INTRODUCTION 104

https://www.python-course.eu/python3_dictionaries.php

FOOTNOTES

1 The data are from the 1st of April 2020, no joke. The locations are chosen arbitrarily. Yet, there is a special
reason, why I had chosen Hohenpeißenberg. On the Hohenpeißenberg I was invited to give two unforgettable
Python courses for the German weather service: Great people and a fantastic view!

ZIP INTRODUCTION 105

S E T S A N D F R O Z E N S E T S

INTRODUCTION

In this chapter of our tutorial, we are dealing with Python's
implementation of sets. Though sets are nowadays an integral part
of modern mathematics, this has not always been the case. The set
theory had been rejected by many, even by some great thinkers.
One of them was the philosopher Wittgenstein. He didn't like the
set theory and complained mathematics is "ridden through and
through with the pernicious idioms of set theory...". He dismissed
the set theory as "utter nonsense", as being "laughable" and
"wrong". His criticism appeared years after the death of the
German mathematician Georg Cantor, the founder of the set
theory. David Hilbert defended it from its critics by famously
declaring: "No one shall expel us from the Paradise that Cantor has
created.

Cantor defined a set at the beginning of his "Beiträge zur
Begründung der transfiniten Mengenlehre" as: "A set is a gathering
together into a whole of definite, distinct objects of our perception
and of our thought - which are called elements of the set." Nowadays, we can say in "plain" English: A set is a
well-defined collection of objects.

The elements or members of a set can be anything: numbers, characters, words, names, letters of the alphabet,
even other sets, and so on. Sets are usually denoted with capital letters. This is not the exact mathematical
definition, but it is good enough for the following.

The data type "set", which is a collection type, has been part of Python since version 2.4. A set contains an
unordered collection of unique and immutable objects. The set data type is, as the name implies, a Python
implementation of the sets as they are known from mathematics. This explains, why sets unlike lists or tuples
can't have multiple occurrences of the same element.

SETS

If we want to create a set, we can call the built-in set function with a sequence or another iterable object.

In the following example, a string is singularized into its characters to build the resulting set x:

x = set("A Python Tutorial")
x

type(x)

Output: {' ', 'A', 'P', 'T', 'a', 'h', 'i', 'l', 'n', 'o', 'r', 't',
'u', 'y'}

SETS AND FROZENSETS 106

We can pass a list to the built-in set function, as we can see in the following:

x = set(["Perl", "Python", "Java"])
x

Now, we want to show what happens, if we pass a tuple with reappearing elements to the set function - in our
example the city "Paris":

cities = set(("Paris", "Lyon", "London","Berlin","Paris","Birmingh
am"))
cities

As we have expected, no doubles occur in the resulting set of cities.

IMMUTABLE SETS

Sets are implemented in a way, which doesn't allow mutable objects. The following example demonstrates that
we cannot include, for example, lists as elements:

cities = set((["Python","Perl"], ["Paris", "Berlin", "London"]))

cities

Tuples on the other hand are fine:

In []:

cities = set((("Python","Perl"), ("Paris", "Berlin", "London")))

Output: set

Output: {'Java', 'Perl', 'Python'}

Output: {'Berlin', 'Birmingham', 'London', 'Lyon', 'Paris'}

TypeError Traceback (most recent call last)
<ipython-input-2-5a60d6eeb901> in <module>
----> 1 cities = set((["Python","Perl"], ["Paris", "Berlin", "London"]))

2
3 cities

TypeError: unhashable type: 'list'

SETS AND FROZENSETS 107

FROZENSETS

Though sets can't contain mutable objects, sets are mutable:

cities = set(["Frankfurt", "Basel","Freiburg"])
cities.add("Strasbourg")
cities

Frozensets are like sets except that they cannot be changed, i.e. they are immutable:

cities = frozenset(["Frankfurt", "Basel","Freiburg"])
cities.add("Strasbourg")

IMPROVED NOTATION

We can define sets (since Python2.6) without using the built-in set function. We can use curly braces instead:

adjectives = {"cheap","expensive","inexpensive","economical"}
adjectives

SET OPERATIONS

ADD(ELEMENT)

A method which adds an element to a set. This element has to be imm
utable.

colours = {"red","green"}
colours.add("yellow")
colours

Output: {'Basel', 'Frankfurt', 'Freiburg', 'Strasbourg'}

AttributeError Traceback (most recent call last)
<ipython-input-10-9abedff8e0b3> in <module>

1 cities = frozenset(["Frankfurt", "Basel","Freiburg"])
----> 2 cities.add("Strasbourg")

AttributeError: 'frozenset' object has no attribute 'add'

Output: {'cheap', 'economical', 'expensive', 'inexpensive'}

Output: {'green', 'red', 'yellow'}

SETS AND FROZENSETS 108

colours.add(["black","white"])

Of course, an element will only be added, if it is not already contained in the set. If it is already contained, the
method call has no effect.

CLEAR()

All elements will be removed from a set.

cities = {"Stuttgart", "Konstanz", "Freiburg"}
cities.clear()
cities

COPY

Creates a shallow copy, which is returned.

more_cities = {"Winterthur","Schaffhausen","St. Gallen"}
cities_backup = more_cities.copy()
more_cities.clear()
cities_backup

Just in case, you might think, an assignment might be enough:

more_cities = {"Winterthur","Schaffhausen","St. Gallen"}
cities_backup = more_cities
more_cities.clear()
cities_backup

The assignment "cities_backup = more_cities" just creates a pointer, i.e. another name, to the same data

TypeError Traceback (most recent call last)
<ipython-input-3-b914ecb44006> in <module>
----> 1 colours.add(["black","white"])
TypeError: unhashable type: 'list'

Output: set()

Output: {'Schaffhausen', 'St. Gallen', 'Winterthur'}

Output: set()

SETS AND FROZENSETS 109

structure.

DIFFERENCE()

This method returns the difference of two or more sets as a new set, leaving the original set unchanged.

x = {"a","b","c","d","e"}
y = {"b","c"}
z = {"c","d"}
x.difference(y)

x.difference(y).difference(z)

Instead of using the method difference, we can use the operator "-":

x - y

x - y - z

DIFFERENCE_UPDATE()

The method difference_update removes all elements of another set from this set. x.difference_update(y) is the
same as "x = x - y" or even x -= y works.

x = {"a","b","c","d","e"}
y = {"b","c"}
x.difference_update(y)
x = {"a","b","c","d","e"}
y = {"b","c"}
x = x - y
x

Output: {'a', 'd', 'e'}

Output: {'a', 'e'}

Output: {'a', 'd', 'e'}

Output: {'a', 'e'}

Output: {'a', 'd', 'e'}

SETS AND FROZENSETS 110

DISCARD(EL)

An element el will be removed from the set, if it is contained in the set. If el is not a member of the set,
nothing will be done.

x = {"a","b","c","d","e"}
x.discard("a")
x

x.discard("z")
x

REMOVE(EL)

Works like discard(), but if el is not a member of the set, a KeyError will be raised.

x = {"a","b","c","d","e"}
x.remove("a")
x

x.remove("z")

UNION(S)

This method returns the union of two sets as a new set, i.e. all elements that are in either set.

x = {"a","b","c","d","e"}
y = {"c","d","e","f","g"}
x.union(y)

Output: {'b', 'c', 'd', 'e'}

Output: {'b', 'c', 'd', 'e'}

Output: {'b', 'c', 'd', 'e'}

KeyError Traceback (most recent call last)
<ipython-input-18-7c787df95113> in <module>
----> 1 x.remove("z")

KeyError: 'z'

Output: {'a', 'b', 'c', 'd', 'e', 'f', 'g'}

SETS AND FROZENSETS 111

This can be abbreviated with the pipe operator "|":

x = {"a","b","c","d","e"}
y = {"c","d","e","f","g"}
x | y

INTERSECTION(S)

Returns the intersection of the instance set and the set s as a new set. In other words, a set with all the elements
which are contained in both sets is returned.

x = {"a","b","c","d","e"}
y = {"c","d","e","f","g"}
x.intersection(y)

This can be abbreviated with the ampersand operator "&":

x = {"a","b","c","d","e"}
y = {"c","d","e","f","g"}
x & y

ISDISJOINT()

This method returns True if two sets have a null intersection.

x = {"a","b","c"}
y = {"c","d","e"}
x.isdisjoint(y)

x = {"a","b","c"}
y = {"d","e","f"}
x.isdisjoint(y)

Output: {'a', 'b', 'c', 'd', 'e', 'f', 'g'}

Output: {'c', 'd', 'e'}

Output: {'c', 'd', 'e'}

Output: False

Output: True

SETS AND FROZENSETS 112

ISSUBSET()

x.issubset(y) returns True, if x is a subset of y. "<=" is an abbre
viation for "Subset of" and ">=" for "superset of"
"<" is used to check if a set is a proper subset of a set.

x = {"a","b","c","d","e"}
y = {"c","d"}
x.issubset(y)

y.issubset(x)

x < y

y < x # y is a proper subset of x

x < x # a set can never be a proper subset of oneself.

x <= x

ISSUPERSET()

x.issuperset(y) returns True, if x is a superset of y. ">=" is an a
bbreviation for "issuperset of"
">" is used to check if a set is a proper superset of a set.

x = {"a","b","c","d","e"}
y = {"c","d"}
x.issuperset(y)

x > y

Output: False

Output: True

Output: False

Output: True

Output: False

Output: True

Output: True

Output: True

SETS AND FROZENSETS 113

x >= y

x >= x

x > x

x.issuperset(x)

POP()

pop() removes and returns an arbitrary set element. The method rais
es a KeyError if the set is empty.

x = {"a","b","c","d","e"}
x.pop()

x.pop()

Output: True

Output: True

Output: False

Output: True

Output: 'e'

Output: 'a'

SETS AND FROZENSETS 114

A N E X T E N S I V E E X A M P L E F O R
S E T S

PYTHON AND THE BEST NOVEL

This chapter deals with natural languages and literature. It will be
also an extensive example and use case for Python sets. Novices in
Python often think that sets are just a toy for mathematicians and
that there is no real use case in programming. The contrary is true.
There are multiple use cases for sets. They are used, for example,
to get rid of doublets - multiple occurrences of elements - in a list,
i.e. to make a list unique.

In the following example we will use sets to determine the
different words occurring in a novel. Our use case is build around a
novel which has been praised by many, and regarded as the best
novel in the English language and also as the hardest to read. We are talking about the novel "Ulysses" by
James Joyce. We will not talk about or examine the beauty of the language or the language style. We will
study the novel by having a close look at the words used in the novel. Our approach will be purely statitical.
The claim is that James Joyce used in his novel more words than any other author. Actually his vocabulary is
above and beyond all other authors, maybe even Shakespeare.

Besides Ulysses we will use the novels "Sons and Lovers" by D.H. Lawrence, "The Way of All Flesh" by
Samuel Butler, "Robinson Crusoe" by Daniel Defoe, "To the Lighthouse" by Virginia Woolf, "Moby Dick" by
Herman Melville and the Short Story "Metamorphosis" by Franz Kafka.

Before you continue with this chapter of our tutorial it might be a good idea to read the chapter Sets and
Frozen Sets and the two chapter on regular expressions and advanced regular expressions.

DIFFERENT WORDS OF A TEXT

To cut out all the words of the novel "Ulysses" we can use the function findall from the module "re":

import re
we don't care about case sensitivity and therefore use lower:
ulysses_txt = open("books/james_joyce_ulysses.txt").read().lower()

words = re.findall(r"\b[\w-]+\b", ulysses_txt)
print("The novel ulysses contains " + str(len(words)))

AN EXTENSIVE EXAMPLE FOR SETS 115

This number is the sum of all the words, together with the many words that occur multiple times:

for word in ["the", "while", "good", "bad", "ireland", "irish"]:
print("The word '" + word + "' occurs " + \

str(words.count(word)) + " times in the novel!")

272452 surely is a huge number of words for a novel, but on the other hand there are lots of novels with even
more words. More interesting and saying more about the quality of a novel is the number of different words.
This is the moment where we will finally need "set". We will turn the list of words "words" into a set.
Applying "len" to this set will give us the number of different words:

diff_words = set(words)
print("'Ulysses' contains " + str(len(diff_words)) + " different w
ords!")

UnicodeDecodeError Traceback (most recent call last)
<ipython-input-1-18646764c8d9> in <module>

2
3 # we don't care about case sensitivity and therefore use lower:

----> 4 ulysses_txt = open("books/james_joyce_ulysses.txt").read().lower()
5
6 words = re.findall(r"\b[\w-]+\b", ulysses_txt)

~\Anaconda3\lib\encodings\cp1252.py in decode(self, input, final)
21 class IncrementalDecoder(codecs.IncrementalDecoder):
22 def decode(self, input, final=False):

---> 23 return codecs.charmap_decode(input,self.errors,decoding_tab
le)[0]

24
25 class StreamWriter(Codec,codecs.StreamWriter):

UnicodeDecodeError: 'charmap' codec can't decode byte 0x9d in position 2706
53: character maps to <undefined>

The word 'the' occurs 15112 times in the novel!
The word 'while' occurs 123 times in the novel!
The word 'good' occurs 321 times in the novel!
The word 'bad' occurs 90 times in the novel!
The word 'ireland' occurs 90 times in the novel!
The word 'irish' occurs 117 times in the novel!

'Ulysses' contains 29422 different words!

AN EXTENSIVE EXAMPLE FOR SETS 116

This is indeed an impressive number. You can see this, if you look at the other novels below:

novels = ['sons_and_lovers_lawrence.txt',
'metamorphosis_kafka.txt',
'the_way_of_all_flash_butler.txt',
'robinson_crusoe_defoe.txt',
'to_the_lighthouse_woolf.txt',
'james_joyce_ulysses.txt',
'moby_dick_melville.txt']

for novel in novels:
txt = open("books/" + novel).read().lower()
words = re.findall(r"\b[\w-]+\b", txt)
diff_words = set(words)
n = len(diff_words)
print("{name:38s}: {n:5d}".format(name=novel[:-4], n=n))

SPECIAL WORDS IN ULYSSES

We will subtract all the words occurring in the other novels from "Ulysses" in the following little Python
program. It is amazing how many words are used by James Joyce and by none of the other authors:

words_in_novel = {}
for novel in novels:

txt = open("books/" + novel).read().lower()
words = re.findall(r"\b[\w-]+\b", txt)
words_in_novel[novel] = words

words_only_in_ulysses = set(words_in_novel['james_joyce_ulysses.t
xt'])
novels.remove('james_joyce_ulysses.txt')
for novel in novels:

words_only_in_ulysses -= set(words_in_novel[novel])

with open("books/words_only_in_ulysses.txt", "w") as fh:
txt = " ".join(words_only_in_ulysses)

sons_and_lovers_lawrence : 10822
metamorphosis_kafka : 3027
the_way_of_all_flash_butler : 11434
robinson_crusoe_defoe : 6595
to_the_lighthouse_woolf : 11415
james_joyce_ulysses : 29422
moby_dick_melville : 18922

AN EXTENSIVE EXAMPLE FOR SETS 117

fh.write(txt)

print(len(words_only_in_ulysses))

By the way, Dr. Seuss wrote a book with only 50 different words: "Green Eggs and Ham"

The file with the words only occurring in Ulysses contains strange or seldom used words like:

huntingcrop tramtrack pappin kithogue pennyweight undergarments scission nagyaságos wheedling begad
dogwhip hawthornden turnbull calumet covey repudiated pendennis waistcoatpocket nostrum

COMMON WORDS

It is also possible to find the words which occur in every book. To accomplish this, we need the set
intersection:

we start with the words in ulysses
common_words = set(words_in_novel['james_joyce_ulysses.txt'])
for novel in novels:

common_words &= set(words_in_novel[novel])

print(len(common_words))

DOING IT RIGHT

We made a slight mistake in the previous calculations. If you look at the texts, you will notice that they have a
header and footer part added by Project Gutenberg, which doesn't belong to the texts. The texts are positioned
between the lines:

START OF THE PROJECT GUTENBERG EBOOK THE WAY OF ALL FLESH

and

END OF THE PROJECT GUTENBERG EBOOK THE WAY OF ALL FLESH

or

START OF THIS PROJECT GUTENBERG EBOOK ULYSSES

and

END OF THIS PROJECT GUTENBERG EBOOK ULYSSES

15314

1745

AN EXTENSIVE EXAMPLE FOR SETS 118

https://www.python-course.eu/books/words_only_in_ulysses.txt

The function read_text takes care of this:

def read_text(fname):
beg_e = re.compile(r"*** ?start of (this|the) project guten

berg ebook[^*]****")
end_e = re.compile(r"*** ?end of (this|the) project gutenbe

rg ebook[^*]****")
txt = open("books/" + fname).read().lower()
beg = beg_e.search(txt).end()
end = end_e.search(txt).start()
return txt[beg:end]

words_in_novel = {}
for novel in novels + ['james_joyce_ulysses.txt']:

txt = read_text(novel)
words = re.findall(r"\b[\w-]+\b", txt)
words_in_novel[novel] = words

words_in_ulysses = set(words_in_novel['james_joyce_ulysses.txt'])
for novel in novels:

words_in_ulysses -= set(words_in_novel[novel])

with open("books/words_in_ulysses.txt", "w") as fh:
txt = " ".join(words_in_ulysses)
fh.write(txt)

print(len(words_in_ulysses))

we start with the words in ulysses
common_words = set(words_in_novel['james_joyce_ulysses.txt'])
for novel in novels:

common_words &= set(words_in_novel[novel])

print(len(common_words))

The words of the set "common_words" are words belong to the most frequently used words of the English
language. Let's have a look at 30 arbitrary words of this set:

counter = 0
for word in common_words:

15341
1279

AN EXTENSIVE EXAMPLE FOR SETS 119

print(word, end=", ")
counter += 1
if counter == 30:

break

ancient, broke, breathing, laugh, divided, forced, wealth, ring, outside, throw, person, spend, better, errand,
school, sought, knock, tell, inner, run, packed, another, since, touched, bearing, repeated, bitter, experienced,
often, one,

send, such, mentioned, writing, found, speak, fond, food, their, m
other, household, through, prepared, flew, gently, work, station,
naturally, near, empty, filled, move, unknown, left, alarm, listen
ing, waited, showed, broke, laugh,

AN EXTENSIVE EXAMPLE FOR SETS 120

I N P U T F R O M K E Y B O A R D

THE INPUT FUNCTION

There are hardly any programs without any input. Input can come
in various ways, for example, from a database, another computer,
mouse clicks and movements or from the internet. Yet, in most
cases the input stems from the keyboard. For this purpose, Python
provides the function input(). input has an optional parameter,
which is the prompt string.

If the input function is called, the program flow will be stopped
until the user has given an input and has ended the input with the
return key. The text of the optional parameter, i.e. the prompt, will
be printed on the screen.

The input of the user will be returned as a string without any
changes. If this raw input has to be transformed into another data
type needed by the algorithm, we can use either a casting function
or the eval function.

Let's have a look at the following example:

name = input("What's your name? ")
print("Nice to meet you " + name + "!")

age = input("Your age? ")
print("So, you are already " + age + " years old, " + name + "!")

We save the program as "input_test.py" and run it:

$ python input_test.py
What's your name? "Frank"
Nice to meet you Frank!
Your age? 42
So, you are already 42 years old, Frank!

We will further experiment with the input function in the following interactive Python session:

What's your name? Melisa
Nice to meet you Melisa!

Your age? 26
So, you are already 26 years old, Melisa!

INPUT FROM KEYBOARD 121

cities_canada = input("Largest cities in Canada: ")
print(cities_canada, type(cities_canada))

cities_canada = eval(input("Largest cities in Canada: "))
print(cities_canada, type(cities_canada))

population = input("Population of Toronto? ")
print(population, type(population))

population = int(input("Population of Toronto? "))
print(population, type(population))

DIFFERENCES BETWEEN PYTHON2 AND PYTHON3

The usage of input or better the implicit evaluation of the input has often lead to serious programming
mistakes in the earlier Python versions, i.e. 2.x Therefore, in Python 3 the input function behaves like the
raw_input function from Python2.

The changes between the versions are illustrated in the following diagram:

Largest cities in Canada: Toronto, Calgary, Montreal, Ottawa
Toronto, Calgary, Montreal, Ottawa <class 'str'>

Largest cities in Canada: Toronto, Calgary, Montreal, Ottawa

NameError Traceback (most recent call last)
<ipython-input-3-4febe85dfcfd> in <module>
----> 1 cities_canada = eval(input("Largest cities in Canada: "))

2 print(cities_canada, type(cities_canada))
<string> in <module>

NameError: name 'Toronto' is not defined

Population of Toronto? 2615069
2615069 <class 'str'>

Population of Toronto? 2615069
2615069 <class 'int'>

INPUT FROM KEYBOARD 122

INPUT FROM KEYBOARD 123

C O N D I T I O N A L S T A T E M E N T S

DECISION MAKING

Do you belong to those people who find it hard to make
decisions? In real life, I mean. In certain circumstances,
some decisions in daily life are unavoidable, e.g. people
have to go their separate ways from time to time, as our
picture shows. We all have to make decisions all the time,
ranging from trivial issues like choosing what to wear in
the morning, what to have for breakfast, right up to life-
changing decisions like taking or changing a job, deciding
what to study, and many more. However, there you are,
having decided to learn more about the conditional
statements in Python.

Conditions - usually in the form of if statements - are one
of the key features of a programming language, and
Python is no exception. You will hardly find a

programming language without an if statement.1 There is
hardly a way to program without branches in the code
flow, at least if the code needs to solve a useful problem.

A decision must be made when the script or program
comes to a point where there is a selection of actions, i.e.
different calculations from which to choose.

The decision, in most cases, depends on the value of variables or arithmetic expressions. These expressions
are evaluated using the Boolean True or False values. The instructions for decision making are called
conditional statements. In a programming language, therefore, the parts of the conditional statements are
executed under the given conditions. In many cases there are two code parts: One which will be executed, if
the condition is True, and another one, if it is False. In other words, a branch determines which of two (or even
more) program parts (alternatives) will be executed depending on one (or more) conditions. Conditional
statements and branches belong to the control structures of programming languages, because with their help a
program can react to different states that result from inputs and calculations.

CONDITIONAL STATEMENTS 124

CONDITIONAL STATEMENTS IN REAL LIFE

The principle of the indentation style is also known in natural languages, as
we can deduce from the following text:

If it rains tomorrow, I'll clean up the baseme
nt.
After that, I will paint the walls. If there i

s
any time left, I will file my tax return.

Of course, as we all know, there will be no time left to file the tax return.
Jokes aside: in the previous text, as you see, we have a sequence of actions
that must be performed in chronological order. If you take a closer look at
the text, you will find some ambiguity in it: is 'the painting of the walls' also related to the event of the rain?
Will the tax declaration be done with or without rain? What will this person do, if it does not rain? Therefore,
we extend the text with additional alternatives:

If it rains tomorrow, I'll clean up the basement.
After that I will paint the walls. If there is
any time left, I will file my tax return. Otherwise,
i.e. if it will not rain, I will go swimming.
In the evening, I will go to the cinema with my wife!

It is still nor clear. Can his wife hope to be invited to the cinema? Does she have to pray or hope for rain? To
make the text clear, we can phrase it to be closer to the programming code and the Python coding style, and
hopefully there will be a happy ending for his wife:

If it rains tomorrow, I will do the following:
- Clean up the basement
- Paint the walls
- If there is any time left, I will make my

tax declaration
Otherwise I will do the following:

- Go swimming
Going to the movies in the evening with my wife

We can also graphically depict this. Such a workflow is often referred to in the programming environment as a
so-called flowchart or program schedule (PAP):

CONDITIONAL STATEMENTS 125

To encode conditional statements in Python, we need to know how to combine statements into a block. So this
seems to be the ideal moment to introduce the Python Block Principle in combination with the conditional
statements.

COMBINING STATEMENTS INTO BLOCKS

In programming, blocks are used to treat sets of statements as if they were a single statement. A block consists
of one or more statements. A program can be considered a block consisting of statements and other nested
blocks. In programming languages, there exist various approaches to syntactically describing blocks: ALGOL
60 and Pascal, for example, use "begin" and "end", while C and similar languages use curly braces "{" and
"}". Bash has another design that uses 'do ... done' and 'if ... fi' or 'case ... esac' constructs. All these languages
have in common is that the indentation style is not binding. The problems that may arise from this will be
shown in the next subchapter. You can safely skip this, if you are only interested in Python. For inexperienced
programmers, this chapter may seem a bit difficult.

EXCURSION TO C

For all these approaches, there is a big drawback: The code may be fine for the interpreter or compiler of the
language, but it can be written in a way that is poorly structured for humans. We want to illustrate this in the
following "pseudo" C-like code snippet:

if (raining_tomorrow) {
tidy_up_the_cellar();
paint_the_walls();

CONDITIONAL STATEMENTS 126

if (time_left)
do_taxes();

} else
enjoy_swimming();

go_cinema();

We will add a couple of spaces in front of calling 'go_cinema'. This puts this call at the same level as
'enjoy_swimming':

if (raining_tomorrow) {
tidy_up_the_cellar();
paint_the_walls();
if (time_left)

do_taxes();
} else

enjoy_swimming();
go_cinema();

The execution of the program will not change: you will go to the cinema, whether it will be raining or not!
However, the way the code is written falsely suggests that you will only go to the cinema if it does not rain.
This example shows the possible ambiguity in the interpretation of C code by humans. In other words, you can
inadvertently write the code, which leads to a procedure that does not "behave" as intended.
In this example lurks even another danger. What if the programmer had just forgotten to put the last statement
out of the curly braces?

Should the code look like this:

if (raining_tomorrow) {
tidy_up_the_cellar();
paint_the_walls();
if (time_left)

do_taxes();
} else {

enjoy_swimming();
go_cinema();

}

In the following program you will only go to the cinema, if it is not a rainy day. That only makes sense if it's
an open-air cinema.

The following code is the right code to go to the movies regardless of the weather:

if (raining_tomorrow) {
tidy_up_the_cellar();
paint_the_walls();
if (time_left)

do_taxes();
} else {

enjoy_swimming();

CONDITIONAL STATEMENTS 127

}
go_cinema();}

The problem with C is that the way the code is indented has no meaning for the compiler, but it can lead to
misunderstanding, if misinterpreted.

This is different in Python. Blocks are created with indentations, in other words, blocks are based on
indentation. We can say "What you see is what you get!"
The example above might look like this in a Python program:

if raining_tomorrow:
tidy_up_the_cellar()
paint_the_walls()
if time_left:

do_taxes()
else:

enjoy_swimming()
go_cinema()

There is no ambiguity in the Python version. The cinema visit of the couple will take place in any case,
regardless of the weather. Moving the go_cinema() call to the same indentation level as enjoy_swimming()
immediately changes the program logic. In that case, there will be no cinema if it rains.

We have just seen that it is useful to use indentations in C or C++ programs to increase the readability of a
program. For the compilation or execution of a program they are but irrelevant. The compiler relies
exclusively on the structuring determined by the brackets. Code in Python, on the other hand, can only be
structured with indents. That is, Python forces the programmer to use indentation that should be used anyway
to write nice and readable codes. Python does not allow you to obscure the structure of a program by
misleading indentations.

Each line of a code block in Python must be indented with the same number of spaces or tabs. We will
continue to delve into this in the next subsection on conditional statements in Python.

CONDITIONAL STATEMENTS IN PYTHON

The if statement is used to control the program flow in a Python program. This makes it possible to decide at
runtime whether certain program parts should be executed or not.
The simplest form of an if statement in a Python program looks like this:

if condition:
statement
statement
further statements, if necessary

The indented block is only executed if the condition 'condition' is True. That is, if it is logically true.

CONDITIONAL STATEMENTS 128

The following example asks users for their nationality. The indented block will only be executed if the
nationality is "french". If the user enters another nationality, nothing happens.

person = input("Nationality? ")
if person == "french":

print("Préférez-vous parler français?")

Please note that if "French" is entered in the above program, nothing will happen. The check in the condition
is case-sensitive and in this case only responds when "french" is entered in lower case. We now extend the
condition with an "or"

person = input("Nationality? ")
if person == "french" or person == "French":

print("Préférez-vous parler français?")

The Italian colleagues might now feel disadvantaged because Italian speakers were not considered. We extend
the program by another if statement.

person = input("Nationality? ")
if person == "french" or person == "French":

print("Préférez-vous parler français?")
if person == "italian" or person == "Italian":

print("Preferisci parlare italiano?")

This little script has a drawback. Suppose that the user enters "french" as a nationality. In this case, the block
of the first "if" will be executed. Afterwards, the program checks if the second "if" can be executed as well.
This doesn't make sense, because we know that the input "french" does not match the condition "italian" or
"Italian". In other words: if the first 'if' matched, the second one can never match as well. In the end, this is an
unnecessary check when entering "french" or "French".

We solve the problem with an "elif" condition. The 'elif' expression is only checked if the expression of a
previous "elif" or "if" was false.

person = input("Nationality? ")

Nationality? french
Préférez-vous parler français?

Nationality? french
Préférez-vous parler français?

Nationality? italian
Preferisci parlare italiano?

CONDITIONAL STATEMENTS 129

if person == "french" or person == "French":
print("Préférez-vous parler français?")

elif person == "italian" or person == "Italian":
print("Preferisci parlare italiano?")

else:
print("You are neither French nor Italian.")
print("So, let us speak English!")

As in our example, most if statements also have "elif" and "else" branches. This means, there may be more
than one "elif" branches, but only one "else" branch. The "else" branch must be at the end of the if statement.
Other "elif" branches can not be attached after an 'else'. 'if' statements don't need either 'else' nor 'elif'
statements.

The general form of the if statement in Python looks like this:

if condition_1:
statement_block_1

elif condition_2:
statement_block_2

...

elif another_condition:
another_statement_block

else:
else_block

If the condition "condition_1" is True, the statements of the block statement"_block_1" will be executed. If
not, condition_2 will be evaluated. If "condition_2" evaluates to True, statement"_block_2" will be executed,
if condition_2 is False, the other conditions of the following elif conditions will be checked, and finally if
none of them has been evaluated to True, the indented block below the else keyword will be executed.

EXAMPLE WITH IF CONDITION

For children and dog lovers it is an interesting and frequently asked question how old their dog would be if it
was not a dog, but a human being. To calculate this task, there are various scientific and pseudo-scientific
approaches. An easy approach can be:

A one-year-old dog is roughly equivalent to a 14-year-old human be
ing
A dog that is two years old corresponds in development to a 22 yea

r old person.
Each additional dog year is equivalent to five human years.

Nationality? german
You are neither French nor Italian.
So, let us speak English!

CONDITIONAL STATEMENTS 130

The following example program in Python requires the age of the dog as the input and calculates the age in
human years according to the above rule. 'input' is a statement, where the program flow stops and waits for
user input printing out the message in brackets:

age = int(input("Age of the dog: "))
print()
if age < 0:

print("This cannot be true!")
elif age == 0:

print("This corresponds to 0 human years!")
elif age == 1:

print("Roughly 14 years!")
elif age == 2:

print("Approximately 22 years!")
else:

human = 22 + (age -2) * 5
print("Corresponds to " + str(human) + " human years!")

In []:

We will use this example again in our tutorial

Using if statements within programs can easily lead to complex decision trees, i.e. every if statements can be
seen like the branches of a tree.

We will read in three float numbers in the following program and will print out the largest value:

x = float(input("1st Number: "))
y = float(input("2nd Number: "))
z = float(input("3rd Number: "))

if x > y and x > z:
maximum = x

elif y > x and y > z:
maximum = y

else:
maximum = z

print("The maximal value is: " + str(maximum))

Age of the dog: 1

Roughly 14 years!

CONDITIONAL STATEMENTS 131

There are other ways to write the conditions like the following one:

x = float(input("1st Number: "))
y = float(input("2nd Number: "))
z = float(input("3rd Number: "))

if x > y:
if x > z:

maximum = x
else:

maximum = z
else:

if y > z:
maximum = y

else:
maximum = z

print("The maximal value is: " + str(maximum))

Another way to find the maximum can be seen in the following example. We are using the built-in function
max, which calculates the maximum of a list or a tuple of numerical values:

x = float(input("1st Number: "))
y = float(input("2nd Number: "))
z = float(input("3rd Number: "))

maximum = max((x,y,z))

print("The maximal value is: " + str(maximum))

1st Number: 1
2nd Number: 2
3rd Number: 3
The maximal value is: 3.0

1st Number: 4.4
2nd Number: 1
3rd Number: 8.3
The maximal value is: 8.3

1st Number: 1
2nd Number: 4
3rd Number: 5.5
The maximal value is: 5.5

CONDITIONAL STATEMENTS 132

TERNARY IF STATEMENT

Let's look at the following English sentence, which is valid in Germany :

The maximum speed is 50 if we are within the city, otherwise it is 100.

This can be translated into ternary Python statements:

inside_city_limits = True
maximum_speed = 50 if inside_city_limits else 100
print(maximum_speed)

This code looks like an abbreviation for the following code:

im_ort = True
if im_ort:

maximale_geschwindigkeit = 50
else:

maximale_geschwindigkeit = 100
print(maximale_geschwindigkeit)

But it is something fundamentally different. "50 if inside_city_limits else 100" is an expression that we can
also use in function calls.

EXERCISES

EXERCISE 1

• A leap year is a calendar year containing an additional day added to keep the calendar year
synchronized with the astronomical or seasonal year. In the Gregorian calendar, each leap year
has 366 days instead of 365, by extending February to 29 days rather than the common 28.
These extra days occur in years which are multiples of four (with the exception of centennial
years not divisible by 400). Write a Python program, which asks for a year and calculates, if this
year is a leap year or not.

EXERCISE 2

• Body mass index (BMI) is a value derived from the mass (weight) and height of a person. The
BMI is defined as the body mass divided by the square of the body height, and is universally

50

50

CONDITIONAL STATEMENTS 133

expressed in units of kg/m2, resulting from mass in kilograms and height in metres. BMI =
m

l2

Write a program, which asks for the length and the weight of a person and returns an evaluation
string according to the following table:

SOLUTIONS

EXERCISE 1:

We will use the modulo operator in the following solution. 'n % m' returns the remainder, if you divide (integer
division) n by m. '5 % 3' returns 2 for example.

year = int(input("Which year? "))

if year % 4:
not divisible by 4
print("no leap year")

elif year % 100 == 0 and year % 400 != 0:
print("no leap year")

else:
print("leap year")

EXERCISE 2:

Which year? 2020
leap year

CONDITIONAL STATEMENTS 134

height = float(input("What is your height? "))
weight = float(input("What is your weight? "))

bmi = weight / height ** 2
print(bmi)
if bmi < 15:

print("Very severely underweight")
elif bmi < 16:

print("Severely underweight")
elif bmi < 18.5:

print("Underweight")
elif bmi < 25:

print("Normal (healthy weight)")
elif bmi < 30:

print("Overweight")
elif bmi < 35:

print("Obese Class I (Moderately obese)")
elif bmi < 40:

print("Obese Class II (Severely obese)")
else:

print("Obese Class III (Very severely obese)")

FOOTNOTES
1 LOOP is a programming language without conditionals, but this language is purely pedagogical. It has been
designed by the German computer scientist Uwe Schöning. The only operations which are supported by
LOOP are assignments, additions and loopings. But LOOP is of no practical interest and besides this, it is only
a proper subset of the computable functions.

What is your height? 180
What is your weight? 74
0.002283950617283951
Very severely underweight

CONDITIONAL STATEMENTS 135

L O O P S

GENERAL STRUCTURE OF A LOOP

Many algorithms make it necessary for a programming language to have a
construction which makes it possible to carry out a sequence of statements
repeatedly. The code within the loop, i.e. the code carried out repeatedly, is called
the body of the loop.

Essentially, there are three different kinds of loops:

• Count-controlled loops A construction for repeating a loop a certain
number of times. An example of this kind of loop is the for-loop of
the programming language C:

for (i=0; i <= n; i++)

Python doesn't have this kind of loop.

• Condition-controlled loop A loop will be repeated until a given condition changes, i.e. changes
from True to False or from False to True, depending on the kind of loop. There are 'while loops'
and 'do while' loops with this behaviour.

• Collection-controlled loop This is a special construct which allows looping through the elements
of a 'collection', which can be an array, list or other ordered sequence. Like the for loop of the
bash shell (e.g. for i in *, do echo $i; done) or the foreach loop of Perl.

Python supplies two different kinds of loops: the while loop and the for loop, which correspond to the
condition-controlled loop and collection-controlled loop.

Most loops contain a counter or more generally, variables, which change their values in the course of
calculation. These variables have to be initialized before the loop is started. The counter or other variables,

LOOPS 136

which can be altered in the body of the loop, are contained in the condition. Before the body of the loop is
executed, the condition is evaluated. If it evaluates to False, the while loop is finished. In other words, the
program flow will continue with the first statement after the while statement, i.e. on the same indentation level
as the while loop. If the condition is evaluated to True, the body, - the indented block below the line with
"while" - gets executed. After the body is finished, the condition will be evaluated again. The body of the loop
will be executed as long as the condition yields True.

A SIMPLE EXAMPLE WITH A WHILE LOOP

It's best to illustrate the operating principle of a loop with a simple Python example. The following small script
calculates the sum of the numbers from 1 to 100. We will later introduce a more elegant way to do it.

n = 100

total_sum = 0
counter = 1
while counter <= n:

total_sum += counter
counter += 1

print("Sum of 1 until " + str(n) + " results in " + str(total_su
m))

EXERCISE

Write a program, which asks for the initial balance K0 and for the interest rate. The program shall calculate the
new capital K1 after one year including the interest.

Extend the program with a while-loop, so that the capital Kn after a period of n years can be calculated.

K = float(input("Starting capital? "))
p = float(input("Interest rate? "))
n = int(input("Number of years? "))

i = 0
while i < n:

K += K * p / 100.0
or K *= 1 + p / 100.0
i += 1
print(i, K)

print("Capital after " + str(n) + " ys: " + str(K))

Sum of 1 until 100 results in 5050

LOOPS 137

THE ELSE PART

Similar to the if statement, the while loop of Python has also an optional else part. This is an unfamiliar
construct for many programmers of traditional programming languages. The statements in the else part are
executed, when the condition is not fulfilled anymore. Some might ask themselves now, where the possible
benefit of this extra branch is. If the statements of the additional else part were placed right after the while
loop without an else, they would have been executed anyway, wouldn't they? We need to understand a new
language construction, i.e. the break statement, to obtain a benefit from the additional else branch of the while
loop. The general syntax of a while loop looks like this:

while condition:
statement_1
...
statement_n

else:
statement_1

1 100.6
2 101.2036
3 101.8108216
4 102.4216865296
5 103.0362166487776
6 103.65443394867026
7 104.27636055236228
8 104.90201871567645
9 105.53143082797051
10 106.16461941293834
Capital after 10 ys: 106.16461941293834

LOOPS 138

...
statement_n

while potatoes:
peel

cut
else:

pot pot on oven
cook for 40 minutes

wash salad
and so on

PREMATURE TERMINATION OF A WHILE LOOP

So far, a while loop only ends, if the condition in the loop
head is fulfilled. With the help of a break statement a
while loop can be left prematurely, i.e. as soon as the
control flow of the program comes to a break inside of a
while loop (or other loops) the loop will be immediately
left. "break" shouldn't be confused with the continue
statement. "continue" stops the current iteration of the loop
and starts the next iteration by checking the condition.
Here comes the crucial point: If a loop is left by break, the
else part is not executed.

This behaviour will be illustrated in the following
example, a little guessing number game. A human player
has to guess a number between a range of 1 to n. The
player inputs his guess. The program informs the player, if
this number is larger, smaller or equal to the secret
number, i.e. the number which the program has randomly
created. If the player wants to gives up, he or she can input
a 0 or a negative number. Hint: The program needs to
create a random number. Therefore it's necessary to include the module "random".

import random
upper_bound = 20
lower_bound = 1
#to_be_guessed = int(n * random.random()) + 1
to_be_guessed = random.randint(lower_bound, upper_bound)
guess = 0
while guess != to_be_guessed:

guess = int(input("New number: "))

LOOPS 139

if guess > 0:
if guess > to_be_guessed:

print("Number too large")
elif guess < to_be_guessed:

print("Number too small")
else:

0 means giving up
print("Sorry that you're giving up!")
break # break out of a loop, don't execute "else"

else:
print("Congratulations. You made it!")

The previous program doesn't check if the number makes sense, i.e. if the number is between the
boundaries upper_bound and over_bound . We can improve our program:

import random
upper_bound = 20
lower_bound = 1
to_be_guessed = random.randint(lower_bound, upper_bound)
guess = 0
while guess != to_be_guessed:

guess = int(input("New number: "))
if guess == 0: # giving up

print("Sorry that you're giving up!")
break # break out of a loop, don't execute "else"

if guess < lower_bound or guess > upper_bound:
print("guess not within boundaries!")

elif guess > to_be_guessed:
print("Number too large")

elif guess < to_be_guessed:
print("Number too small")

else:
print("Congratulations. You made it!")

Number too small
Number too large
Number too large
Number too large
Congratulations. You made it!

Congratulations. You made it!

LOOPS 140

The boundaries should be adapted according to the user input:

import random
upper_bound = 20
lower_bound = 1
to_be_guessed = random.randint(lower_bound, upper_bound)
guess = 0
while guess != to_be_guessed:

guess = int(input("New number: "))
if guess == 0: # giving up

print("Sorry that you're giving up!")
break # break out of a loop, don't execute "else"

if guess < lower_bound or guess > upper_bound:
print("guess not within boundaries!")

elif guess > to_be_guessed:
upper_bound = guess - 1
print("Number too large")

elif guess < to_be_guessed:
lower_bound = guess + 1
print("Number too small")

else:
print("Congratulations. You made it!")

import random
upper_bound = 20
lower_bound = 1
adaptive_upper_bound = upper_bound
adaptive_lower_bound = lower_bound
#to_be_guessed = int(n * random.random()) + 1
to_be_guessed = random.randint(lower_bound, upper_bound)
guess = 0
while guess != to_be_guessed:

guess = int(input("New number: "))
if guess == 0: # giving up

print("Sorry that you're giving up!")
break # break out of a loop, don't execute "else"

Number too small
Number too small
Number too large
Number too small
Congratulations. You made it!

LOOPS 141

if guess < lower_bound or guess > upper_bound:
print("guess not within boundaries!")

elif guess < adaptive_lower_bound or guess > adaptive_upper_bo
und:

print("Your guess is contradictory to your previous guesse
s!")

elif guess > to_be_guessed:
adaptive_upper_bound = guess - 1
print("Number too large")

elif guess < to_be_guessed:
adaptive_lower_bound = guess + 1
print("Number too small")

else:
print("Congratulations. You made it!")

Number too small
Your guess is contradictory to your previous guesses!
Number too small
Your guess is contradictory to your previous guesses!
guess not within boundaries!
Number too small
Number too small
Number too small
Number too small
Congratulations. You made it!

LOOPS 142

F O R L O O P S

INTRODUCTION

Like the while loop the for loop is a programming language
statement, i.e. an iteration statement, which allows a code block to
be repeated a certain number of times.

There are hardly any programming languages without for loops,
but the for loop exists in many different flavours, i.e. both the
syntax and the semantics differs from one programming language
to another.

Different kinds of for loops:

• Count-controlled for loop (Three-expression for loop)

This is by far the most common type. This statement is the one used by C. The header of this
kind of for loop consists of a three-parameter loop control expression. Generally it has the form:
for (A; Z; I) A is the initialisation part, Z determines a termination expression and I is the
counting expression, where the loop variable is incremented or dcremented. An example of this
kind of loop is the for-loop of the programming language C: for (i=0; i <= n; i++) This kind of
for loop is not implemented in Python!

• Numeric Ranges

This kind of for loop is a simplification of the previous kind. It's a counting or enumerating loop.
Starting with a start value and counting up to an end value, like for i = 1 to 100 Python doesn't
use this either.

• Vectorized for loops

They behave as if all iterations are executed in parallel. That is, for example, all expressions on
the right side of assignment statements get evaluated before the assignments.

• Iterator-based for loop

Finally, we come to the one used by Python. This kind of for loop iterates over an enumeration
of a set of items. It is usually characterized by the use of an implicit or explicit iterator. In each
iteration step a loop variable is set to a value in a sequence or other data collection. This kind of
for loop is known in most Unix and Linux shells and it is the one which is implemented in
Python.

SYNTAX OF THE FOR LOOP

As we mentioned earlier, the Python for loop is an iterator based for loop. It steps through the items of lists,

FOR LOOPS 143

tuples, strings, the keys of dictionaries and other iterables. The Python for loop starts with the keyword "for"
followed by an arbitrary variable name, which will hold the values of the following sequence object, which is
stepped through. The general syntax looks like this:

for in : else:

The items of the sequence object are assigned one after the other to the loop variable; to be precise the variable
points to the items. For each item the loop body is executed.

Example of a simple for loop in Python:

languages = ["C", "C++", "Perl", "Python"]
for language in languages:

print(language)

The else block is special; while Perl programmer are familiar with it, it's an
unknown concept to C and C++ programmers. Semantically, it works exactly as the
optional else of a while loop. It will be executed only if the loop hasn't been
"broken" by a break statement. So it will only be executed, after all the items of the
sequence in the header have been used.

If a break statement has to be executed in the program flow of the for loop, the loop
will be exited and the program flow will continue with the first statement following
the for loop, if there is any at all. Usually break statements are wrapped into
conditional statements, e.g.

edibles = ["bacon", "spam", "eggs", "nuts"]
for food in edibles:

if food == "spam":
print("No more spam please!")
break

print("Great, delicious " + food)
else:

print("I am so glad: No spam!")
print("Finally, I finished stuffing myself")

C
C++
Perl
Python

Great, delicious bacon
No more spam please!
Finally, I finished stuffing myself

FOR LOOPS 144

Removing "spam" from our list of edibles, we will gain the following output:

$ python for.py
Great, delicious bacon
Great, delicious eggs
Great, delicious nuts
I am so glad: No spam!
Finally, I finished stuffing myself
$

Maybe, our disgust with spam is not so high that we want to stop consuming the other food. Now, this calls the
continue statement into play . In the following little script, we use the continue statement to go on with our list
of edibles, when we have encountered a spam item. So continue prevents us from eating spam!

edibles = ["bacon", "spam", "eggs","nuts"]
for food in edibles:

if food == "spam":
print("No more spam please!")
continue

print("Great, delicious " + food)

print("Finally, I finished stuffing myself")

THE RANGE() FUNCTION

The built-in function range() is the right function to iterate over a sequence of numbers. It generates an iterator
of arithmetic progressions: Example:

range(5)

This result is not self-explanatory. It is an object which is capable of producing the numbers from 0 to 4. We
can use it in a for loop and you will see what is meant by this:

for i in range(5):
print(i)

Great, delicious bacon
No more spam please!
Great, delicious eggs
Great, delicious nuts
Finally, I finished stuffing myself

Output: range(0, 5)

FOR LOOPS 145

range(n) generates an iterator to progress the integer numbers starting with 0 and ending with (n -1). To
produce the list with these numbers, we have to cast range() with the list(), as we do in the following example.

list(range(10))

range() can also be called with two arguments:

range(begin, end)

The above call produces the list iterator of numbers starting with begin (inclusive) and ending with one
less than the number end .

Example:

range(4, 10)

list(range(4, 10))

So far the increment of range() has been 1. We can specify a different increment with a third argument. The
increment is called the step . It can be both negative and positive, but not zero:

range(begin,end, step)

Example with step:

list(range(4, 50, 5))

It can be done backwards as well:

0
1
2
3
4

Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Output: range(4, 10)

Output: [4, 5, 6, 7, 8, 9]

Output: [4, 9, 14, 19, 24, 29, 34, 39, 44, 49]

FOR LOOPS 146

list(range(42, -12, -7))

The range() function is especially useful in combination with the for loop, as we can see in the following
example. The range() function supplies the numbers from 1 to 100 for the for loop to calculate the sum of
these numbers:

n = 100

sum = 0
for counter in range(1, n+1):

sum = sum + counter

print("Sum of 1 until %d: %d" % (n, sum))

CALCULATION OF THE PYTHAGOREAN NUMBERS

Generally, it is assumed that the Pythagorean theorem was discovered by
Pythagoras that is why it has his name. However, there is a debate whether
the Pythagorean theorem might have been discovered earlier or by others
independently. For the Pythagoreans, - a mystical movement, based on
mathematics, religion and philosophy, - the integer numbers satisfying the
theorem were special numbers, which had been sacred to them.

These days Pythagorean numbers are not mystical anymore. Though to
some pupils at school or other people, who are not on good terms with
mathematics, they may still appear so.

So the definition is very simple: Three integers satisfying a2+b2=c2 are
called Pythagorean numbers.

The following program calculates all pythagorean numbers less than a maximal number. Remark: We have to
import the math module to be able to calculate the square root of a number.

In []:

from math import sqrt
n = int(input("Maximal Number? "))
for a in range(1, n+1):

for b in range(a, n):
c_square = a**2 + b**2
c = int(sqrt(c_square))
if ((c_square - c**2) == 0):

print(a, b, c)

Output: [42, 35, 28, 21, 14, 7, 0, -7]

Sum of 1 until 100: 5050

FOR LOOPS 147

ITERATING OVER LISTS WITH RANGE()

If you have to access the indices of a list, it doesn't seem to be a good idea to use the for loop to iterate over
the lists. We can access all the elements, but the index of an element is not available. However, there is a way
to access both the index of an element and the element itself. The solution lies in using range() in combination
with the length function len():

fibonacci = [0, 1, 1, 2, 3, 5, 8, 13, 21]
for i in range(len(fibonacci)):

print(i,fibonacci[i])
print()

Remark: If you apply len() to a list or a tuple, you get the number of elements of this sequence.

LIST ITERATION WITH SIDE EFFECTS

If you loop over a list, it's best to avoid changing the list in the loop body. Take a look at the following
example:

colours = ["red"]
for i in colours:

if i == "red":
colours += ["black"]

if i == "black":
colours += ["white"]

print(colours)

To avoid these side effects, it's best to work on a copy by using the slicing operator, as can be seen in the next
example:

colours = ["red"]

0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21

['red', 'black', 'white']

FOR LOOPS 148

for i in colours[:]:
if i == "red":

colours += ["black"]
if i == "black":

colours += ["white"]
print(colours)

We still might have done something, we shouldn't have done. We changed the list "colours", but our change
didn't have any effect on the loop. The elements to be looped remained the same during the iterations.

['red', 'black']

FOR LOOPS 149

I T E R A T O R S A N D I T E R A B L E S

The Python forums and other question-and-answer
websites like Quora and Stackoverflow are full of
questions concerning 'iterators' and 'iterable'. Some
want to know how they are defined and others
want to know if there is an easy way to check, if an
object is an iterator or an iterable. We will provide
a function for this purpose.

We have seen that we can loop or iterate over
various Python objects like lists, tuples and strings.
For example:

for city in ["Berlin", "Vienna", "Zurich"]:
print(city)

for language in ("Python", "Perl", "Ruby"):
print(city)

for char in "Iteration is easy":
print(char)

Berlin
Vienna
Zurich
Python
Perl
Ruby
I
t
e
r
a
t
i
o
n

i
s

e
a
s
y

ITERATORS AND ITERABLES 150

This form of looping can be seen as iteration. Iteration is not restricted to explicit for loops. If you call the
function sum, - e.g. on a list of integer values, - you do iteration as well.

So what is the difference between an iterable and an iterator?

On one hand, they are the same: You can iterate with a for loop over iterators and iterables. Every iterator is
also an iterable, but not every iterable is an iterator. E.g. a list is iterable but a list is not an iterator! An iterator
can be created from an iterable by using the function 'iter'. To make this possible the class of an object needs
either a method ' __iter__ ', which returns an iterator, or a ' __getitem__ ' method with sequential
indexes starting with 0.

Iterators are objects with a ' __next__ ' method, which will be used when the function 'next()' is called.

So what is going on behind the scenes, when a for loop is executed? The for statement calls iter() on the object
(which should be a so-called container object), over which it is supposed to loop . If this call is successful, the
iter call will return an iterator object that defines the method __next__() which accesses elements of the
object one at a time. The __next__() method will raise a StopIteration exception, if there are no further
elements available. The for loop will terminate as soon as it catches a StopIteration exception. You can call the
__next__() method using the next() built-in function. This is how it works:

cities = ["Berlin", "Vienna", "Zurich"]
iterator_obj = iter(cities)
print(iterator_obj)

print(next(iterator_obj))
print(next(iterator_obj))
print(next(iterator_obj))

If we called 'next(iterator_obj)' one more time, it would return 'StopIteration'

The following function 'iterable' will return True, if the object 'obj' is an iterable and False otherwise.

def iterable(obj):
try:

iter(obj)
return True

except TypeError:
return False

for element in [34, [4, 5], (4, 5), {"a":4}, "dfsdf", 4.5]:
print(element, "iterable: ", iterable(element))

<list_iterator object at 0x0000016FBDAEEC88>
Berlin
Vienna
Zurich

ITERATORS AND ITERABLES 151

We have described how an iterator works. So if you want to add an iterator behavior to your class, you have to
add the __iter__ and the __next__ method to your class. The __iter__ method returns an
iterator object. If the class contains a __next__ , it is enough for the __iter__ method to return self,
i.e. a reference to itself:

class Reverse:
"""
Creates Iterators for looping over a sequence backwards.
"""

def __init__(self, data):
self.data = data
self.index = len(data)

def __iter__(self):
return self

def __next__(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

lst = [34, 978, 42]
lst_backwards = Reverse(lst)
for el in lst_backwards:

print(el)

34 iterable: False
[4, 5] iterable: True
(4, 5) iterable: True
{'a': 4} iterable: True
dfsdf iterable: True
4.5 iterable: False

42
978
34

ITERATORS AND ITERABLES 152

P R I N T

INTRODUCTION

In principle, every computer program has to communicate with the environment or the "outside
world". For this purpose nearly every programming language has special I/O functionalities, i.e.
input/output. This ensures the interaction or communication with the other components e.g. a
database or a user. Input often comes - as we have already seen - from the keyboard and the
corresponding Python command, or better, the corresponding Python function for reading from the
standard input is input().

We have also seen in previous examples of our tutorial that we can write into the standard output
by using print. In this chapter of our tutorial we want to have a detailed look at the print function.
As some might have skipped over it, we want to emphasize that we wrote "print function" and not
"print statement". You can easily find out how crucial this difference is, if you take an arbitrary Python
program written in version 2.x and if you try to let it run with a Python3 interpreter. In most cases you will
receive error messages. One of the most frequently occurring errors will be related to print, because most
programs contain prints. We can generate the most typical error in the interactive Python shell:

print 42
File "", line 1

print 42

This is a familiar error message for most of us: We have forgotten the parentheses. "print" is - as we have
already mentioned - a function in version 3.x. Like any other function print expects its arguments to be
surrounded by parentheses. So parentheses are an easy remedy for this error:

print(42)

But this is not the only difference to the old print. The output behaviour has changed as well.

PRINT FUNCTION

The arguments of the print function are the following ones:

print(value1, ..., sep=' ', end='\n', file=sys.stdout, flush=Fals

File "<ipython-input-1-5d54469f7ddf>", line 1
print 42

^
SyntaxError: Missing parentheses in call to 'print'. Did you mean
print(42)?

42

PRINT 153

e)

The print function can print an arbitrary number of values ("value1, value2, ..."), which are separated by
commas. These values are separated by a space in the output. In the following example, we can see two print
calls. We are printing two values in both cases, i.e. a string and a float number:

a = 3.564
print("a = ", a)

print("a = \n", a)

We can learn from the second print of the example that a blank between two values, i.e. "a = \textbackslash n"
and "3.564", is always printed, even if the output is continued in the following line. This is different from
Python 2, as there will be no blank printed, if a new line has been started. It's possible to redefine the seperator
between values by assigning an arbitrary string to the keyword parameter "sep", i.e. an empty string or a
smiley:

print("a","b")

print("a","b",sep="")

print(192,168,178,42,sep=".")

print("a","b",sep=":-)")

A print call is ended by a newline, as we can see in the following usage:

for i in range(4):
print(i)

a = 3.564

a =
3.564

a b

ab

192.168.178.42

a:-)b

0
1
2
3

PRINT 154

To change this behaviour, we can assign an arbitrary string to the keyword parameter "end". This string will be
used for ending the output of the values of a print call:

for i in range(4):
print(i, end=" ")

for i in range(4):
print(i, end=" :-) ")

The output of the print function is send to the standard output stream (sys.stdout) by default. By redefining the
keyword parameter "file" we can send the output into a different stream e.g. sys.stderr or a file:

fh = open("data.txt","w")
print("42 is the answer, but what is the question?", file=fh)
fh.close()

We can see that we don't get any output in the interactive shell. The output is sent to the file "data.txt". It's also
possible to redirect the output to the standard error channel this way:

import sys
output into sys.stderr:

print("Error: 42", file=sys.stderr)

0 1 2 3

0 :-) 1 :-) 2 :-) 3 :-)

Error: 42

PRINT 155

F O R M A T T E D O U T P U T

MANY WAYS FOR A NICER OUTPUT

In this chapter of our Python tutorial we will have a closer
look at the various ways of creating nicer output in
Python. We present all the different ways, but we
recommend that you should use the format method of the
string class, which you will find at end of the chapter.
"string format" is by far the most flexible and Pythonic
approach.

So far we have used the print function in two ways, when
we had to print out more than two values:

The easiest way, but not the most elegant one:

We used print with a comma separated list of values to
print out the results, as we can see in the following
example. All the values are separated by blanks, which is
the default behaviour. We can change the default value to
an arbitrary string, if we assign this string to the keyword
parameter "sep" of the print function:

q = 459
p = 0.098
print(q, p, p * q)

print(q, p, p * q, sep=",")

print(q, p, p * q, sep=" :-) ")

Alternatively, we can construe a new string out of the values by using the string concatenation operator:

print(str(q) + " " + str(p) + " " + str(p * q))

The second method is inferior to the first one in this example.

459 0.098 44.982

459,0.098,44.982

459 :-) 0.098 :-) 44.982

459 0.098 44.982

FORMATTED OUTPUT 156

THE OLD WAY OR THE NON-EXISTING PRINTF AND SPRINTF

Is there a printf in Python? A burning question for Python newbies coming from C, Perl, Bash or other
programming languages who have this statement or function. To answer "Python has a print function and no
printf function" is only one side of the coin or half of the truth. One can go as far as to say that this answer is
not true. So there is a "printf" in Python? No, but the functionality of the "ancient" printf is contained in
Python. To this purpose the modulo operator "%" is overloaded by the string class to perform string
formatting. Therefore, it is often called string modulo (or somethimes even called modulus) operator, though it
has not a lot in common with the actual modulo calculation on numbers. Another term for it is "string
interpolation", because it interpolates various class types (like int, float and so on) into a formatted string. In
many cases the string created via the string interpolation mechanism is used for outputting values in a special
way. But it can also be used, for example, to create the right format to put the data into a database. Since
Python 2.6 has been introduced, the string method format should be used instead of this old-style formatting.
Unfortunately, string modulo "%" is still available in Python3 and what is even worse, it is still widely used.
That's why we cover it in great detail in this tutorial. You should be capable of understanding it, when you
encounter it in some Python code. However, it is very likely that one day this old style of formatting will be
removed from the language. So you should get used to str.format().

The following diagram depicts how the string modulo operator works:

On the left side of the "string modulo operator" there is the so-called format string and on the right side is a
tuple with the content, which is interpolated in the format string. The values can be literals, variables or
arbitrary arithmetic expressions.

The format string contains placeholders. There are two of those in our example: "%5d" and "%8.2f".

The general syntax for a format placeholder is

%[flags][width][.precision]type

FORMATTED OUTPUT 157

Let's have a look at the placeholders in our example. The
second one "%8.2f" is a format description for a float
number. Like other placeholders, it is introduced with the
"%" character. This is followed by the total number of
digits the string should contain. This number includes the
decimal point and all the digits, i.e. before and after the
decimal point. Our float number 59.058 has to be
formatted with 8 characters. The decimal part of the
number or the precision is set to 2, i.e. the number
following the "." in our placeholder. Finally, the last
character "f" of our placeholder stands for "float".

If you look at the output, you will notice that the 3 decimal
digits have been rounded. Furthermore, the number has
been preceded in the output with 3 leading blanks.

The first placeholder "%5d" is used for the first
component of our tuple, i.e. the integer 453. The number will be printed with 5 characters. As 453 consists
only of 3 digits, the output is padded with 2 leading blanks. You may have expected a "%5i" instead of "%5d".
Where is the difference? It's easy: There is no difference between "d" and "i" both are used for formatting
integers. The advantage or beauty of a formatted output can only be seen, if more than one line is printed with
the same pattern. In the following picture you can see, how it looks, if five float numbers are printed with the
placeholder "%6.2f" in subsequent lines:

FORMATTED OUTPUT 158

Conversion Meaning

d Signed integer decimal.

i Signed integer decimal.

o Unsigned octal.

u Obsolete and equivalent to 'd', i.e. signed integer decimal.

x Unsigned hexadecimal (lowercase).

X Unsigned hexadecimal (uppercase).

e Floating point exponential format (lowercase).

E Floating point exponential format (uppercase).

f Floating point decimal format.

F Floating point decimal format.

g Same as "e" if exponent is greater than -4 or less than precision, "f" otherwise.

G Same as "E" if exponent is greater than -4 or less than precision, "F" otherwise.

c Single character (accepts integer or single character string).

r String (converts any python object using repr()).

s String (converts any python object using str()).

% No argument is converted, results in a "%" character in the result.

The following examples show some example cases of the conversion rules from the table above:

print("%10.3e"% (356.08977))

print("%10.3E"% (356.08977))
3.561e+02

FORMATTED OUTPUT 159

print("%10o"% (25))

print("%10.3o"% (25))

print("%10.5o"% (25))

print("%5x"% (47))

print("%5.4x"% (47))

print("%5.4X"% (47))

print("Only one percentage sign: %% " % ())

Examples:

3.561E+02

31

031

00031

2f

002f

002F

Only one percentage sign: %

0X2F

2F

0X002F

0o31

+42

42

+42

42

FORMATTED OUTPUT 160

Even though it may look so, the formatting is not part of the print function. If you have a closer look at our
examples, you will see that we passed a formatted string to the print function. Or to put it in other words: If
the string modulo operator is applied to a string, it returns a string. This string in turn is passed in our
examples to the print function. So, we could have used the string modulo functionality of Python in a two
layer approach as well, i.e. first create a formatted string, which will be assigned to a variable and this variable
is passed to the print function:

THE PYTHONIC WAY: THE STRING METHOD "FORMAT"

The Python help function is not very helpful concerning the string format method. All it says is this:

| format(...)
| S.format(*args, **kwargs) -> str
|
| Return a formatted version of S, using substitutions from a

rgs and kwargs.
| The substitutions are identified by braces ('{' and '}').
|

Let's dive into this topic a little bit deeper: The format method was added in Python 2.6. The general form of
this method looks like this:

template.format(p0, p1, ..., k0=v0, k1=v1, ...)

The template (or format string) is a string which contains one or more format codes (fields to be replaced)
embedded in constant text. The "fields to be replaced" are surrounded by curly braces {}. The curly braces
and the "code" inside will be substituted with a formatted value from one of the arguments, according to the
rules which we will specify soon. Anything else, which is not contained in curly braces will be literally
printed, i.e. without any changes. If a brace character has to be printed, it has to be escaped by doubling it: {{
and }}.

There are two kinds of arguments for the .format() method. The list of arguments starts with zero or more
positional arguments (p0, p1, ...), it may be followed by zero or more keyword arguments of the form
name=value.

A positional parameter of the format method can be accessed by placing the index of the parameter after the
opening brace, e.g. {0} accesses the first parameter, {1} the second one and so on. The index inside of the
curly braces can be followed by a colon and a format string, which is similar to the notation of the string
modulo, which we had discussed in the beginning of the chapter of our tutorial, e.g. {0:5d} If the positional
parameters are used in the order in which they are written, the positional argument specifiers inside of the
braces can be omitted, so '{} {} {}' corresponds to '{0} {1} {2}'. But they are needed, if you want to access
them in different orders: '{2} {1} {0}'.

42

Price: $ 356.09

FORMATTED OUTPUT 161

The following diagram with an example usage depicts how the string method "format" works works for
positional parameters:

Examples of positional parameters:

In the following example we demonstrate how keyword parameters can be used with the format method:

It's possible to "left or right justify" data with the format method. To this end, we can precede the formatting
with a "<" (left justify) or ">" (right justify). We demonstrate this with the following examples:

Output: 'First argument: 47, second one: 11'
Output: 'Second argument: 11, first one: 47'
Output: 'Second argument: 11, first one: 47.42'
Output: 'First argument: 47, second one: 11'
Output: 'various precisions: 1.41 or 1.415'

Output: 'Art: 453, Price: 59.06'

FORMATTED OUTPUT 162

Flag Meaning

Used with o, x or X specifiers the value is preceded with 0, 0o, 0O, 0x or 0X respectively.

0 The conversion result will be zero padded for numeric values.

- The converted value is left adjusted

If no sign (minus sign e.g.) is going to be written, a blank space is inserted before the value.

+ A sign character ("+" or "-") will precede the conversion (overrides a "space" flag).

Option Meaning

'<' The field will be left-aligned within the available space. This is usually the default for strings.

'>' The field will be right-aligned within the available space. This is the default for numbers.

'0'

If the width field is preceded by a zero ('0') character, sign-aware zero-padding for numeric types will be enabled.

>>> x = 378
>>> print("The value is {:06d}".format(x))

The value is 000378
>>> x = -378

>>> print("The value is {:06d}".format(x))
The value is -00378

','

This option signals the use of a comma for a thousands separator.

>>> print("The value is {:,}".format(x))
The value is 78,962,324,245

>>> print("The value is {0:6,d}".format(x))
The value is 5,897,653,423

>>> x = 5897653423.89676
>>> print("The value is {0:12,.3f}".format(x))

The value is 5,897,653,423.897

'=' Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields in the
form "+000000120". This alignment option is only valid for numeric types.

Output: 'Spam & Eggs: 6.99'
Output: ' Spam & Eggs: 6.99'

FORMATTED OUTPUT 163

Option Meaning

'^' Forces the field to be centered within the available space.

Unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

Additionally, we can modify the formatting with the sign option, which is only valid for number types:

Option Meaning

'+' indicates that a sign should be used for both positive as well as negative numbers.

'-' indicates that a sign should be used only for negative numbers, which is the default behavior.

space indicates that a leading space should be used on positive numbers, and a minus sign on negative numbers.

USING DICTIONARIES IN "FORMAT"

We have seen in the previous chapters that we have two ways to access the values to be formatted:

Using the position or the index:

print("The capital of {0:s} is {1:s}".format("Ontario","Toronto"))

Just to mention it once more: We could have used empty curly braces in the previous example! Using keyword
parameters:

print("The capital of {province} is {capital}".format(province="On
tario",capital="Toronto"))

The second case can be expressed with a dictionary as well, as we can see in the following code:

data = dict(province="Ontario",capital="Toronto")
data

The capital of Ontario is Toronto

The capital of Ontario is Toronto

Output: {'province': 'Ontario', 'capital': 'Toronto'}

FORMATTED OUTPUT 164

print("The capital of {province} is {capital}".format(**data))

The double "*" in front of data turns data automatically into the form 'province="Ontario",capital="Toronto"'.
Let's look at the following Python program:

capital_country = {"United States" : "Washington",
"US" : "Washington",
"Canada" : "Ottawa",
"Germany": "Berlin",
"France" : "Paris",
"England" : "London",
"UK" : "London",
"Switzerland" : "Bern",
"Austria" : "Vienna",
"Netherlands" : "Amsterdam"}

print("Countries and their capitals:")
for c in capital_country:

print("{country}: {capital}".format(country=c, capital=capita
l_country[c]))

We can rewrite the previous example by using the dictionary directly. The output will be the same:

capital_country = {"United States" : "Washington",
"US" : "Washington",
"Canada" : "Ottawa",
"Germany": "Berlin",
"France" : "Paris",
"England" : "London",
"UK" : "London",
"Switzerland" : "Bern",

The capital of Ontario is Toronto

Countries and their capitals:
United States: Washington
US: Washington
Canada: Ottawa
Germany: Berlin
France: Paris
England: London
UK: London
Switzerland: Bern
Austria: Vienna
Netherlands: Amsterdam

FORMATTED OUTPUT 165

"Austria" : "Vienna",
"Netherlands" : "Amsterdam"}

print("Countries and their capitals:")
for c in capital_country:

format_string = c + ": {" + c + "}"
print(format_string.format(**capital_country))

USING LOCAL VARIABLE NAMES IN "FORMAT"

"locals" is a function, which returns a dictionary with the current scope's local variables, i.e- the local variable
names are the keys of this dictionary and the corresponding values are the values of these variables:

a = 42
b = 47
def f():

return 42
locals()

The dictionary returned by locals() can be used as a parameter of the string format method. This way we can
use all the local variable names inside of a format string.

Continuing with the previous example, we can create the following output, in which we use the local variables
a, b and f:

print("a={a}, b={b} and f={f}".format(**locals()))

OTHER STRING METHODS FOR FORMATTING

The string class contains further methods, which can be used for formatting purposes as well: ljust, rjust,
center and zfill.

Countries and their capitals:
United States: Washington
US: Washington
Canada: Ottawa
Germany: Berlin
France: Paris
England: London
UK: London
Switzerland: Bern
Austria: Vienna
Netherlands: Amsterdam

a=42, b=47 and f=<function f at 0x00000285FFA729D8>

FORMATTED OUTPUT 166

Let S be a string, the 4 methods are defined like this:

•center(...):

S.center(width[, fillchar]) -> str

Return S centred in a string of length width. Padding is done using the specified fill character. The default
value is a space.

Examples:

s = "Python"
s.center(10)

s.center(10,"*")

•ljust(...):

S.ljust(width[, fillchar]) -> str

Return S left-justified in a string of length "width". Padding is done using the specified fill character. If none is
given, a space will be used as default.

Examples:

s = "Training"
s.ljust(12)

s.ljust(12,":")

•rjust(...):

S.rjust(width[, fillchar]) -> str

Return S right-justified in a string of length width. Padding is done using the specified fill character. The
default value is again a space.

Output: ' Python '

Output: 'Price: $ 356.09'

Output: 'Training '

Output: 'Training::::'

FORMATTED OUTPUT 167

Examples:

s = "Programming"
s.rjust(15)

s.rjust(15, "~")

•zfill(...):

S.zfill(width) -> str

Pad a string S with zeros on the left, to fill a field of the specified width. The string S is never truncated. This
method can be easily emulated with rjust.

Examples:

account_number = "43447879"
account_number.zfill(12)
can be emulated with rjust:

account_number.rjust(12,"0")

FORMATTED STRING LITERALS

Python 3.6 introduces formatted string literals. They are prefixed with an 'f'. The formatting syntax is similar
to the format strings accepted by str.format(). Like the format string of format method, they contain
replacement fields formed with curly braces. The replacement fields are expressions, which are evaluated at
run time, and then formatted using the format() protocol. It's easiest to understand by looking at the following
examples:

price = 11.23
f"Price in Euro: {price}"

f"Price in Swiss Franks: {price * 1.086}"

Output: ' Programming'

Output: '~~~~Programming'

Output: '000043447879'

Output: '000043447879'

Output: 'Price in Euro: 11.23'

Output: 'Price in Swiss Franks: 12.195780000000001'

FORMATTED OUTPUT 168

f"Price in Swiss Franks: {price * 1.086:5.2f}"

for article in ["bread", "butter", "tea"]:
print(f"{article:>10}:")

Output: 'Price in Swiss Franks: 12.20'

bread:
butter:

tea:

FORMATTED OUTPUT 169

W O R K I N G W I T H D I C T I O N A R I E S

I n t r o d u c t i o n
In this chapter of our Python tutorial we assume that you are familiar with
Python dictionaries and while loops, as we have discussed them in our
chapters Dictionaries and Loops.

We included this chapter to provide the learners with additional exercises
of both dictionaries and while loops. The focus lies on nested
dictionaries, in our case dictionaries of dictionaries. From the experiences
of my courses, I know that these often cause special difficulties in
particular for beginners.

This chapter is also about coffee, tea and other hot drinks, whose
consumption we manage using Python Dictionaries.

WORKING WITH DICTIONARIES 170

C O F F E E , D I C T I O N A R Y A N D A L O O P

kaffeeliste = {"Peter": 0,
"Eva": 0,
"Franka": 0}

while True:
name = input("Name: ")
if name == "":

break
kaffeeliste[name] += 1
print(kaffeeliste[name])

print("kaffeeliste: ", kaffeeliste)

kaffeeliste = {"Peter": 0,
"Eva": 0,
"Franka": 0}

teeliste = {"Peter": 0,
"Eva": 0,
"Franka": 0}

while True:
name = input("Name: ")
if name == "":

break
getränk = input("Getränk (kaffee/tee): ")
if getränk.lower() == "kaffee":

kaffeeliste[name] += 1
print(kaffeeliste[name])

elif getränk.lower() == "tee":
teeliste[name] += 1
print(teeliste[name])

1
1
2
1
kaffeeliste: {'Peter': 1, 'Eva': 1, 'Franka': 2}

COFFEE, DICTIONARY AND A LOOP 171

print("Kaffeeliste: ", kaffeeliste)
print("Teeliste: ", teeliste)

In []:

getränkeliste = {"Peter": {"Tee": 0,
"Kaffee": 0},

"Eva": {"Tee": 0,
"Kaffee": 0},

"Franka": {"Tee": 0,
"Kaffee": 0}}

while True:
name = input("Name: ").capitalize()
if name == "":

break
if name not in getränkeliste: # gibt keinen Key "name"

antwort = input("Sollen wir " + name + " in Liste aufnehme
n? (j/n)")

if antwort in ["j", "ja", "Ja", "y"]:
getränkeliste[name] = {"Tee": 0, "Kaffee": 0}

else:
print("Dann gibt's nichts zu trinken für " + name +

"!")
continue

drink = input("Getränk (Kaffee/Tee): ").capitalize()
getränkeliste[name][drink] += 1

print(getränkeliste)
getränke = ["Tee", "Kaffee", "Kakao", "Gemüsebrühe"]
namen = ["Peter", "Eva", "Sarah", "Eddie", "Swen"]

getränkekonsum = {}
for name in namen:

getränkekonsum[name] = {}
print(getränkekonsum)
for getränk in getränke:

getränkekonsum[name][getränk] = 0

1
1
1
Kaffeeliste: {'Peter': 1, 'Eva': 1, 'Franka': 0}
Teeliste: {'Peter': 0, 'Eva': 0, 'Franka': 1}

COFFEE, DICTIONARY AND A LOOP 172

supermarket = {"milk": {"quantity": 20, "price": 1.19},
"biscuits": {"quantity": 32, "price": 1.45},
"butter": {"quantity": 20, "price": 2.29},
"cheese": {"quantity": 15, "price": 1.90},
"bread": {"quantity": 15, "price": 2.59},
"cookies": {"quantity": 20, "price": 4.99},
"yogurt": {"quantity": 18, "price": 3.65},
"apples": {"quantity": 35, "price": 3.15},
"oranges": {"quantity": 40, "price": 0.99},
"bananas": {"quantity": 23, "price": 1.29}}

total_value = 0
for article, numbers in supermarket.items():

quantity = numbers["quantity"]
price = numbers["price"]
product_price = quantity * price
article = article + ':'
print(f"{article:15s} {product_price:08.2f}")
total_value += product_price

print("="*24)
print(f"Gesamtsumme: {total_value:08.2f}")

{'Peter': {}}
{'Peter': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0},
'Eva': {}}
{'Peter': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0},
'Eva': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0}, 'Sar
ah': {}}
{'Peter': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0},
'Eva': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0}, 'Sar
ah': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0}, 'Eddi
e': {}}
{'Peter': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0},
'Eva': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0}, 'Sar
ah': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0}, 'Eddi
e': {'Tee': 0, 'Kaffee': 0, 'Kakao': 0, 'Gemüsebrühe': 0}, 'Swe
n': {}}

COFFEE, DICTIONARY AND A LOOP 173

milk: 00023.80
biscuits: 00046.40
butter: 00045.80
cheese: 00028.50
bread: 00038.85
cookies: 00099.80
yogurt: 00065.70
apples: 00110.25
oranges: 00039.60
bananas: 00029.67
========================
Gesamtsumme: 00528.37

COFFEE, DICTIONARY AND A LOOP 174

F U N C T I O N S

SYNTAX

The concept of a function is one of the most important in mathematics. A
common usage of functions in computer languages is to implement mathematical
functions. Such a function is computing one or more results, which are entirely
determined by the parameters passed to it.

This is mathematics, but we are talking about programming and Python. So what
is a function in programming? In the most general sense, a function is a
structuring element in programming languages to group a bunch of statements so
they can be utilized in a program more than once. The only way to accomplish
this without functions would be to reuse code by copying it and adapting it to
different contexts, which would be a bad idea. Redundant code - repeating code
in this case - should be avoided! Using functions usually enhances the
comprehensibility and quality of a program. It also lowers the cost for
development and maintenance of the software.

Functions are known under various names in programming languages, e.g. as subroutines, routines,
procedures, methods, or subprograms.

MOTIVATING EXAMPLE OF FUNCTIONS

Let us look at the following code:

print("Program starts")

print("Hi Peter")
print("Nice to see you again!")
print("Enjoy our video!")

some lines of codes
the_answer = 42

print("Hi Sarah")
print("Nice to see you again!")
print("Enjoy our video!")

width, length = 3, 4
area = width * length

print("Hi Dominque")
print("Nice to see you again!")

FUNCTIONS 175

print("Enjoy our video!")

Let us have a closer look at the code above:

You can see in the code that we are greeting three persons. Every time we use three print calls which are
nearly the same. Just the name is different. This is what we call redundant code. We are repeating the code the
times. This shouldn't be the case. This is the point where functions can and should be used in Python.

We could use wildcards in the code instead of names. In the following diagram we use a piece of the puzzle.
We only write the code once and replace the puzzle piece with the corresponding name:

Program starts
Hi Peter
Nice to see you again!
Enjoy our video!
Hi Sarah
Nice to see you again!
Enjoy our video!
Hi Dominque
Nice to see you again!
Enjoy our video!

FUNCTIONS 176

Of course, this was no correct Python code. We show how to do this in Python in the following section.

FUNCTIONS IN PYTHON

The following code uses a function with the name greet . The previous puzzle piece is now a parameter
with the name "name":

def greet(name):
print("Hi " + name)
print("Nice to see you again!")
print("Enjoy our video!")

print("Program starts")

greet("Peter")

some lines of codes
the_answer = 42

greet("Sarah")

width, length = 3, 4
area = width * length

greet("Dominque")

FUNCTIONS 177

We used a function in the previous code. We saw that a function definition starts with the def keyword. The
general syntax looks like this:

def function-name(Parameter list):
statements, i.e. the function body

The parameter list consists of none or more parameters. Parameters are called arguments, if the function is
called. The function body consists of indented statements. The function body gets executed every time the
function is called. We demonstrate this in the following picture:

Program starts
Hi Peter
Nice to see you again!
Enjoy our video!
Hi Sarah
Nice to see you again!
Enjoy our video!
Hi Dominque
Nice to see you again!
Enjoy our video!

FUNCTIONS 178

The code from the picture can be seen in the following:

def f(x, y):
z = 2 * (x + y)
return z

print("Program starts!")
a = 3
res1 = f(a, 2+a)
print("Result of function call:", res1)
a = 4
b = 7
res2 = f(a, b)
print("Result of function call:", res2)

We call the function twice in the program. The function has two parameters, which are called x and y . This
means that the function f is expecting two values, or I should say "two objects". Firstly, we call this function
with f(a, 2+a) . This means that a goes to x and the result of 2+a (5) 'goes to' the variable y . The
mechanism for assigning arguments to parameters is called argument passing. When we reach the return
statement, the object referenced by z will be return, which means that it will be assigned to the variable
res1 . After leaving the function f , the variable z and the parameters x and y will be deleted

automatically.

Program starts!
Result of function call: 16
Result of function call: 22

FUNCTIONS 179

The references to the objects can be seen in the next diagram:

The next Python code block contains an example of a function without a return statement. We use the pass
statement inside of this function. pass is a null operation. This means that when it is executed, nothing
happens. It is useful as a placeholder in situations when a statement is required syntactically, but no code
needs to be executed:

def doNothing():
pass

A more useful function:

def fahrenheit(T_in_celsius):
""" returns the temperature in degrees Fahrenheit """
return (T_in_celsius * 9 / 5) + 32

for t in (22.6, 25.8, 27.3, 29.8):
print(t, ": ", fahrenheit(t))

FUNCTIONS 180

""" returns the temperature in degrees Fahrenheit """ is the so-called docstring. It is used by the help function:

help(fahrenheit)

Our next example could be interesting for the calorie-conscious Python learners.
We also had an exercise in the chapter Conditional Statements of our Python
tutorial. We will create now a function version of the program.

The body mass index (BMI) is a value derived from the mass (w) and height (l)
of a person. The BMI is defined as the body mass divided by the square of the
body height, and is universally expressed

BMI =
w

l2

The weight is given in kg and the length in metres.

def BMI(weight, height):
""" calculates the BMI where

weight is in kg and height in metres"""
return weight / height**2

We like to write a function to evaluate the bmi values according to the following
table:

22.6 : 72.68
25.8 : 78.44
27.3 : 81.14
29.8 : 85.64

Help on function fahrenheit in module __main__:

fahrenheit(T_in_celsius)
returns the temperature in degrees Fahrenheit

FUNCTIONS 181

https://www.python-course.eu/python3_conditional_statemtents.php

The following shows code which is directly calculating the bmi and the evaluation of the bmi, but it is not
using functions:

height = float(input("What is your height? "))
weight = float(input("What is your weight? "))

bmi = weight / height ** 2
print(bmi)
if bmi < 15:

print("Very severely underweight")
elif bmi < 16:

print("Severely underweight")
elif bmi < 18.5:

print("Underweight")
elif bmi < 25:

print("Normal (healthy weight)")
elif bmi < 30:

print("Overweight")
elif bmi < 35:

print("Obese Class I (Moderately obese)")
elif bmi < 40:

print("Obese Class II (Severely obese)")
else:

print("Obese Class III (Very severely obese)")
23.69576446280992
Normal (healthy weight)

FUNCTIONS 182

Turn the previous code into proper functions and function calls.

def BMI(weight, height):
""" calculates the BMI where

weight is in kg and height in metres"""
return weight / height**2

def bmi_evaluate(bmi_value):
if bmi_value < 15:

result = "Very severely underweight"
elif bmi_value < 16:

result = "Severely underweight"
elif bmi_value < 18.5:

result = "Underweight"
elif bmi_value < 25:

result = "Normal (healthy weight)"
elif bmi_value < 30:

result = "Overweight"
elif bmi_value < 35:

result = "Obese Class I (Moderately obese)"
elif bmi_value < 40:

result = "Obese Class II (Severely obese)"
else:

result = "Obese Class III (Very severely obese)"
return result

Let us check these functions:

height = float(input("What is your height? "))
weight = float(input("What is your weight? "))

res = BMI(weight, height)
print(bmi_evaluate(res))

DEFAULT ARGUMENTS IN PYTHON

When we define a Python function, we can set a default value to a parameter. If the function is called without
the argument, this default value will be assigned to the parameter. This makes a parameter optional. To say it
in other words: Default parameters are parameters, which don't have to be given, if the function is called. In
this case, the default values are used.

We will demonstrate the operating principle of default parameters with a simple example. The following

Normal (healthy weight)

FUNCTIONS 183

function hello , - which isn't very useful, - greets a person. If no name is given, it will greet everybody:

def hello(name="everybody"):
""" Greets a person """
result = "Hello " + name + "!")

hello("Peter")
hello()

THE DEFAULTS PITFALL

In the previous section we learned about default parameters. Default parameters are quite simple, but quite
often programmers new to Python encounter a horrible and completely unexpected surprise. This surprise
arises from the way Python treats the default arguments and the effects steming from mutable objects.

Mutable objects are those which can be changed after creation. In Python, dictionaries are examples of
mutable objects. Passing mutable lists or dictionaries as default arguments to a function can have unforeseen
effects. Programmer who use lists or dictionaries as default arguments to a function, expect the program to
create a new list or dictionary every time that the function is called. However, this is not what actually
happens. Default values will not be created when a function is called. Default values are created exactly once,
when the function is defined, i.e. at compile-time.

Let us look at the following Python function "spammer" which is capable of creating a "bag" full of spam:

def spammer(bag=[]):
bag.append("spam")
return bag

Calling this function once without an argument, returns the expected result:

spammer()

The surprise shows when we call the function again without an argument:

spammer()

Most programmers will have expected the same result as in the first call, i.e. ['spam']

Hello Peter!
Hello everybody!

Output: ['spam']

Output: ['spam', 'spam']

FUNCTIONS 184

To understand what is going on, you have to know what happens when the function is defined. The compiler
creates an attribute __defaults__ :

def spammer(bag=[]):
bag.append("spam")
return bag

spammer.__defaults__

Whenever we will call the function, the parameter bag will be assigned to the list object referenced by
spammer.__defaults__[0] :

for i in range(5):
print(spammer())

print("spammer.__defaults__", spammer.__defaults__)

Now, you know and understand what is going on, but you may ask yourself how to overcome this problem.
The solution consists in using the immutable value None as the default. This way, the function can set bag
dynamically (at run-time) to an empty list:

def spammer(bag=None):
if bag is None:

bag = []
bag.append("spam")
return bag

for i in range(5):
print(spammer())

print("spammer.__defaults__", spammer.__defaults__)

Output: ([],)

['spam']
['spam', 'spam']
['spam', 'spam', 'spam']
['spam', 'spam', 'spam', 'spam']
['spam', 'spam', 'spam', 'spam', 'spam']
spammer.__defaults__ (['spam', 'spam', 'spam', 'spam', 'spam'],)

FUNCTIONS 185

DOCSTRING

The first statement in the body of a function is usually a string statement called a Docstring, which can be
accessed with the function_name.__doc__ . For example:

def hello(name="everybody"):
""" Greets a person """
print("Hello " + name + "!")

print("The docstring of the function hello: " + hello.__doc__)

KEYWORD PARAMETERS

Using keyword parameters is an alternative way to make function calls. The definition of the function doesn't
change. An example:

def sumsub(a, b, c=0, d=0):
return a - b + c - d

print(sumsub(12, 4))
print(sumsub(42, 15, d=10))

Keyword parameters can only be those, which are not used as positional arguments. We can see the benefit in
the example. If we hadn't had keyword parameters, the second call to function would have needed all four
arguments, even though the c argument needs just the default value:

print(sumsub(42,15,0,10))

RETURN VALUES

In our previous examples, we used a return statement in the function sumsub but not in Hello. So, we can see

['spam']
['spam']
['spam']
['spam']
['spam']
spammer.__defaults__ (None,)

The docstring of the function hello: Greets a person

8
17

17

FUNCTIONS 186

that it is not mandatory to have a return statement. But what will be returned, if we don't explicitly give a
return statement. Let's see:

def no_return(x, y):
c = x + y

res = no_return(4, 5)
print(res)

If we start this little script, None will be printed, i.e. the special value None will be returned by a return-less
function. None will also be returned, if we have just a return in a function without an expression:

def empty_return(x, y):
c = x + y
return

res = empty_return(4, 5)
print(res)

Otherwise the value of the expression following return will be returned. In the next example 9 will be printed:

def return_sum(x, y):
c = x + y
return c

res = return_sum(4, 5)
print(res)

Let's summarize this behavior: Function bodies can contain one or more return statements. They can be
situated anywhere in the function body. A return statement ends the execution of the function call and
"returns" the result, i.e. the value of the expression following the return keyword, to the caller. If the return
statement is without an expression, the special value None is returned. If there is no return statement in the
function code, the function ends, when the control flow reaches the end of the function body and the value
None will be returned.

None

None

9

FUNCTIONS 187

RETURNING MULTIPLE VALUES

A function can return exactly one value, or we should better say one object. An object can be a numerical
value, like an integer or a float. But it can also be e.g. a list or a dictionary. So, if we have to return, for
example, 3 integer values, we can return a list or a tuple with these three integer values. That is, we can
indirectly return multiple values. The following example, which is calculating the Fibonacci boundary for a
positive number, returns a 2-tuple. The first element is the Largest Fibonacci Number smaller than x and the
second component is the Smallest Fibonacci Number larger than x. The return value is immediately stored via
unpacking into the variables lub and sup:

def fib_interval(x):
""" returns the largest fibonacci
number smaller than x and the lowest
fibonacci number higher than x"""
if x < 0:

return -1
old, new = 0, 1
while True:

if new < x:
old, new = new, old+new

else:
if new == x:

new = old + new
return (old, new)

while True:
x = int(input("Your number: "))
if x <= 0:

break
lub, sup = fib_interval(x)
print("Largest Fibonacci Number smaller than x: " + str(lub))
print("Smallest Fibonacci Number larger than x: " + str(sup))

LOCAL AND GLOBAL VARIABLES IN FUNCTIONS

Variable names are by default local to the function, in which they get defined.

def f():
print(s) # free occurrence of s in f

s = "Python"
f()

Largest Fibonacci Number smaller than x: 5
Smallest Fibonacci Number larger than x: 8

FUNCTIONS 188

def f():
s = "Perl" # now s is local in f
print(s)

s = "Python"
f()
print(s)

def f():
print(s) # This means a free occurrence, contradiction

to bein local
s = "Perl" # This makes s local in f
print(s)

s = "Python"
f()
print(s)

If we execute the previous script, we get the error message: UnboundLocalError: local variable 's' referenced
before assignment.

The variable s is ambigious in f(), i.e. in the first print in f() the global s could be used with the value
"Python". After this we define a local variable s with the assignment s = "Perl".

Python

Perl
Python

UnboundLocalError Traceback (most recent call last)
<ipython-input-25-81b2fbbc4d42> in <module>

6
7 s = "Python"

----> 8 f()
9 print(s)

<ipython-input-25-81b2fbbc4d42> in f()
1 def f():

----> 2 print(s)
3 s = "Perl"
4 print(s)
5

UnboundLocalError: local variable 's' referenced before assignment

FUNCTIONS 189

def f():
global s
print(s)
s = "dog"
print(s)

s = "cat"
f()
print(s)

We made the variable s global inside of the script. Therefore anything we do to s inside of the function body of
f is done to the global variable s outside of f.

def f():
global s
print(s)
s = "dog" # globally changed
print(s)

def g():
s = "snake" # local s
print(s)

s = "cat"
f()
print(s)
g()
print(s)

ARBITRARY NUMBER OF PARAMETERS

There are many situations in programming, in which the exact number of necessary parameters cannot be
determined a-priori. An arbitrary parameter number can be accomplished in Python with so-called tuple
references. An asterisk "*" is used in front of the last parameter name to denote it as a tuple reference. This
asterisk shouldn't be mistaken for the C syntax, where this notation is connected with pointers. Example:

cat
dog
dog

cat
dog
dog
snake
dog

FUNCTIONS 190

def arithmetic_mean(first, *values):
""" This function calculates the arithmetic mean of a non-empt

y
arbitrary number of numerical values """

return (first + sum(values)) / (1 + len(values))

print(arithmetic_mean(45,32,89,78))
print(arithmetic_mean(8989.8,78787.78,3453,78778.73))
print(arithmetic_mean(45,32))
print(arithmetic_mean(45))

This is great, but we have still have one problem. You may have a list of numerical values. Like, for example,

x = [3, 5, 9]

You cannot call it with

arithmetic_mean(x)

because "arithmetic_mean" can't cope with a list. Calling it with

arithmetic_mean(x[0], x[1], x[2])

is cumbersome and above all impossible inside of a program, because list can be of arbitrary length.

The solution is easy: The star operator. We add a star in front of the x, when we call the function.

arithmetic_mean(*x)

This will "unpack" or singularize the list.

A practical example for zip and the star or asterisk operator: We have a list of 4, 2-tuple elements:

61.0
42502.3275
38.5
45.0

Output: 5.666666666666667

Output: 5.666666666666667

FUNCTIONS 191

my_list = [('a', 232),
('b', 343),
('c', 543),
('d', 23)]

We want to turn this list into the following 2 element, 4-tuple list:

[('a', 'b', 'c', 'd'),
(232, 343, 543, 23)]

This can be done by using the *-operator and the zip function in the following way:

list(zip(*my_list))

ARBITRARY NUMBER OF KEYWORD PARAMETERS

In the previous chapter we demonstrated how to pass an arbitrary number of positional parameters to a
function. It is also possible to pass an arbitrary number of keyword parameters to a function as a dictionary. To
this purpose, we have to use the double asterisk "**"

def f(**kwargs):
print(kwargs)

f()

f(de="German",en="English",fr="French")

One use case is the following:

def f(a, b, x, y):
print(a, b, x, y)

d = {'a':'append', 'b':'block','x':'extract','y':'yes'}
f(**d)

Output: [('a', 'b', 'c', 'd'), (232, 343, 543, 23)]

{}

{'de': 'German', 'en': 'English', 'fr': 'French'}

append block extract yes

FUNCTIONS 192

EXERCISES WITH FUNCTIONS

EXERCISE 1

Rewrite the "dog age" exercise from chapter Conditional Statements as a function.

The rules are:

• A one-year-old dog is roughly equivalent to a 14-year-old human being
• A dog that is two years old corresponds in development to a 22 year old person.
• Each additional dog year is equivalent to five human years.

EXERCISE 2

Write a function which takes a text and encrypts it with a Caesar cipher. This is one of the simplest and most
commonly known encryption techniques. Each letter in the text is replaced by a letter some fixed number of
positions further in the alphabet.

What about decrypting the coded text?

The Caesar cipher is a substitution cipher.

EXERCISE 3

We can create another substitution cipher by permutating the alphet and map the letters to the corresponding
permutated alphabet.

Write a function which takes a text and a dictionary to decrypt or encrypt the given text with a permutated
alphabet.

EXERCISE 4

Write a function txt2morse, which translates a text to morse code, i.e. the function returns a string with the
morse code.

Write another function morse2txt which translates a string in Morse code into a „normal“ string.

FUNCTIONS 193

https://www.python-course.eu/python3_conditional_statemtents.php

The Morse character are separated by spaces. Words by three spaces.

EXERCISE 5

Perhaps the first algorithm used for approximating √S is known as the "Babylonian method", named after the

Babylonians, or "Hero's method", named after the first-century Greek mathematician Hero of Alexandria who
gave the first explicit description of the method.

If a number xn is close to the square root of a then

xn + 1 =
1

2
(xn +

a

xn
)

will be a better approximation.

Write a program to calculate the square root of a number by using the Babylonian method.

FUNCTIONS 194

EXERCISE 6

Write a function which calculates the position of the n-th occurence of a string sub in another string s. If sub
doesn't occur in s, -1 shall be returned.

EXERCISE 7

Write a function fuzzy_time which expects a time string in the form hh: mm (e.g. "12:25", "04:56"). The
function rounds up or down to a quarter of an hour. Examples:

fuzzy_time("12:58") ---> "13

SOLUTIONS

SOLUTION TO EXERCISE 1

def dog_age2human_age(dog_age):
"""dog_age2human_age(dog_age)"""
if dog_age == 1:

human_age = 14
elif dog_age == 2:

human_age = 22
else:

human_age = 22 + (dog_age-2)*5
return human_age

age = int(input("How old is your dog? "))
print(f"This corresponds to {dog_age2human_age(age)} human year
s!")

SOLUTION TO EXERCISE 2

import string
abc = string.ascii_uppercase
def caesar(txt, n, coded=False):

""" returns the coded or decoded text """
result = ""
for char in txt.upper():

if char not in abc:
result += char

This corresponds to 37 human years!

FUNCTIONS 195

elif coded:
result += abc[(abc.find(char) + n) % len(abc)]

else:
result += abc[(abc.find(char) - n) % len(abc)]

return result

n = 3
x = caesar("Hello, here I am!", n)
print(x)
print(caesar(x, n, True))

In the previous solution we only replace the letters. Every special character is left untouched. The following
solution adds some special characters which will be also permutated. Special charcters not in abc will be lost
in this solution!

import string
abc = string.ascii_uppercase + " .,-?!"
def caesar(txt, n, coded=False):

""" returns the coded or decoded text """
result = ""
for char in txt.upper():

if coded:
result += abc[(abc.find(char) + n) % len(abc)]

else:
result += abc[(abc.find(char) - n) % len(abc)]

return result

n = 3
x = caesar("Hello, here I am!", n)
print(x)
print(caesar(x, n, True))
x = caesar("abcdefghijkl", n)
print(x)

We will present another way to do it in the following implementation. The advantage is that there will be no
calculations like in the previous versions. We do only lookups in the decrypted list 'abc_cipher':

EBIIL, EBOB F XJ!
HELLO, HERE I AM!

EBIILZXEBOBXFX-J,
HELLO, HERE I AM!
-?!ABCDEFGHI

FUNCTIONS 196

import string
shift = 3
abc = string.ascii_uppercase + " .,-?!"
abc_cipher = abc[-shift:] + abc[:-shift]
print(abc_cipher)

def caesar (txt, shift):
"""Encodes the text "txt" to caesar by shifting it 'shift' pos

itions """
new_txt=""
for char in txt.upper():

position = abc.find(char)
new_txt +=abc_cipher[position]

return new_txt

n = 3
x = caesar("Hello, here I am!", n)
print(x)

x = caesar("abcdefghijk", n)
print(x)

SOLUTION TO EXERCISE 3

import string
from random import sample

alphabet = string.ascii_letters
permutated_alphabet = sample(alphabet, len(alphabet))

encrypt_dict = dict(zip(alphabet, permutated_alphabet))
decrypt_dict = dict(zip(permutated_alphabet, alphabet))

def encrypt(text, edict):
""" Every character of the text 'text'
is mapped to the value of edict. Characters
which are not keys of edict will not change"""
res = ""
for char in text:

res = res + edict.get(char, char)

-?!ABCDEFGHIJKLMNOPQRSTUVWXYZ .,
EBIILZXEBOBXFX-J,
-?!ABCDEFGH

FUNCTIONS 197

return res

Donald Trump: 5:19 PM, September 9 2014
txt = """Windmills are the greatest
threat in the US to both bald
and golden eagles. Media claims
fictional ‘global warming’ is worse."""

ctext = encrypt(txt, encrypt_dict)
print(ctext + "\n")
print(encrypt(ctext, decrypt_dict))

Alternative solution:

import string
alphabet = string.ascii_lowercase + "äöüß .?!\n"
def caesar_code(alphabet, c, text, mode="encoding"):

text = text.lower()
coded_alphabet = alphabet[-c:] + alphabet[0:-c]
if mode == "encoding":

encoding_dict = dict(zip(alphabet, coded_alphabet))
elif mode == "decoding":

encoding_dict = dict(zip(coded_alphabet, alphabet))
print(encoding_dict)
result = ""
for char in text:

result += encoding_dict.get(char, "")
return result

txt2 = caesar_code(alphabet, 5, txt)
caesar_code(alphabet, 5, txt2, mode="decoding")

OQlerQGGk yDd xVd nDdyxdkx
xVDdyx Ql xVd Fz xo hoxV hyGe
yle noGedl dynGdk. gdeQy HGyQrk
EQHxQolyG ‘nGohyG MyDrQln’ Qk MoDkd.

Windmills are the greatest
threat in the US to both bald
and golden eagles. Media claims
fictional ‘global warming’ is worse.

FUNCTIONS 198

SOLUTION TO EXERCISE 4

latin2morse_dict = {'A':'.-', 'B':'-...', 'C':'-.-.', 'D':'-..',
'E':'.', 'F':'..-.', 'G':'--.','H':'....',
'I':'..', 'J':'.---', 'K':'-.-', 'L':'.-..',
'M':'--', 'N':'-.', 'O':'---', 'P':'.--.',
'Q':'--.-', 'R':'.-.', 'S':'...', 'T':'-',
'U':'..-', 'V':'...-', 'W':'.--', 'X':'-..-',
'Y':'-.--', 'Z':'--..', '1':'.----',

'2':'...--',
'3':'...--', '4':'....-', '5':'.....', '6':'-

....',
'7':'--...', '8':'---..', '9':'----.',

'0':'-----',
',':'--..--', '.':'.-.-.-', '?':'..--..',

';':'-.-.-',
':':'---...', '/':'-..-.', '-':'-....-',

'\'':'.----.',
'(':'-.--.-', ')':'-.--.-', '[':'-.--.-',

']':'-.--.-',
'{':'-.--.-', '}':'-.--.-', '_':'..--.-'}

reversing the dictionary:
morse2latin_dict = dict(zip(latin2morse_dict.values(),

latin2morse_dict.keys()))

print(morse2latin_dict)

{'a': ' ', 'b': '.', 'c': '?', 'd': '!', 'e': '\n', 'f': 'a',
'g': 'b', 'h': 'c', 'i': 'd', 'j': 'e', 'k': 'f', 'l': 'g', 'm':
'h', 'n': 'i', 'o': 'j', 'p': 'k', 'q': 'l', 'r': 'm', 's': 'n',
't': 'o', 'u': 'p', 'v': 'q', 'w': 'r', 'x': 's', 'y': 't', 'z':
'u', 'ä': 'v', 'ö': 'w', 'ü': 'x', 'ß': 'y', ' ': 'z', '.': 'ä',
'?': 'ö', '!': 'ü', '\n': 'ß'}
{' ': 'a', '.': 'b', '?': 'c', '!': 'd', '\n': 'e', 'a': 'f',
'b': 'g', 'c': 'h', 'd': 'i', 'e': 'j', 'f': 'k', 'g': 'l', 'h':
'm', 'i': 'n', 'j': 'o', 'k': 'p', 'l': 'q', 'm': 'r', 'n': 's',
'o': 't', 'p': 'u', 'q': 'v', 'r': 'w', 's': 'x', 't': 'y', 'u':
'z', 'v': 'ä', 'w': 'ö', 'x': 'ü', 'y': 'ß', 'z': ' ', 'ä': '.',
'ö': '?', 'ü': '!', 'ß': '\n'}

Output: 'windmills are the greatest \nthreat in the us to both bald
\nand golden eagles. media claims \nfictional global warming
is worse.'

FUNCTIONS 199

def txt2morse(txt, alphabet):
morse_code = ""
for char in txt.upper():

if char == " ":
morse_code += " "

else:
morse_code += alphabet[char] + " "

return morse_code

def morse2txt(txt, alphabet):
res = ""
mwords = txt.split(" ")
for mword in mwords:

for mchar in mword.split():
res += alphabet[mchar]

res += " "
return res

mstring = txt2morse("So what?", latin2morse_dict)
print(mstring)
print(morse2txt(mstring, morse2latin_dict))

SOLUTION TO EXERCISE 5

def heron(a, eps=0.000000001):
""" Approximate the square root of a"""
previous = 0
new = 1
while abs(new - previous) > eps:

previous = new
new = (previous + a/previous) / 2

{'.-': 'A', '-...': 'B', '-.-.': 'C', '-..': 'D', '.': 'E', '..-
.': 'F', '--.': 'G', '....': 'H', '..': 'I', '.---': 'J', '-.-':
'K', '.-..': 'L', '--': 'M', '-.': 'N', '---': 'O', '.--.': 'P',
'--.-': 'Q', '.-.': 'R', '...': 'S', '-': 'T', '..-': 'U', '...-
': 'V', '.--': 'W', '-..-': 'X', '-.--': 'Y', '--..': 'Z', '.----
': '1', '...--': '3', '....-': '4', '.....': '5', '-....': '6',
'--...': '7', '---..': '8', '----.': '9', '-----': '0', '--..--':
',', '.-.-.-': '.', '..--..': '?', '-.-.-': ';', '---...': ':', '-
..-.': '/', '-....-': '-', '.----.': "'", '-.--.-': '}', '..--.-
': '_'}

... --- .--- - ..--..
SO WHAT?

FUNCTIONS 200

return new

print(heron(2))
print(heron(2, 0.001))

SOLUTION TO EXERCISE 6

def findnth(s, sub, n):
num = 0
start = -1
while num < n:

start = s.find(sub, start+1)
if start == -1:

break
num += 1

return start

s = "abc xyz abc jkjkjk abc lkjkjlkj abc jlj"
print(findnth(s,"abc", 3))

def vage_uhrzeit(zeit):
stunden, minuten = zeit.split(":")
minuten = int(minuten)
stunden = int(stunden)
minuten = minuten / 60 # Wandlung in Dezimalminuten
Werte in 0.0, 0.25, 0.5, 0.75:
minuten = round(minuten * 4, 0) / 4
if minuten == 0:

print("Ungefähr " + str(stunden) + " Uhr!")
elif minuten == 0.25:

print("Ungefähr viertel nach " + str(stunden) + "!")
else:

if stunden == 12:
stunden = 1

else:
stunden += 1

if minuten == 0.50:
print("Es ist ungefähr halb " + str(stunden) + "!")

elif minuten == 0.75:

1.414213562373095
1.4142135623746899

19

FUNCTIONS 201

print("Ungefähr eine viertel vor " + str(stunden) +
"!")

elif minuten == 1.00:
print("Ungefähr " + str(stunden) + " Uhr!")

stunde = "12"
for x in range(0, 60, 3):

vage_uhrzeit(stunde +":" + f"{x:02d}")
Ungefähr 12 Uhr!
Ungefähr 12 Uhr!
Ungefähr 12 Uhr!
Ungefähr viertel nach 12!
Ungefähr viertel nach 12!
Ungefähr viertel nach 12!
Ungefähr viertel nach 12!
Ungefähr viertel nach 12!
Es ist ungefähr halb 1!
Es ist ungefähr halb 1!
Es ist ungefähr halb 1!
Es ist ungefähr halb 1!
Es ist ungefähr halb 1!
Ungefähr eine viertel vor 1!
Ungefähr eine viertel vor 1!
Ungefähr eine viertel vor 1!
Ungefähr eine viertel vor 1!
Ungefähr eine viertel vor 1!
Ungefähr 1 Uhr!
Ungefähr 1 Uhr!

FUNCTIONS 202

R E C U R S I V E F U N C T I O N S

DEFINITION

Recursion has something to do with infinity. I know recursion has
something to do with infinity. I think I know recursion has something to do
with infinity. He is sure I think I know recursion has something to do with
infinity. We doubt he is sure I think I know ... We think that, you think , we
convinced you now that, we can go on forever with this example of a
recursion from natural language. Recursion is not only a fundamental
feature of natural language, but of the human cognitive capacity. Our way
of thinking is based on a recursive thinking processes. Even with a very
simple grammar rule, like "An English sentence contains a subject and a
predicate, and a predicate contains a verb, an object and a complement", we
can demonstrate the infinite possibilities of the natural language. The
cognitive scientist and linguist Stephen Pinker phrases it like this: "With a
few thousand nouns that can fill the subject slot and a few thousand verbs
that can fill the predicate slot, one already has several million ways to open
a sentence. The possible combinations quickly multiply out to
unimaginably large numbers. Indeed, the repertoire of sentences is
theoretically infinite, because the rules of language use a trick called
recursion. A recursive rule allows a phrase to contain an example of itself,
as in She thinks that he thinks that they think that he knows and so on, ad
infinitum. And if the number of sentences is infinite, the number of
possible thoughts and intentions is infinite too, because virtually every sentence expresses a different thought
or intention."1

We have to stop our short excursion to the use of recursion in natural language to come back to recursion in
computer science and programs and finally to recursion in the programming language Python.

The adjective "recursive" originates from the Latin verb "recurrere", which means "to run back". And this is
what a recursive definition or a recursive function does: It is "running back" or returning to itself. Most people
who have done some mathematics, computer science or read a book about programming will have
encountered the factorial, which is defined in mathematical terms as

n! = n * (n-1)!, if n > 1 and 0! = 1

It's used so often as an example for recursion because of its simplicity and clarity.

DEFINITION OF RECURSION

Recursion is a method of programming or coding a problem, in which a function calls itself one or more times
in its body. Usually, it is returning the return value of this function call. If a function definition satisfies the
condition of recursion, we call this function a recursive function.

Termination condition: A recursive function has to fulfil an important condition to be used in a program: it has

RECURSIVE FUNCTIONS 203

to terminate. A recursive function terminates, if with every recursive call the solution of the problem is
downsized and moves towards a base case. A base case is a case, where the problem can be solved without
further recursion. A recursion can end up in an infinite loop, if the base case is not met in the calls.

Example:

4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1

Replacing the calculated values gives us the following expression

4! = 4 * 3 * 2 * 1

In other words, recursion in computer science is a method where the solution to a problem is based on solving
smaller instances of the same problem.

RECURSIVE FUNCTIONS IN PYTHON

Now we come to implement the factorial in Python. It's as easy and elegant as the mathematical definition.

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n-1)

We can track how the function works by adding two print() functions to the previous function definition:

def factorial(n):
print("factorial has been called with n = " + str(n))
if n == 1:

return 1
else:

res = n * factorial(n-1)
print("intermediate result for ", n, " * factorial("

,n-1, "): ",res)
return res

print(factorial(5))

RECURSIVE FUNCTIONS 204

Let's have a look at an iterative version of the factorial function.

def iterative_factorial(n):
result = 1
for i in range(2,n+1):

result *= i
return result

for i in range(5):
print(i, iterative_factorial(i))

It is common practice to extend the factorial function for 0 as an argument. It makes sense to define 0! to be
1 , because there is exactly one permutation of zero objects, i.e. if nothing is to permute, "everything" is left

in place. Another reason is that the number of ways to choose n elements among a set of n is calculated as n!
divided by the product of n! and 0!.

All we have to do to implement this is to change the condition of the if statement:

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n-1)

factorial has been called with n = 5
factorial has been called with n = 4
factorial has been called with n = 3
factorial has been called with n = 2
factorial has been called with n = 1
intermediate result for 2 * factorial(1): 2
intermediate result for 3 * factorial(2): 6
intermediate result for 4 * factorial(3): 24
intermediate result for 5 * factorial(4): 120
120

0 1
1 1
2 2
3 6
4 24

RECURSIVE FUNCTIONS 205

FIBONACCI NUMBERS

Our treatise of recursion leads us now to another interesting case of recursion.

What do have sunflowers, the Golden ratio, fir tree cones, The Da Vinci Code, the song "Lateralus" by Tool,
and the graphic on the right side in common? Right, the Fibonacci numbers. We are not introducing the
Fibonacci numbers, because they are another useful example for recusive function. Trying to write a recursive
function for this sequence of numbers, might lead to an inefficient program. In fact, so inefficient that it will
not be useful. We introduce the Fibonacci numbers to show you the pitfalls of recursion.

The Fibonacci numbers are the numbers of the following sequence of
integer values:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

The Fibonacci numbers are defined by:

Fn = Fn − + Fn − 2

with F0 = 0 and F1 = 1

The Fibonacci sequence is named after the mathematician Leonardo of Pisa, who is better known as
Fibonacci. In his book "Liber Abaci" (published in 1202) he introduced the sequence as an exercise dealing
with bunnies. His sequence of the Fibonacci numbers begins with F1 = 1, while in modern mathematics the
sequence starts with F0 = 0. But this has no effect on the other members of the sequence.

The Fibonacci numbers are the result of an artificial rabbit population, satisfying the following conditions:

• a newly born pair of rabbits, one male, one female, build the initial population
• these rabbits are able to mate at the age of one month so that at the end of its second month a

female can bring forth another pair of rabbits
• these rabbits are immortal
• a mating pair always produces one new pair (one male, one female) every month from the

second month onwards

The Fibonacci numbers are the numbers of rabbit pairs after n months, i.e. after 10 months we will have F10

rabits.

The Fibonacci numbers are easy to write as a Python function. It's more or less a one to one mapping from the
mathematical definition:

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1) + fib(n-2)

RECURSIVE FUNCTIONS 206

An iterative solution is also easy to write, though the recursive solution looks more like the definition:

def fibi(n):
old, new = 0, 1
if n == 0:

return 0
for i in range(n-1):

old, new = new, old + new
return new

We will write a module with the name fibonacci containing both the funciton fib and fibi . To do
this you have to copy the following code into a file with the name fibonacci0.py:

""" A module containing both a recursive and an iterative implemen
tation of the Fibonacci function.
The purpose of this module consists in showing the inefficiency o
f a purely recursive implementation of Fibonacci! """

def fib(n):
""" recursive version of the Fibonacci function """
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1) + fib(n-2)

def fibi(n):
""" iterative version of the Fibonacci function """
old, new = 0, 1
if n == 0:

return 0
for i in range(n-1):

old, new = new, old + new
return new

If you check the functions fib() and fibi(), you will find out that the iterative version fibi() is a lot faster than
the recursive version fib(). To get an idea of how much this "a lot faster" can be, we have written a script,
which uses the timeit module, to measure the calls. To do this, we save the function definitions for fib and fibi
in a file fibonacci.py, which we can import in the program (fibonacci_runit.py) below:

Overwriting fibonacci0.py

RECURSIVE FUNCTIONS 207

from timeit import Timer

t1 = Timer("fib(10)","from fibonacci import fib")

for i in range(1, 20):
cmd = "fib(" + str(i) + ")"
t1 = Timer(cmd, "from fibonacci import fib")
time1 = t1.timeit(3)
cmd = "fibi(" + str(i) + ")"
t2 = Timer(cmd, "from fibonacci import fibi")
time2 = t2.timeit(3)
print(f"n={i:2d}, fib: {time1:8.6f}, fibi: {time2:7.6f}, time

1/time2: {time1/time2:10.2f}")

time1 is the time in seconds it takes for 3 calls to fib(n) and time2 respectively the time for
fibi(n) .

What's wrong with our recursive implementation?

Let's have a look at the calculation tree, i.e. the order in which the functions are called. fib() is substituted by
f().

n= 1, fib: 0.000001, fibi: 0.000002, time1/time2: 0.50
n= 2, fib: 0.000002, fibi: 0.000002, time1/time2: 0.85
n= 3, fib: 0.000003, fibi: 0.000002, time1/time2: 1.11
n= 4, fib: 0.000004, fibi: 0.000003, time1/time2: 1.45
n= 5, fib: 0.000011, fibi: 0.000003, time1/time2: 3.35
n= 6, fib: 0.000008, fibi: 0.000003, time1/time2: 2.98
n= 7, fib: 0.000012, fibi: 0.000002, time1/time2: 5.05
n= 8, fib: 0.000018, fibi: 0.000002, time1/time2: 7.98
n= 9, fib: 0.000029, fibi: 0.000002, time1/time2: 12.15
n=10, fib: 0.000046, fibi: 0.000003, time1/time2: 18.18
n=11, fib: 0.000075, fibi: 0.000003, time1/time2: 28.42
n=12, fib: 0.000153, fibi: 0.000003, time1/time2: 51.99
n=13, fib: 0.000194, fibi: 0.000003, time1/time2: 72.11
n=14, fib: 0.000323, fibi: 0.000003, time1/time2: 109.50
n=15, fib: 0.001015, fibi: 0.000008, time1/time2: 134.65
n=16, fib: 0.002165, fibi: 0.000008, time1/time2: 261.11
n=17, fib: 0.003795, fibi: 0.000019, time1/time2: 198.87
n=18, fib: 0.006021, fibi: 0.000010, time1/time2: 574.59
n=19, fib: 0.008807, fibi: 0.000011, time1/time2: 785.54

RECURSIVE FUNCTIONS 208

We can see that the subtree f(2) appears 3 times and the subtree for the calculation of f(3) two times. If you
imagine extending this tree for f(6), you will understand that f(4) will be called two times, f(3) three times and
so on. This means, our recursion doesn't remember previously calculated values.

We can implement a "memory" for our recursive version by using a dictionary to save the previously
calculated values. We call this version fibm :

memo = {0:0, 1:1}
def fibm(n):

if not n in memo:
memo[n] = fibm(n-1) + fibm(n-2)

return memo[n]

Before we can do some timing on the new version, we add it to our fibonacci module:

""" A module containing both a recursive and an iterative implemen
tation of the Fibonacci function.
The purpose of this module consists in showing the inefficiency o
f a purely recursive implementation of Fibonacci! """

def fib(n):
""" recursive version of the Fibonacci function """
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1) + fib(n-2)

def fibi(n):
""" iterative version of the Fibonacci function """
old, new = 0, 1
if n == 0:

return 0
for i in range(n-1):

old, new = new, old + new

RECURSIVE FUNCTIONS 209

return new

memo = {0:0, 1:1}
def fibm(n):

""" recursive Fibonacci function which memoizes previously
calculated values with the help of a dictionary memo"""
if not n in memo:

memo[n] = fibm(n-1) + fibm(n-2)
return memo[n]

We time it again to compare it with fibi():

from timeit import Timer
from fibonacci import fib

t1 = Timer("fib(10)","from fibonacci import fib")

for i in range(1, 20):
s = "fibm(" + str(i) + ")"
t1 = Timer(s,"from fibonacci import fibm")
time1 = t1.timeit(3)
s = "fibi(" + str(i) + ")"
t2 = Timer(s,"from fibonacci import fibi")
time2 = t2.timeit(3)
print(f"n={i:2d}, fibm: {time1:8.6f}, fibi: {time2:7.6f}, tim

e1/time2: {time1/time2:10.2f}")

Overwriting fibonacci.py

RECURSIVE FUNCTIONS 210

We can see that it is even faster than the iterative version. Of course, the larger the arguments, the greater the
benefit of our memorization:

We can also define a recursive algorithm for our Fibonacci function by using a class with callabe instances, i.e.
by using the special method call. This way, we will be able to hide the dictionary in an elegant way. We used a
general approach which allows as to define also functions similar to Fibonacci, like the Lucas function. This
means that we can create Fibonacci-like number sequences by instantiating instances of this class. Basically,
the building principle, i.e. the sum of the previous two numbers, will be the same. They will differ by the two
initial values:

class FibonacciLike:
def __init__(self, i1=0, i2=1):

self.memo = {0:i1, 1:i2}

def __call__(self, n):
if n not in self.memo:

self.memo[n] = self.__call__(n-1) + self.__cal
l__(n-2)

return self.memo[n]

We create a callable to create the Fibonacci numbers:
fib = FibonacciLike()

n= 1, fibm: 0.000002, fibi: 0.000002, time1/time2: 0.68
n= 2, fibm: 0.000001, fibi: 0.000002, time1/time2: 0.63
n= 3, fibm: 0.000001, fibi: 0.000002, time1/time2: 0.51
n= 4, fibm: 0.000001, fibi: 0.000002, time1/time2: 0.46
n= 5, fibm: 0.000001, fibi: 0.000002, time1/time2: 0.48
n= 6, fibm: 0.000001, fibi: 0.000002, time1/time2: 0.41
n= 7, fibm: 0.000001, fibi: 0.000002, time1/time2: 0.41
n= 8, fibm: 0.000001, fibi: 0.000011, time1/time2: 0.10
n= 9, fibm: 0.000001, fibi: 0.000002, time1/time2: 0.40
n=10, fibm: 0.000001, fibi: 0.000002, time1/time2: 0.36
n=11, fibm: 0.000001, fibi: 0.000003, time1/time2: 0.38
n=12, fibm: 0.000001, fibi: 0.000003, time1/time2: 0.35
n=13, fibm: 0.000001, fibi: 0.000003, time1/time2: 0.44
n=14, fibm: 0.000001, fibi: 0.000003, time1/time2: 0.36
n=15, fibm: 0.000001, fibi: 0.000003, time1/time2: 0.35
n=16, fibm: 0.000001, fibi: 0.000004, time1/time2: 0.34
n=17, fibm: 0.000001, fibi: 0.000003, time1/time2: 0.33
n=18, fibm: 0.000001, fibi: 0.000004, time1/time2: 0.29
n=19, fibm: 0.000001, fibi: 0.000004, time1/time2: 0.27

RECURSIVE FUNCTIONS 211

This will create a callable to create the Lucas number series:
lucas = FibonacciLike(2, 1)

for i in range(1, 16):
print(i, fib(i), lucas(i))

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard
Anatole Lucas (1842–91), who studied both that sequence and the closely related Fibonacci numbers. The
Lucas numbers have the same creation rule as the Fibonacci number, i.e. the sum of the two previous numbers,
but the values for 0 and 1 are different.

GENERALIZED FIBONACCI SEQUENCE

We will demonstrate now that our approach is also suitable to calculate arbitrary generalized Fibonacci
sequences. The Fibonacci sequence depends on the two preceding values. We generalize this concept now by
defining a k-Fib sequence in the following way

Given a fixed natural number k and k >= 2 . Also given k initial values i0, i1, …ik − 1

satisfying Fk(0) = i0, …Fk(k − 1) = ik − 1

The function also needs k cofficients c0, c1, …ck − 1

Fk(n) is defined as

Fk(n) = a0 ⋅ Fk(n − 1) + a1 ⋅ Fk(n − 2)…ak − 1 ⋅ Fk(n − k)

with k <= n

1 1 1
2 1 3
3 2 4
4 3 7
5 5 11
6 8 18
7 13 29
8 21 47
9 34 76
10 55 123
11 89 199
12 144 322
13 233 521
14 377 843
15 610 1364

RECURSIVE FUNCTIONS 212

class kFibonacci:
def __init__(self, k, initials, coefficients):

self.memo = dict(zip(range(k), initials))
self.coeffs = coefficients
self.k = k

def __call__(self, n):
k = self.k
if n not in self.memo:

result = 0
for coeff, i in zip(self.coeffs, range(1, k+1)):

result += coeff * self.__call__(n-i)
self.memo[n] = result

return self.memo[n]

fib = kFibonacci(2, (0, 1), (1, 1))
lucas = kFibonacci(2, (2, 1), (1, 1))

for i in range(1, 16):
print(i, fib(i), lucas(i))

The sequence of Pell numbers start with 1, 2, 5, 12, 29, ...

The function is

P(n) = 2 ⋅ P(n − 1) + P(n − 2) with P(0) = 1 and P(1) = 1

It is easy to formulate this sequence with our kFibonacci class:

1 1 1
2 1 3
3 2 4
4 3 7
5 5 11
6 8 18
7 13 29
8 21 47
9 34 76
10 55 123
11 89 199
12 144 322
13 233 521
14 377 843
15 610 1364

RECURSIVE FUNCTIONS 213

P = kFibonacci(2, (1, 2), (2, 1))
for i in range(10):

print(i, P(i))

We can create another interesting series by adding the sum of previous two Pell numbers between two Pell
numbers P(i) and P(i+1). We get:

P(0), P(1), P(0) + P(1), P(2), P(1) + P(2), P(3), P(2) + P(3), …

corresponding to: 1, 2, 3, 5, 7, 12, 17, 29, …

def nP(n):
if n < 2:

return P(n)
else:

i = n // 2 + 1
if n % 2: # n is odd

return P(i)
else:

return P(i-1) + P(i-2)

for i in range(20):
print(nP(i), end=", ")

If you have a close look at the numbers, you can see that there is another rule in this sequence. We can define
nP as

nP(n) = 2 ⋅ nP(n − 2) + nP(n − 4) with n > 3 and the start values 1, 2, 3, 5

This is another easy application for our kFibonacci class:

nP = kFibonacci(4, (1, 2, 3, 5), (0, 2, 0, 1))

0 1
1 2
2 5
3 12
4 29
5 70
6 169
7 408
8 985
9 2378

1, 2, 3, 5, 7, 12, 17, 29, 41, 70, 99, 169, 239, 408, 577, 985, 13
93, 2378, 3363, 5741,

RECURSIVE FUNCTIONS 214

for i in range(20):
print(nP(i), end=", ")

An interesting mathematical fact: For every odd n the quotient of P(n) by P(n − 1) is an approximation of √2.

If n is even, the quotient is an approximation of 1 +
1

√2

sqrt2 = 2 ** 0.5
print("Square root of 2: ", sqrt2)
print("Square root of 3: ", 1 + 1 / sqrt2)
for i in range(1, 20):

print(nP(i) / nP(i-1), end=", ")

MORE ABOUT RECURSION IN PYTHON

If you want to learn more on recursion, we suggest that you try to solve the
following exercises. Please do not peer at the solutions, before you have
given your best. If you have thought about a task for a while and you are
still not capable of solving the exercise, you may consult our sample
solutions.

In our section "Advanced Topics" of our tutorial we have a comprehensive
treatment of the game or puzzle "Towers of Hanoi". Of course, we solve it
with a function using a recursive function. The "Hanoi problem" is special,
because a recursive solution almost forces itself on the programmer, while
the iterative solution of the game is hard to find and to grasp.

EXERCISES

EXERCISE 1

Think of a recursive version of the function f(n) = 3 * n, i.e. the multiples

1, 2, 3, 5, 7, 12, 17, 29, 41, 70, 99, 169, 239, 408, 577, 985, 13
93, 2378, 3363, 5741,

Square root of 2: 1.4142135623730951
Square root of 3: 1.7071067811865475
2.0, 1.5, 1.6666666666666667, 1.4, 1.7142857142857142, 1.416666666
6666667, 1.7058823529411764, 1.4137931034482758, 1.707317073170731
7, 1.4142857142857144, 1.707070707070707, 1.4142011834319526, 1.70
7112970711297, 1.4142156862745099, 1.707105719237435, 1.4142131979
695431, 1.7071069633883704, 1.4142136248948696, 1.707106749925661
6,

RECURSIVE FUNCTIONS 215

of 3

EXERCISE 2

Write a recursive Python function that returns the sum of the first n integers. (Hint: The function will be
similiar to the factorial function!)

EXERCISE 3

Write a function which implements the Pascal's triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

EXERCISE 4

The Fibonacci numbers are hidden inside of Pascal's triangle. If you sum up the coloured numbers of the
following triangle, you will get the 7th Fibonacci number:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Write a recursive program to calculate the Fibonacci numbers, using Pascal's triangle.

EXERCISE 5

Implement a recursive function in Python for the sieve of Eratosthenes.

RECURSIVE FUNCTIONS 216

The sieve of Eratosthenes is a simple algorithm for finding all prime numbers up to a specified integer. It was
created by the ancient Greek mathematician Eratosthenes. The algorithm to find all the prime numbers less
than or equal to a given integer n:

1. Create a list of integers from two to n: 2, 3, 4, ..., n
2. Start with a counter i set to 2, i.e. the first prime number
3. Starting from i+i, count up by i and remove those numbers from the list, i.e. 2i, 3i, 4*i, etc..
4. Find the first number of the list following i. This is the next prime number.
5. Set i to the number found in the previous step
6. Repeat steps 3 and 4 until i is greater than n. (As an improvement: It's enough to go to the square

root of n)
7. All the numbers, which are still in the list, are prime numbers

You can easily see that we would be inefficient, if we strictly used this algorithm, e.g. we will try to remove
the multiples of 4, although they have been already removed by the multiples of 2. So it's enough to produce
the multiples of all the prime numbers up to the square root of n. We can recursively create these sets.

EXERCISE 6

Write a recursive function fib_indexfib(), which returns the index of a number in the Fibonacci sequence, if
the number is an element of this sequence, and returns -1 if the number is not contained in it, i.e.

fib(fib_index(n)) == n

EXERCISE 7

The sum of the squares of two consecutive Fibonacci numbers is also a Fibonacci number, e.g. 2 and 3 are
elements of the Fibonacci sequence and 22 + 33 = 13 corresponds to Fib(7).Use the previous function to find
the position of the sum of the squares of two consecutive numbers in the Fibonacci sequence.

Mathematical explanation: Let a and b be two successive Fibonacci numbers with a prior to b. The Fibonacci
sequence starting with the number "a" looks like this:

0 a
1 b
2 a + b
3 a + 2b
4 2a + 3b
5 3a + 5b
6 5a + 8b

We can see that the Fibonacci numbers appear as factors for a and b. The n-th element in this sequence can be
calculated with the following formula:

F(n) = Fib(n − 1) ⋅ a + Fib(n) ⋅ b

RECURSIVE FUNCTIONS 217

From this we can conclude that for a natural number n, n>1, the following holds true:

Fib(2 ⋅ n + 1) = Fib(n)2 + Fib(n + 1)2

EXERCISE 8

The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined
terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding
three terms. The first few tribonacci numbers are:

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, …

The tetranacci numbers start with four predetermined terms, each term afterwards being the sum of the
preceding four terms. The first few tetranacci numbers are:

0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10671, 20569, 39648, …

This continues in the same way for pentanacci, hexanacci, heptanacci, octanacci, and so on.

Write a function for the tribonacci and tetranacci numbers.

EXERCISE 9:

What if somebody wants to check the parameters in a recursive function? For example the factorial function.
Okay, please write a recursive version of factorial, which checks the parameters. Maybe you did it in a perfect
way, but maybe not. Can you improve your version? Get rid of unnecessary tests?

SOLUTIONS

SOLUTION TO EXERCISE 1

Mathematically, we can write it like this:

f(1) = 3,

f(n + 1) = f(n) + 3

A Python function can be written like this:

def mult3(n):
if n == 1:

return 3
else:

RECURSIVE FUNCTIONS 218

return mult3(n-1) + 3

for i in range(1,10):
print(mult3(i))

SOLUTION TO EXERCISE 2

def sum_n(n):
if n== 0:

return 0
else:

return n + sum_n(n-1)

SOLUTION TO EXERCISE 3: GENERATING THE PASCAL TRIANGLE:

def pascal(n):
if n == 1:

return [1]
else:

line = [1]
previous_line = pascal(n-1)
for i in range(len(previous_line)-1):

line.append(previous_line[i] + previous_line[i+1])
line += [1]

return line

print(pascal(6))

Alternatively, we can write a function using list comprehension:

def pascal(n):
if n == 1:

return [1]

3
6
9
12
15
18
21
24
27

[1, 5, 10, 10, 5, 1]

RECURSIVE FUNCTIONS 219

else:
p_line = pascal(n-1)
line = [p_line[i]+p_line[i+1] for i in range(len(p_lin

e)-1)]
line.insert(0,1)
line.append(1)

return line

print(pascal(6))

SOLUTION TO EXERCISE 4

Producing the Fibonacci numbers out of Pascal's triangle:

def fib_pascal(n,fib_pos):
if n == 1:

line = [1]
fib_sum = 1 if fib_pos == 0 else 0

else:
line = [1]
(previous_line, fib_sum) = fib_pascal(n-1, fib_pos+1)
for i in range(len(previous_line)-1):

line.append(previous_line[i] + previous_line[i+1])
line += [1]
if fib_pos < len(line):

fib_sum += line[fib_pos]
return (line, fib_sum)

def fib(n):
return fib_pascal(n,0)[1]

and now printing out the first ten Fibonacci numbers:
for i in range(1,10):

print(fib(i))

[1, 5, 10, 10, 5, 1]

RECURSIVE FUNCTIONS 220

SOLUTION TO EXERCISE 5

The following program implements the sieve of Eratosthenes according to the rules of the task in an iterative
way. It will print out the first 100 prime numbers.

from math import sqrt
def sieve(n):

returns all primes between 2 and n
primes = list(range(2,n+1))
max = sqrt(n)
num = 2
while num < max:

i = num
while i <= n:

i += num
if i in primes:

primes.remove(i)
for j in primes:

if j > num:
num = j
break

return primes

print(sieve(100))

But this chapter of our tutorial is about recursion and recursive functions, and we have demanded a recursive
function to calculate the prime numbers. To understand the following solution, you may confer our chapter
about List Comprehension:

from math import sqrt

1
1
2
3
5
8
13
21
34

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 6
1, 67, 71, 73, 79, 83, 89, 97]

RECURSIVE FUNCTIONS 221

def primes(n):
if n == 0:

return []
elif n == 1:

return []
else:

p = primes(int(sqrt(n)))
no_p = [j for i in p for j in range(i*2, n + 1, i)]
p = [x for x in range(2, n + 1) if x not in no_p]
return p

print(primes(100))

SOLUTION TO EXERCISE 6

memo = {0:0, 1:1}
def fib(n):

if not n in memo:
memo[n] = fib(n-1) + fib(n-2)

return memo[n]

def fib_index(*x):
""" finds the natural number i with fib(i) == n """
if len(x) == 1:

started by user
find index starting from 0
return fib_index(x[0], 0)

else:
n = fib(x[1])
m = x[0]
if n > m:

return -1
elif n == m:

return x[1]
else:

return fib_index(m, x[1]+1)

code from the previous example with the functions fib() and fin
d_index()

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 6
1, 67, 71, 73, 79, 83, 89, 97]

RECURSIVE FUNCTIONS 222

print(" index of a | a | b | sum of squares | index
")
print("===")
for i in range(15):

square = fib(i)**2 + fib(i+1)**2
print(f"{i:12d}|{fib(i):6d}|{fib(i+1):9d}|{square:14d}|{fib_in

dex(square):5d}")

SOLUTION TO EXERCISE 8

We will use the class kFibonacci which we have defined in this chapter.

tribonacci = kFibonacci(3, (0, 0, 1), (1, 1, 1))

for i in range(20):
print(tribonacci(i), end=", ")

tetranacci = kFibonacci(4, (0, 0, 0, 1), (1, 1, 1, 1))

for i in range(20):
print(tetranacci(i), end=", ")

index of a | a | b | sum of squares | index
===

0| 0| 1| 1| 1
1| 1| 1| 2| 3
2| 1| 2| 5| 5
3| 2| 3| 13| 7
4| 3| 5| 34| 9
5| 5| 8| 89| 11
6| 8| 13| 233| 13
7| 13| 21| 610| 15
8| 21| 34| 1597| 17
9| 34| 55| 4181| 19

10| 55| 89| 10946| 21
11| 89| 144| 28657| 23
12| 144| 233| 75025| 25
13| 233| 377| 196418| 27
14| 377| 610| 514229| 29

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 313
6, 5768, 10609, 19513,

0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 287
2, 5536, 10671, 20569,

RECURSIVE FUNCTIONS 223

We can easily create them like this:

prefixes = ['tribo', 'tetra', 'pentra', 'hexa', 'hepta', 'octa']
for k, prefix in zip(range(len(prefixes)), prefixes):

cmd = prefix + "nacci = kFibonacci("
cmd += str(k+3) + ", (" + "0, " * (k+2) + "1), "
cmd += "(" + "1, " * (k+2) + "1))"
print(cmd)
exec(cmd)

print("\nTesting the octanacci function: ")
for i in range(20):

print(octanacci(i), end=", ")

SOLUTION TO EXERCISE 9

def factorial(n):
""" calculates the factorial of n,

n should be an integer and n <= 0 """
if type(n) == int and n >=0:

if n == 0:
return 1

else:
return n * factorial(n-1)

else:
raise TypeError("n has to be a positive integer or zero")

What do you think about this solution? You call factorial(10) for example. The funciton will check, if
10 is a positive integer. The function will recursively call factorial(9) . In this call the function will

check again, if 9 is an integer. What else can it be? The first call had already checked 10 and all we did

tribonacci = kFibonacci(3, (0, 0, 1), (1, 1, 1))
tetranacci = kFibonacci(4, (0, 0, 0, 1), (1, 1, 1, 1))
pentranacci = kFibonacci(5, (0, 0, 0, 0, 1), (1, 1, 1, 1, 1))
hexanacci = kFibonacci(6, (0, 0, 0, 0, 0, 1), (1, 1, 1, 1, 1, 1))
heptanacci = kFibonacci(7, (0, 0, 0, 0, 0, 0, 1), (1, 1, 1, 1, 1,
1, 1))
octanacci = kFibonacci(8, (0, 0, 0, 0, 0, 0, 0, 1), (1, 1, 1, 1,
1, 1, 1, 1))

Testing the octanacci function:
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 101
6, 2028,

RECURSIVE FUNCTIONS 224

was subtracting 1 from 10 .

We can overcome this problem by defining an inner function:

def factorial(n):
""" calculates the factorial of n,

n should be an integer and n <= 0 """
def inner_factorial(n):

if n == 0:
return 1

else:
return n * inner_factorial(n-1)

if type(n) == int and n >=0:
return inner_factorial(n)

else:
raise TypeError("n should be a positve int or 0")

print(factorial(10))

The test will only be performed on the first call with 10 !

*Stephen Pinker, The Blank Slate, 2002

3628800

RECURSIVE FUNCTIONS 225

P A R A M E T E R S A N D A R G U M E N T S

A function or procedure usually needs some information about the environment, in which it has been called.
The interface between the environment, from which the function has been called, and the function, i.e. the
function body, consists of special variables, which are called parameters. By using these parameters, it's
possible to use all kind of objects from "outside" inside of a function. The syntax for how parameters are
declared and the semantics for how the arguments are passed to the parameters of the function or procedure
depends on the programming language.

Very often the terms parameter and argument are used synonymously, but there is a clear difference.
Parameters are inside functions or procedures, while arguments are used in procedure calls, i.e. the values
passed to the function at run-time.

"CALL BY VALUE" AND "CALL BY NAME"

The evaluation strategy for arguments, i.e. how the arguments from a
function call are passed to the parameters of the function, differs between
programming languages. The most common evaluation strategies are "call
by value" and "call by reference":

• Call by Value The most common strategy is the call-by-value
evaluation, sometimes also called pass-by-value. This
strategy is used in C and C++, for example. In call-by-value,
the argument expression is evaluated, and the result of this
evaluation is bound to the corresponding variable in the
function. So, if the expression is a variable, its value will be assigned (copied) to the
corresponding parameter. This ensures that the variable in the caller's scope will stay unchanged
when the function returns.

• Call by Reference In call-by-reference evaluation, which is also known as pass-by-reference, a
function gets an implicit reference to the argument, rather than a copy of its value. As a
consequence, the function can modify the argument, i.e. the value of the variable in the caller's
scope can be changed. By using Call by Reference we save both computation time and memory
space, because arguments do not need to be copied. On the other hand this harbours the
disadvantage that variables can be "accidentally" changed in a function call. So, special care has
to be taken to "protect" the values, which shouldn't be changed. Many programming languages
support call-by-reference, like C or C++, but Perl uses it as default.

In ALGOL 60 and COBOL there has been a different concept called call-by-name, which isn't used anymore
in modern languages.

PARAMETERS AND ARGUMENTS 226

AND WHAT ABOUT PYTHON?

There are some books which call the strategy of Python call-by-value, and
some call it call-by-reference. You may ask yourself, what is right.

Humpty Dumpty supplies the explanation:

--- "When I use a word," Humpty Dumpty said, in a rather a scornful tone,
"it means just what I choose it to mean - neither more nor less."

--- "The question is," said Alice, "whether you can make words mean so
many different things."

--- "The question is," said Humpty Dumpty, "which is to be master - that's
all."

Lewis Carroll, Through the Looking-Glass

To come back to our initial question what evaluation strategy is used in Python: the authors who call the
mechanism call-by-value and those who call it call-by-reference are stretching the definitions until they fit.

Correctly speaking, Python uses a mechanism, which is known as "Call-by-Object", sometimes also called
"Call by Object Reference" or "Call by Sharing".

If you pass immutable arguments like integers, strings or tuples to a
function, the passing acts like call-by-value. The object reference is passed
to the function parameters. They can't be changed within the function,
because they can't be changed at all, i.e. they are immutable. It's different,
if we pass mutable arguments. They are also passed by object reference,
but they can be changed in place within the function. If we pass a list to a
function, we have to consider two cases: Elements of a list can be changed
in place, i.e. the list will be changed even in the caller's scope. If a new list
is assigned to the name, the old list will not be affected, i.e. the list in the
caller's scope will remain untouched.

First, let's have a look at the integer variables below. The parameter inside the function remains a reference to
the argument's variable, as long as the parameter is not changed. As soon as a new value is assigned to it,
Python creates a separate local variable. The caller's variable will not be changed this way:

def ref_demo(x):
print("x=",x," id=",id(x))
x=42
print("x=",x," id=",id(x))

PARAMETERS AND ARGUMENTS 227

In the example above, we used the id() function, which takes an object as a
parameter. id(obj) returns the "identity" of the object "obj". This identity,
the return value of the function, is an integer which is unique and constant
for this object during its lifetime. Two different objects with non-
overlapping lifetimes may have the same id() value.

If you call the function ref_demo() of the previous example - like we do in
the green block further below - we can check what happens to x with the
id() function: We can see that in the main scope, x has the identity
140709692940944. In the first print statement of the ref_demo() function,
the x from the main scope is used, because we can see that we get the same
identity. After we assigned the value 42 to x, x gets a new identity 140709692942000, i.e. a separate memory
location from the global x. So, when we are back in the main scope x has still the original value 9 and the id
140709692940944.

In other words, Python initially behaves like call-by-reference, but as soon as we change the value of such a
variable, i.e. as soon as we assign a new object to it, Python "switches" to call-by-value. That is, a local
variable x will be created and the value of the global variable x will be copied into it.

x = 9
id(x)

ref_demo(x)

id(x)

SIDE EFFECTS

A function is said to have a side effect, if, in addition to producing a return value, it modifies the caller's
environment in other ways. For example, a function might modify a global or static variable, modify one of its
arguments, raise an exception, write data to a display or file etc.

There are situations, in which these side effects are intended, i.e. they are part of the function's specification.
But in other cases, they are not wanted , they are hidden side effects. In this chapter, we are only interested in
the side effects that change one or more global variables, which have been passed as arguments to a function.
Let's assume, we are passing a list to a function. We expect the function not to change this list. First, let's have
a look at a function which has no side effects. As a new list is assigned to the parameter list in func1(), a new
memory location is created for list and list becomes a local variable.

def no_side_effects(cities):

Output: 140709692940944

x= 9 id= 140709692940944
x= 42 id= 140709692942000

Output: 140709692940944

PARAMETERS AND ARGUMENTS 228

print(cities)
cities = cities + ["Birmingham", "Bradford"]
print(cities)

locations = ["London", "Leeds", "Glasgow", "Sheffield"]
no_side_effects(locations)

print(locations)

This changes drastically, if we increment the list by using augmented assignment operator +=. To show this,
we change the previous function rename it as "side_effects" in the following example:

def side_effects(cities):
print(cities)
cities += ["Birmingham", "Bradford"]
print(cities)

locations = ["London", "Leeds", "Glasgow", "Sheffield"]
side_effects(locations)

print(locations)

We can see that Birmingham and Bradford are included in the global list locations as well, because += acts as
an in-place operation.

The user of this function can prevent this side effect by passing a copy to the function. A shallow copy is
sufficient, because there are no nested structures in the list. To satisfy our French customers as well, we
change the city names in the next example to demonstrate the effect of the slice operator in the function call:

def side_effects(cities):
print(cities)
cities += ["Paris", "Marseille"]
print(cities)

['London', 'Leeds', 'Glasgow', 'Sheffield']
['London', 'Leeds', 'Glasgow', 'Sheffield', 'Birmingham', 'Bradfor
d']

['London', 'Leeds', 'Glasgow', 'Sheffield']

['London', 'Leeds', 'Glasgow', 'Sheffield']
['London', 'Leeds', 'Glasgow', 'Sheffield', 'Birmingham', 'Bradfor
d']

['London', 'Leeds', 'Glasgow', 'Sheffield', 'Birmingham', 'Bradfor
d']

PARAMETERS AND ARGUMENTS 229

locations = ["Lyon", "Toulouse", "Nice", "Nantes", "Strasbourg"]
side_effects(locations[:])
print(locations)

print(locations)

We can see that the global list locations has not been effected by the execution of the function.

COMMAND LINE ARGUMENTS

If you use a command line interface, i.e. a text user interface (TUI) , and not a graphical user interface (GUI),
command line arguments are very useful. They are arguments which are added after the function call in the
same line.

It's easy to write Python scripts using command line arguments. If you call a Python script from a shell, the
arguments are placed after the script name. The arguments are separated by spaces. Inside the script these
arguments are accessible through the list variable sys.argv. The name of the script is included in this list
sys.argv[0]. sys.argv[1] contains the first parameter, sys.argv[2] the second and so on. The following script
(arguments.py) prints all arguments:

Module sys has to be imported:
import sys

ITERATION OVER ALL ARGUMENTS:

for eachArg in sys.argv:
print(eachArg)

Example call to this script:

python argumente.py python course for beginners

This call creates the following output:

argumente.py
python
course
for

['Lyon', 'Toulouse', 'Nice', 'Nantes', 'Strasbourg']
['Lyon', 'Toulouse', 'Nice', 'Nantes', 'Strasbourg', 'Paris', 'Mar
seille']
['Lyon', 'Toulouse', 'Nice', 'Nantes', 'Strasbourg']

['Lyon', 'Toulouse', 'Nice', 'Nantes', 'Strasbourg']

PARAMETERS AND ARGUMENTS 230

beginners

VARIABLE LENGTH OF PARAMETERS

We will introduce now functions, which can take an arbitrary number of arguments. Those who have some
programming background in C or C++ know this from the varargs feature of these languages.

Some definitions, which are not really necessary for the following: A function with an arbitrary number of
arguments is usually called a variadic function in computer science. To use another special term: A variadic
function is a function of indefinite arity. The arity of a function or an operation is the number of arguments or
operands that the function or operation takes. The term was derived from words like "unary", "binary",
"ternary", all ending in "ary".

The asterisk "*" is used in Python to define a variable number of arguments. The asterisk character has to
precede a variable identifier in the parameter list.

def varpafu(*x):
print(x)

varpafu()

varpafu(34,"Do you like Python?", "Of course")

We learn from the previous example that the arguments passed to the function call of varpafu() are collected in
a tuple, which can be accessed as a "normal" variable x within the body of the function. If the function is
called without any arguments, the value of x is an empty tuple.

Sometimes, it's necessary to use positional parameters followed by an arbitrary number of parameters in a
function definition. This is possible, but the positional parameters always have to precede the arbitrary
parameters. In the following example, we have a positional parameter "city", - the main location, - which
always have to be given, followed by an arbitrary number of other locations:

def locations(city, *other_cities): print(city, other_cities)
locations("Paris")
locations("Paris", "Strasbourg", "Lyon", "Dijon", "Bordeaux", "Mar
seille")

()

(34, 'Do you like Python?', 'Of course')

Paris ()
Paris ('Strasbourg', 'Lyon', 'Dijon', 'Bordeaux', 'Marseille')

PARAMETERS AND ARGUMENTS 231

* IN FUNCTION CALLS

A * can appear in function calls as well, as we have just seen in the previous exercise: The semantics is in this
case "inverse" to a star in a function definition. An argument will be unpacked and not packed. In other words,
the elements of the list or tuple are singularized:

def f(x,y,z):
print(x,y,z)

p = (47,11,12)
f(*p)

There is hardly any need to mention that this way of calling our function is more comfortable than the
following one:

f(p[0],p[1],p[2])

Additionally, the previous call (f(p[0],p[1],p[2])) doesn't work in the general case, i.e. lists of unknown
lengths. "Unknown" means that the length is only known at runtime and not when we are writing the script.

ARBITRARY KEYWORD PARAMETERS

There is also a mechanism for an arbitrary number of keyword parameters. To do this, we use the double
asterisk "**" notation:

>>> def f(**args):
print(args)

f()

f(de="German",en="English",fr="French")

DOUBLE ASTERISK IN FUNCTION CALLS

The following example demonstrates the usage of ** in a function call:

def f(a,b,x,y):

47 11 12

47 11 12

{}

{'de': 'German', 'en': 'English', 'fr': 'French'}

PARAMETERS AND ARGUMENTS 232

print(a,b,x,y)

d = {'a':'append', 'b':'block','x':'extract','y':'yes'}
f(**d)

and now in combination with *:

t = (47,11)
d = {'x':'extract','y':'yes'}
f(*t, **d)

EXERCISE

Write a function which calculates the arithmetic mean of a variable number of values.

SOLUTION

def arithmetic_mean(x, *l):
""" The function calculates the arithmetic mean of a non-empty

arbitrary number of numbers """
sum = x
for i in l:

sum += i

return sum / (1.0 + len(l))

You might ask yourself, why we used both a positional parameter "x" and the variable parameter "l" in our
function definition. We could have only used l to contain all our numbers. We wanted to enforce that we
always have a non-empty list of numbers. This is necessary to prevent a division by zero error, because the
average of an empty list of numbers is not defined.

In the following interactive Python session, we can learn how to use this function. We assume that the function
arithmetic_mean is saved in a file called statistics.py.

from statistics import arithmetic_mean
arithmetic_mean(4,7,9)
6.666666666666667
arithmetic_mean(4,7,9,45,-3.7,99)
26.71666666666667

append block extract yes

47 11 extract yes

PARAMETERS AND ARGUMENTS 233

This works fine, but there is a catch. What if somebody wants to call the function with a list, instead of a
variable number of numbers, as we have shown above? We can see in the following that we raise an error, as
most hopefully, you might expect:

l = [4,7,9,45,-3.7,99]
arithmetic_mean(l)

The rescue is using another asterisk:

arithmetic_mean(*l)
26.71666666666667

NameError Traceback (most recent call last)
<ipython-input-29-b0693d70ca11> in <module>

1 l = [4,7,9,45,-3.7,99]
----> 2 arithmetic_mean(l)
NameError: name 'arithmetic_mean' is not defined

PARAMETERS AND ARGUMENTS 234

N A M E S P A C E S A N D S C O P E S

NAMESPACES

Generally speaking, a namespace (sometimes also called a
context) is a naming system for making names unique to
avoid ambiguity. Everybody knows a namespacing system
from daily life, i.e. the naming of people by the first name
and family name (surname). Another example is a
network: each network device (workstation, server, printer,
...) needs a unique name and address. Yet a further
example is the directory structure of filesystems. The same
filename can be used in different directories, the files can
be uniquely accessed via the pathnames. Many
programming languages use namespaces or contexts for
identifiers. An identifier defined in a namespace is
associated with that namespace. This way, the same
identifier can be independently defined in multiple
namespaces (Like the same filename in different
directories). Programming languages, which support
namespaces, may have different rules that determine to
which namespace an identifier belongs to. Namespaces in
Python are implemented as Python dictionaries, that is, they are defined by a mapping of names, i.e. the keys
of the dictionary, to objects, i.e. the values. The user doesn't have to know this to write a Python program and
when using namespaces. Some namespaces in Python:

• global names of a module
• local names in a function or method invocation
• built-in names: this namespace contains built-in fuctions (e.g. abs(), cmp(), ...) and built-in

exception names

LIFETIME OF A NAMESPACE

Not every namespace, which may be used in a script or program is accessible (or alive) at any moment during
the execution of the script. Namespaces have different lifetimes, because they are often created at different
points in time. There is one namespace which is present from beginning to end: The namespace containing the
built-in names is created when the Python interpreter starts up, and is never deleted. The global namespace of
a module is generated when the module is read in. Module namespaces normally last until the script ends, i.e.
the interpreter quits. When a function is called, a local namespace is created for this function. This namespace
is deleted either if the function ends, i.e. returns, or if the function raises an exception, which is not dealt with
within the function.

SCOPES

A scope refers to a region of a program where a namespace can be directly accessed, i.e. without using a

NAMESPACES AND SCOPES 235

namespace prefix. In other words, the scope of a name is the area of a program where this name can be
unambiguously used, for example, inside of a function. A name's namespace is identical to it's scope. Scopes
are defined statically, but they are used dynamically. During program execution there are the following nested
scopes available:

• the innermost scope is searched first and it contains the local names
• the scopes of any enclosing functions, which are searched starting with the nearest enclosing

scope
• the next-to-last scope contains the current module's global names
• the outermost scope, which is searched last, is the namespace containing the built-in names

NAMESPACES AND SCOPES 236

G L O B A L , L O C A L A N D N O N L O C A L
V A R I A B L E S

The way Python uses global and local variables is
maverick. While in many or most other programming
languages variables are treated as global if not declared
otherwise, Python deals with variables the other way
around. They are local, if not otherwise declared. The
driving reason behind this approach is that global variables
are generally bad practice and should be avoided. In most
cases where you are tempted to use a global variable, it is
better to utilize a parameter for getting a value into a
function or return a value to get it out. Like in many other
program structures, Python also imposes good
programming habit by design.

So when you define variables inside a function definition,
they are local to this function by default. That is, anything
you will do to such a variable in the body of the function
will have no effect on other variables outside of the
function, even if they have the same name. In other words, the function body is the scope of such a variable,
i.e. the enclosing context where this name is associated with its values.

All variables have the scope of the block, where they are declared and defined. They can only be used after the
point of their declaration.

Just to make things clear: Variables don't have to be and can't be declared in the way they are declared in
programming languages like Java or C. Variables in Python are implicitly declared by defining them, i.e. the
first time you assign a value to a variable, this variable is declared and has automatically the data type of the
object which has to be assigned to it. If you have problems understanding this, please consult our chapter
about data types and variables, see links on the left side.

GLOBAL AND LOCAL VARIABLES IN FUNCTIONS

In the following example, we want to demonstrate, how global values can be used inside the body of a
function:

def f():
print(s)

s = "I love Paris in the summer!"
f()
I love Paris in the summer!

GLOBAL, LOCAL AND NONLOCAL VARIABLES 237

The variable s is defined as the string "I love Paris in the summer!", before calling the function f(). The body
of f() consists solely of the "print(s)" statement. As there is no local variable s, i.e. no assignment to s, the
value from the global variable s will be used. So the output will be the string "I love Paris in the summer!".
The question is, what will happen, if we change the value of s inside of the function f()? Will it affect the
global variable as well? We test this in the following piece of code:

def f():
s = "I love London!"
print(s)

s = "I love Paris!"
f()
print(s)

What if we combine the first example with the second one, i.e. we first access s with a print() function, hoping
to get the global value, and then assigning a new value to it? Assigning a value to it, means - as we have
previously stated - creating a local variable s. So, we would have s both as a global and a local variable in the
same scope, i.e. the body of the function. Python fortunately doesn't allow this ambiguity. So, it will raise an
error, as we can see in the following example:

def f():
print(s)
s = "I love London!"
print(s)

s = "I love Paris!"
f()

I love London!
I love Paris!

GLOBAL, LOCAL AND NONLOCAL VARIABLES 238

A variable can't be both local and global inside a function. So Python decides that we want a local variable due
to the assignment to s inside f(), so the first print statement before the definition of s throws the error message
above. Any variable which is changed or created inside a function is local, if it hasn't been declared as a global
variable. To tell Python, that we want to use the global variable, we have to explicitly state this by using the
keyword "global", as can be seen in the following example:

def f():
global s
print(s)
s = "Only in spring, but London is great as well!"
print(s)

s = "I am looking for a course in Paris!"
f()
print(s)

Local variables of functions can't be accessed from outside, when the function call has finished. Here is the
continuation of the previous example:

def f():
s = "I am globally not known"
print(s)

f()

UnboundLocalError Traceback (most recent call last)
<ipython-input-3-d7a23bc83c27> in <module>

5
6 s = "I love Paris!"

----> 7 f()
<ipython-input-3-d7a23bc83c27> in f()

1 def f():
----> 2 print(s)

3 s = "I love London!"
4 print(s)
5

UnboundLocalError: local variable 's' referenced before assignment

I am looking for a course in Paris!
Only in spring, but London is great as well!
Only in spring, but London is great as well!

GLOBAL, LOCAL AND NONLOCAL VARIABLES 239

print(s)

The following example shows a wild combination of local and global variables and function parameters:

def foo(x, y):
global a
a = 42
x,y = y,x
b = 33
b = 17
c = 100
print(a,b,x,y)

a, b, x, y = 1, 15, 3,4
foo(17, 4)
print(a, b, x, y)

GLOBAL VARIABLES IN NESTED FUNCTIONS

We will examine now what will happen, if we use the global keyword inside nested functions. The following
example shows a situation where a variable 'city' is used in various scopes:

def f():
city = "Hamburg"
def g():

global city
city = "Geneva"

print("Before calling g: " + city)
print("Calling g now:")
g()
print("After calling g: " + city)

f()
print("Value of city in main: " + city)

I am globally not known
Only in spring, but London is great as well!

42 17 4 17
42 15 3 4

Before calling g: Hamburg
Calling g now:
After calling g: Hamburg
Value of city in main: Geneva

GLOBAL, LOCAL AND NONLOCAL VARIABLES 240

We can see that the global statement inside the nested function g does not affect the variable 'city' of the
function f, i.e. it keeps its value 'Hamburg'. We can also deduce from this example that after calling f() a
variable 'city' exists in the module namespace and has the value 'Geneva'. This means that the global keyword
in nested functions does not affect the namespace of their enclosing namespace! This is consistent to what we
have found out in the previous subchapter: A variable defined inside of a function is local unless it is explicitly
marked as global. In other words, we can refer to a variable name in any enclosing scope, but we can only
rebind variable names in the local scope by assigning to it or in the module-global scope by using a global
declaration. We need a way to access variables of other scopes as well. The way to do this are nonlocal
definitions, which we will explain in the next chapter.

NONLOCAL VARIABLES

Python3 introduced nonlocal variables as a new kind of variables. nonlocal variables have a lot in common
with global variables. One difference to global variables lies in the fact that it is not possible to change
variables from the module scope, i.e. variables which are not defined inside of a function, by using the
nonlocal statement. We show this in the two following examples:

def f():
global city
print(city)

city = "Frankfurt"
f()

This program is correct and returns 'Frankfurt' as the output. We will change "global" to "nonlocal" in the
following program:

def f():
nonlocal city
print(city)

city = "Frankfurt"
f()

This shows that nonlocal bindings can only be used inside of nested functions. A nonlocal variable has to be
defined in the enclosing function scope. If the variable is not defined in the enclosing function scope, the
variable cannot be defined in the nested scope. This is another difference to the "global" semantics.

Frankfurt

File "<ipython-input-9-97bb311dfb80>", line 2
nonlocal city
^

SyntaxError: no binding for nonlocal 'city' found

GLOBAL, LOCAL AND NONLOCAL VARIABLES 241

def f():
city = "Munich"
def g():

nonlocal city
city = "Zurich"

print("Before calling g: " + city)
print("Calling g now:")
g()
print("After calling g: " + city)

city = "Stuttgart"
f()
print("'city' in main: " + city)

In the previous example the variable 'city' was defined prior to the call of g. We get an error if it isn't defined:

def f():
#city = "Munich"
def g():

nonlocal city
city = "Zurich"

print("Before calling g: " + city)
print("Calling g now:")
g()
print("After calling g: " + city)

city = "Stuttgart"
f()
print("'city' in main: " + city)

The program works fine - with or without the line 'city = "Munich"' inside of f - , if we change "nonlocal" to
"global":

def f():

Before calling g: Munich
Calling g now:
After calling g: Zurich
'city' in main: Stuttgart

File "<ipython-input-11-5417be93b6a6>", line 4
nonlocal city
^

SyntaxError: no binding for nonlocal 'city' found

GLOBAL, LOCAL AND NONLOCAL VARIABLES 242

#city = "Munich"
def g():

global city
city = "Zurich"

print("Before calling g: " + city)
print("Calling g now:")
g()
print("After calling g: " + city)

city = "Stuttgart"
f()
print("'city' in main: " + city)

Yet there is a huge difference: The value of the global x is changed now!

Before calling g: Stuttgart
Calling g now:
After calling g: Zurich
'city' in main: Zurich

GLOBAL, LOCAL AND NONLOCAL VARIABLES 243

D E C O R A T O R S

INTRODUCTION

Decorators belong most probably to the most beautiful and most
powerful design possibilities in Python, but at the same time the
concept is considered by many as complicated to get into. To be
precise, the usage of decorators is very easy, but writing decorators
can be complicated, especially if you are not experienced with
decorators and some functional programming concepts.

Even though it is the same underlying concept, we have two
different kinds of decorators in Python:

• Function decorators
• Class decorators

A decorator in Python is any callable Python object that is used to
modify a function or a class. A reference to a function "func" or a
class "C" is passed to a decorator and the decorator returns a
modified function or class. The modified functions or classes
usually contain calls to the original function "func" or class "C".

You may also consult our chapter on memoization with decorators.

If you like the image on the right side of this page and if you are also interested in image processing with
Python, Numpy, Scipy and Matplotlib, you will definitely like our chapter on Image Processing Techniques, it
explains the whole process of the making-of of our decorator and at sign picture!

FIRST STEPS TO DECORATORS

We know from our various Python training classes that there are some points in the definitions of decorators,
where many beginners get stuck.

Therefore, we will introduce decorators by repeating some important aspects of functions. First you have to
know or remember that function names are references to functions and that we can assign multiple names to
the same function:

def succ(x):
return x + 1

successor = succ
successor(10)

succ(10)

Output: 11

DECORATORS 244

This means that we have two names, i.e. "succ" and "successor" for the same function. The next important fact
is that we can delete either "succ" or "successor" without deleting the function itself.

del succ
successor(10)

FUNCTIONS INSIDE FUNCTIONS

The concept of having or defining functions inside of a function is completely new to C or C++ programmers:

def f():

def g():
print("Hi, it's me 'g'")
print("Thanks for calling me")

print("This is the function 'f'")
print("I am calling 'g' now:")
g()

f()

Another example using "proper" return statements in the functions:

def temperature(t):
def celsius2fahrenheit(x):

return 9 * x / 5 + 32

result = "It's " + str(celsius2fahrenheit(t)) + " degrees!"
return result

print(temperature(20))

Output: 11

Output: 11

This is the function 'f'
I am calling 'g' now:
Hi, it's me 'g'
Thanks for calling me

It's 68.0 degrees!

DECORATORS 245

The following example is about the factorial function, which we previously defined as follows:

def factorial(n):
""" calculates the factorial of n,

n should be an integer and n <= 0 """
if n == 0:

return 1
else:

return n * factorial(n-1)

What happens if someone passes a negative value or a float number to this function? It will never end. You
might get the idea to check that as follows:

def factorial(n):
""" calculates the factorial of n,

n should be an integer and n <= 0 """
if type(n) == int and n >=0:

if n == 0:
return 1

else:
return n * factorial(n-1)

else:
raise TypeError("n has to be a positive integer or zero")

If you call this function with 4 '' for example, i.e. factorial (4) '', the first thing that is checked is
whether it is my positive integer. In principle, this makes sense. The "problem" now appears in the recursion
step. Now factorial (3) '' is called. This call and all others also check
whether it is a positive whole number. But this is unnecessary: If you
subtract the value 1 '' from a positive whole number, you get a positive whole number or `` 0 '' again.
So both well-defined argument values for our function.

With a nested function (local function) one can solve this problem elegantly:

def factorial(n):
""" calculates the factorial of n,

n should be an integer and n <= 0 """
def inner_factorial(n):

if n == 0:
return 1

else:
return n * inner_factorial(n-1)

if type(n) == int and n >=0:
return inner_factorial(n)

DECORATORS 246

else:
raise TypeError("n should be a positve int or 0")

In []:

FUNCTIONS AS PARAMETERS

If you solely look at the previous examples, this doesn't seem to be very useful. It gets useful in combination
with two further powerful possibilities of Python functions. Due to the fact that every parameter of a function
is a reference to an object and functions are objects as well, we can pass functions - or better "references to
functions" - as parameters to a function. We will demonstrate this in the next simple example:

def g():
print("Hi, it's me 'g'")
print("Thanks for calling me")

def f(func):
print("Hi, it's me 'f'")
print("I will call 'func' now")
func()

f(g)

You may not be satisfied with the output. 'f' should write that it calls 'g' and not 'func'. Of course, we need to
know what the 'real' name of func is. For this purpose, we can use the attribute __name__ , as it contains
this name:

def g():
print("Hi, it's me 'g'")
print("Thanks for calling me")

def f(func):
print("Hi, it's me 'f'")
print("I will call 'func' now")
func()
print("func's real name is " + func.__name__)

f(g)

Hi, it's me 'f'
I will call 'func' now
Hi, it's me 'g'
Thanks for calling me

DECORATORS 247

The output explains what's going on once more. Another example:

import math
def foo(func):

print("The function " + func.__name__ + " was passed to foo")
res = 0
for x in [1, 2, 2.5]:

res += func(x)
return res

print(foo(math.sin))
print(foo(math.cos))

FUNCTIONS RETURNING FUNCTIONS

The output of a function is also a reference to an object. Therefore functions can return references to function
objects.

def f(x):
def g(y):

return y + x + 3
return g

nf1 = f(1)
nf2 = f(3)

print(nf1(1))
print(nf2(1))

Hi, it's me 'f'
I will call 'func' now
Hi, it's me 'g'
Thanks for calling me
func's real name is g

The function sin was passed to foo
2.3492405557375347
The function cos was passed to foo
-0.6769881462259364

5
7

DECORATORS 248

The previous example looks very artificial and absolutely useless. We will present now another language
oriented example, which shows a more practical touch. Okay, still not a function which is useful the way it is.
We write a function with the nearly self-explanatory name greeting_func_gen . So this function returns
(or generates) functions which can be used to create people in different languages, i.e. German, French,
Italian, Turkish, and Greek:

def greeting_func_gen(lang):
def customized_greeting(name):

if lang == "de": # German
phrase = "Guten Morgen "

elif lang == "fr": # French
phrase = "Bonjour "

elif lang == "it": # Italian
phrase = "Buongiorno "

elif lang == "tr": # Turkish
phrase = "Günaydın "

elif lang == "gr": # Greek
phrase = "Καλημερα "

else:
phrase = "Hi "

return phrase + name + "!"
return customized_greeting

say_hi = greeting_func_gen("tr")
print(say_hi("Gülay")) # this Turkish name means "rose moon" b
y the way

It is getting more useful and at the same time more mathematically oriented in the following example. We will
implement a polynomial "factory" function now. We will start with writing a version which can create
polynomials of degree 2.

p(x) = ax2 + bx + c

The Python implementation as a polynomial factory function can be written like this:

def polynomial_creator(a, b, c):
def polynomial(x):

return a * x**2 + b * x + c
return polynomial

p1 = polynomial_creator(2, 3, -1)
p2 = polynomial_creator(-1, 2, 1)

Günaydın Gülay!

DECORATORS 249

for x in range(-2, 2, 1):
print(x, p1(x), p2(x))

We can generalize our factory function so that it can work for polynomials of arbitrary degree:

n

∑
k = 0

ak ⋅ xk = an ⋅ xn + an − 1 ⋅ xn − 1 + . . . + a2 ⋅ x2 + a1 ⋅ x + a0

def polynomial_creator(*coefficients):
""" coefficients are in the form a_n, ... a_1, a_0
"""
def polynomial(x):

res = 0
for index, coeff in enumerate(coefficients[::-1]):

res += coeff * x** index
return res

return polynomial

p1 = polynomial_creator(4)
p2 = polynomial_creator(2, 4)
p3 = polynomial_creator(1, 8, -1, 3, 2)
p4 = polynomial_creator(-1, 2, 1)

for x in range(-2, 2, 1):
print(x, p1(x), p2(x), p3(x), p4(x))

The function p3 implements, for example, the following polynomial:

p3(x) = x4 + 8 ⋅ x3 − x2 + 3 ⋅ x + 2

The polynomial function inside of our decorator polynomial_creator can be implemented more efficiently. We

-2 1 -7
-1 -2 -2
0 -1 1
1 4 2

-2 4 0 -56 -7
-1 4 2 -9 -2
0 4 4 2 1
1 4 6 13 2

DECORATORS 250

can factorize it in a way so that it doesn't need any exponentiation.

Factorized version of a general polynomial without exponentiation:

res = (. . . (an ⋅ x + an − 1) ⋅ x + . . . + a1) ⋅ x + a0

Implementation of our polynomial creator decorator avoiding exponentiation:

def polynomial_creator(*coeffs):
""" coefficients are in the form a_n, a_n_1, ... a_1, a_0
"""
def polynomial(x):

res = coeffs[0]
for i in range(1, len(coeffs)):

res = res * x + coeffs[i]
return res

return polynomial

p1 = polynomial_creator(4)
p2 = polynomial_creator(2, 4)
p3 = polynomial_creator(1, 8, -1, 3, 2)
p4 = polynomial_creator(-1, 2, 1)

for x in range(-2, 2, 1):
print(x, p1(x), p2(x), p3(x), p4(x))

If you want to learn more about polynomials and how to create a polynomial class, you can continue with our
chapter on Polynomials.

A SIMPLE DECORATOR

Now we have everything ready to define our first simple decorator:

def our_decorator(func):
def function_wrapper(x):

print("Before calling " + func.__name__)
func(x)

-2 4 0 -56 -7
-1 4 2 -9 -2
0 4 4 2 1
1 4 6 13 2

DECORATORS 251

https://www.python-course.eu/polynomial_class_in_python.php

print("After calling " + func.__name__)
return function_wrapper

def foo(x):
print("Hi, foo has been called with " + str(x))

print("We call foo before decoration:")
foo("Hi")

print("We now decorate foo with f:")
foo = our_decorator(foo)

print("We call foo after decoration:")
foo(42)

If you look at the output of the previous program, you can see what's going on. After the decoration "foo =
our_decorator(foo)", foo is a reference to the 'function_wrapper'. 'foo' will be called inside of
'function_wrapper', but before and after the call some additional code will be executed, i.e. in our case two
print functions.

THE USUAL SYNTAX FOR DECORATORS IN PYTHON

The decoration in Python is usually not performed in the way we did it in our previous example, even though
the notation foo = our_decorator(foo) is catchy and easy to grasp. This is the reason, why we used
it! You can also see a design problem in our previous approach. "foo" existed in the same program in two
versions, before decoration and after decoration.

We will do a proper decoration now. The decoration occurrs in the line before the function header. The "@" is
followed by the decorator function name.

We will rewrite now our initial example. Instead of writing the statement

foo = our_decorator(foo)

we can write

@our_decorator

But this line has to be directly positioned in front of the decorated function. The complete example looks like

We call foo before decoration:
Hi, foo has been called with Hi
We now decorate foo with f:
We call foo after decoration:
Before calling foo
Hi, foo has been called with 42
After calling foo

DECORATORS 252

this now:

def our_decorator(func):
def function_wrapper(x):

print("Before calling " + func.__name__)
func(x)
print("After calling " + func.__name__)

return function_wrapper

@our_decorator
def foo(x):

print("Hi, foo has been called with " + str(x))

foo("Hi")

We can decorate every other function which takes one parameter with our decorator 'our_decorator'. We
demonstrate this in the following. We have slightly changed our function wrapper, so that we can see the result
of the function calls:

def our_decorator(func):
def function_wrapper(x):

print("Before calling " + func.__name__)
res = func(x)
print(res)
print("After calling " + func.__name__)

return function_wrapper

@our_decorator
def succ(n):

return n + 1

succ(10)

It is also possible to decorate third party functions, e.g. functions we import from a module. We can't use the
Python syntax with the "at" sign in this case:

from math import sin, cos

Before calling foo
Hi, foo has been called with Hi
After calling foo

Before calling succ
11
After calling succ

DECORATORS 253

def our_decorator(func):
def function_wrapper(x):

print("Before calling " + func.__name__)
res = func(x)
print(res)
print("After calling " + func.__name__)

return function_wrapper

sin = our_decorator(sin)
cos = our_decorator(cos)

for f in [sin, cos]:
f(3.1415)

All in all, we can say that a decorator in Python is a callable Python object that is used to modify a function,
method or class definition. The original object, the one which is going to be modified, is passed to a decorator
as an argument. The decorator returns a modified object, e.g. a modified function, which is bound to the name
used in the definition.

The previous function_wrapper works only for functions with exactly one parameter. We provide a
generalized version of the function_wrapper, which accepts functions with arbitrary parameters in the
following example:

from random import random, randint, choice

def our_decorator(func):
def function_wrapper(*args, **kwargs):

print("Before calling " + func.__name__)
res = func(*args, **kwargs)
print(res)
print("After calling " + func.__name__)

return function_wrapper

random = our_decorator(random)
randint = our_decorator(randint)
choice = our_decorator(choice)

Before calling sin
9.265358966049026e-05
After calling sin
Before calling cos
-0.9999999957076562
After calling cos

DECORATORS 254

random()
randint(3, 8)
choice([4, 5, 6])

USE CASES FOR DECORATORS

CHECKING ARGUMENTS WITH A DECORATOR

In our chapter about recursive functions we introduced the factorial function. We wanted to keep the function
as simple as possible and we didn't want to obscure the underlying idea, so we didn't incorporate any argument
checks. So, if somebody called our function with a negative argument or with a float argument, our function
would get into an endless loop.

The following program uses a decorator function to ensure that the argument passed to the function factorial is
a positive integer:

def argument_test_natural_number(f):
def helper(x):

if type(x) == int and x > 0:
return f(x)

else:
raise Exception("Argument is not an integer")

return helper

@argument_test_natural_number
def factorial(n):

if n == 1:
return 1

else:
return n * factorial(n-1)

for i in range(1,10):
print(i, factorial(i))

print(factorial(-1))

Before calling random
0.3206237466802222
After calling random
Before calling randint
6
After calling randint
Before calling choice
5
After calling choice

DECORATORS 255

COUNTING FUNCTION CALLS WITH DECORATORS

The following example uses a decorator to count the number of times a function has been called. To be
precise, we can use this decorator solely for functions with exactly one parameter:

def call_counter(func):
def helper(x):

helper.calls += 1
return func(x)

helper.calls = 0

return helper

@call_counter
def succ(x):

return x + 1

print(succ.calls)
for i in range(10):

1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

Exception Traceback (most recent call last)
<ipython-input-18-25b69b5bbe5f> in <module>

17 print(i, factorial(i))
18

---> 19 print(factorial(-1))

<ipython-input-18-25b69b5bbe5f> in helper(x)
4 return f(x)
5 else:

----> 6 raise Exception("Argument is not an integer")
7 return helper
8

Exception: Argument is not an integer

DECORATORS 256

succ(i)

print(succ.calls)

We pointed out that we can use our previous decorator only for functions, which take exactly one parameter.
We will use the *args and **kwargs notation to write decorators which can cope with functions with an
arbitrary number of positional and keyword parameters.

def call_counter(func):
def helper(*args, **kwargs):

helper.calls += 1
return func(*args, **kwargs)

helper.calls = 0

return helper

@call_counter
def succ(x):

return x + 1

@call_counter
def mul1(x, y=1):

return x*y + 1

print(succ.calls)
for i in range(10):

succ(i)
mul1(3, 4)
mul1(4)
mul1(y=3, x=2)

print(succ.calls)
print(mul1.calls)

DECORATORS WITH PARAMETERS

We define two decorators in the following code:

0
10

0
10
3

DECORATORS 257

def evening_greeting(func):
def function_wrapper(x):

print("Good evening, " + func.__name__ + " returns:")
return func(x)

return function_wrapper

def morning_greeting(func):
def function_wrapper(x):

print("Good morning, " + func.__name__ + " returns:")
return func(x)

return function_wrapper

@evening_greeting
def foo(x):

print(42)

foo("Hi")

These two decorators are nearly the same, except for the greeting. We want to add a parameter to the decorator
to be capable of customizing the greeting, when we do the decoration. We have to wrap another function
around our previous decorator function to accomplish this. We can now easily say "Good Morning" in Greek:

def greeting(expr):
def greeting_decorator(func):

def function_wrapper(x):
print(expr + ", " + func.__name__ + " returns:")
func(x)

return function_wrapper
return greeting_decorator

@greeting("καλημερα")
def foo(x):

print(42)

foo("Hi")

If we don't want or cannot use the "at" decorator syntax, we can do it with function calls:

Good evening, foo returns:
42

καλημερα, foo returns:
42

DECORATORS 258

def greeting(expr):
def greeting_decorator(func):

def function_wrapper(x):
print(expr + ", " + func.__name__ + " returns:")
return func(x)

return function_wrapper
return greeting_decorator

def foo(x):
print(42)

greeting2 = greeting("καλημερα")
foo = greeting2(foo)
foo("Hi")

Of course, we don't need the additional definition of "greeting2". We can directly apply the result of the call
"greeting("καλημερα")" on "foo":

foo = greeting("καλημερα")(foo)

USING WRAPS FROM FUNCTOOLS

The way we have defined decorators so far hasn't taken into account that the attributes

• __name__ (name of the function),
• __doc__ (the docstring) and
• __module__ (The module in which the function is defined)

of the original functions will be lost after the decoration.

The following decorator will be saved in a file greeting_decorator.py:

def greeting(func):
def function_wrapper(x):

""" function_wrapper of greeting """
print("Hi, " + func.__name__ + " returns:")
return func(x)

return function_wrapper

καλημερα, foo returns:
42

DECORATORS 259

We call it in the following program:

from greeting_decorator import greeting

@greeting
def f(x):

""" just some silly function """
return x + 4

f(10)
print("function name: " + f.__name__)
print("docstring: " + f.__doc__)
print("module name: " + f.__module__)

We get the "unwanted" results above.

We can save the original attributes of the function f, if we assign them inside of the decorator. We change our
previous decorator accordingly and save it as greeting_decorator_manually.py:

def greeting(func):
def function_wrapper(x):

""" function_wrapper of greeting """
print("Hi, " + func.__name__ + " returns:")
return func(x)
function_wrapper.__name__ = func.__name__
function_wrapper.__doc__ = func.__doc__
function_wrapper.__module__ = func.__module__
return function_wrapper

In our main program, all we have to do is change the import statement.

from greeting_decorator_manually import greeting

Fortunately, we don't have to add all this code to our decorators to have these results. We can import the
decorator "wraps" from functools instead and decorate our function in the decorator with it:

from functools import wraps

Hi, f returns:
function name: function_wrapper
docstring: function_wrapper of greeting
module name: greeting_decorator

DECORATORS 260

def greeting(func):
@wraps(func)
def function_wrapper(x):

""" function_wrapper of greeting """
print("Hi, " + func.__name__ + " returns:")
return func(x)

return function_wrapper

CLASSES INSTEAD OF FUNCTIONS

THE CALL METHOD

So far we used functions as decorators. Before we can define a decorator as a class, we have to introduce the
__call__ method of classes. We mentioned already that a decorator is simply a callable object that takes a

function as an input parameter. A function is a callable object, but lots of Python programmers don't know that
there are other callable objects. A callable object is an object which can be used and behaves like a function
but might not be a function. It is possible to define classes in a way that the instances will be callable objects.
The __call__ method is called, if the instance is called "like a function", i.e. using brackets.

class A:
def __init__(self):

print("An instance of A was initialized")

def __call__(self, *args, **kwargs):
print("Arguments are:", args, kwargs)

x = A()
print("now calling the instance:")
x(3, 4, x=11, y=10)
print("Let's call it again:")
x(3, 4, x=11, y=10)

We can write a class for the fibonacci function by using the __call__ method:

class Fibonacci:
def __init__(self):

An instance of A was initialized
now calling the instance:
Arguments are: (3, 4) {'x': 11, 'y': 10}
Let's call it again:
Arguments are: (3, 4) {'x': 11, 'y': 10}

DECORATORS 261

self.cache = {}

def __call__(self, n):
if n not in self.cache:

if n == 0:
self.cache[0] = 0

elif n == 1:
self.cache[1] = 1

else:
self.cache[n] = self.__call__(n-1) + self.__cal

l__(n-2)
return self.cache[n]

fib = Fibonacci()

for i in range(15):
print(fib(i), end=", ")

You can find further information on the __call__ method in the chapter Magic Functions of our tutorial.

USING A CLASS AS A DECORATOR

We will rewrite the following decorator as a class:

def decorator1(f):
def helper():

print("Decorating", f.__name__)
f()

return helper

@decorator1
def foo():

print("inside foo()")

foo()

The following decorator implemented as a class does the same "job":

class decorator2:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,

Decorating foo
inside foo()

DECORATORS 262

https://www.python-course.eu/python3_magic_methods.php

def __init__(self, f):
self.f = f

def __call__(self):
print("Decorating", self.f.__name__)
self.f()

@decorator2
def foo():

print("inside foo()")

foo()

Both versions return the same output.

Decorating foo
inside foo()

DECORATORS 263

M E M O I Z A T I O N W I T H
D E C O R A T O R S

DEFINITION OF MEMOIZATION

The term "memoization" was introduced by Donald Michie in the
year 1968. It's based on the Latin word memorandum, meaning "to
be remembered". It's not a misspelling of the word memorization,
though in a way it has something in common. Memoisation is a
technique used in computing to speed up programs. This is
accomplished by memorizing the calculation results of processed
input such as the results of function calls. If the same input or a
function call with the same parameters is used, the previously
stored results can be used again and unnecessary calculation are
avoided. In many cases a simple array is used for storing the
results, but lots of other structures can be used as well, such as
associative arrays, called hashes in Perl or dictionaries in Python.

Memoization can be explicitly programmed by the programmer, but some programming languages like Python
provide mechanisms to automatically memoize functions.

MEMOIZATION WITH FUNCTION DECORATORS

You may consult our chapter on decorators as well. Especially, if you may have problems in understanding our
reasoning.

In our previous chapter about recursive functions, we worked out an iterative and a recursive version to
calculate the Fibonacci numbers. We have shown that a direct implementation of the mathematical definition
into a recursive function like the following has an exponential runtime behaviour:

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1) + fib(n-2)

We also presented a way to improve the runtime behaviour of the recursive version by adding a dictionary to
memorize previously calculated values of the function. This is an example of explicitly using the technique of
memoization, but we didn't call it like this. The disadvantage of this method is that the clarity and the beauty
of the original recursive implementation is lost.

MEMOIZATION WITH DECORATORS 264

The "problem" is that we changed the code of the recursive fib function. The following code doesn't change
our fib function, so that its clarity and legibility isn't touched. To this purpose, we define and use a function
which we call memoize. memoize() takes a function as an argument. The function memoize uses a dictionary
"memo" to store the function results. Though the variable "memo" as well as the function "f" are local to
memoize, they are captured by a closure through the helper function which is returned as a reference by
memoize(). So, the call memoize(fib) returns a reference to the helper() which is doing what fib() would do on
its own plus a wrapper which saves the calculated results. For an integer 'n' fib(n) will only be called, if n is
not in the memo dictionary. If it is in it, we can output memo[n] as the result of fib(n).

def memoize(f):
memo = {}
def helper(x):

if x not in memo:
memo[x] = f(x)

return memo[x]
return helper

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1) + fib(n-2)

fib = memoize(fib)

print(fib(40))

Let's look at the line in our code where we call memoize with fib as the argument:

fib = memoize(fib)

Doing this, we turn memoize into a decorator. One says that the fib function is decorated by the memoize()
function. We will illustrate with the following diagrams how the decoration is accomplished. The first diagram
illustrates the state before the decoration, i.e. before we call fib = memoize(fib). We can see the function
names referencing their bodies:

102334155

MEMOIZATION WITH DECORATORS 265

After having executed fib = memoize(fib) fib points to the
body of the helper function, which had been returned by
memoize. We can also perceive that the code of the
original fib function can only be reached via the "f"
function of the helper function from now on. There is no
other way anymore to call the original fib directly, i.e.
there is no other reference to it. The decorated Fibonacci
function is called in the return statement return fib(n-1) +
fib(n-2), this means the code of the helper function which
had been returned by memoize:

Another point in the context of decorators
deserves special attention: We don't
usually write a decorator for just one use
case or function. We rather use it multiple
times for different functions. So we could
imagine having further functions func1,
func2, func3 and so on, which consume
also a lot of time. Therefore, it makes
sense to decorate each one with our
decorator function "memoize":

fib = memoize(fib)
func1 = memoize(func1)
func2 = memoize(func2)
func3 = memoize(func3)
and so on

We haven't used the Pythonic way of
writing a decorator. Instead of writing the
statement

fib = memoize(fib)

we should have "decorated" our fib
function with:

@memoize

But this line has to be directly in front of the decorated function, in our example fib(). The complete example
in a Pythonic way looks like this now:

def memoize(f):
memo = {}
def helper(x):

if x not in memo:
memo[x] = f(x)

return memo[x]

MEMOIZATION WITH DECORATORS 266

return helper

@memoize
def fib(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fib(n-1) + fib(n-2)

print(fib(40))

USING A CALLABLE CLASS FOR MEMOIZATION

This subchapter can be skipped without problems by those who don't know about object orientation so far.

We can encapsulate the caching of the results in a class as well, as you can see in the following example:

class Memoize:
def __init__(self, fn):

self.fn = fn
self.memo = {}

def __call__(self, *args):
if args not in self.memo:

self.memo[args] = self.fn(*args)
return self.memo[args]

@Memoize
def fib(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fib(n-1) + fib(n-2)

print(fib(40))

As we are using a dictionary, we can't use mutable arguments, i.e. the arguments have to be immutable.

102334155

102334155

MEMOIZATION WITH DECORATORS 267

EXERCISE

• Our exercise is an old riddle, going back to 1612. The French
Jesuit Claude-Gaspar Bachet phrased it. We have to weigh
quantities (e.g. sugar or flour) from 1 to 40 pounds. What is
the least number of weights that can be used on a balance
scale to way any of these quantities?

The first idea might be to use weights of 1, 2, 4, 8, 16 and 32 pounds. This
is a minimal number, if we restrict ourself to put weights on one side and
the stuff, e.g. the sugar, on the other side. But it is possible to put weights
on both pans of the scale. Now, we need only four weights, i.e. 1, 3, 9, 27

Write a Python function weigh(), which calculates the weights needed and their distribution on the pans to
weigh any amount from 1 to 40.

SOLUTION

We need the function linear_combination() from our chapter Linear Combinations.

def factors_set():
for i in [-1, 0, 1]:

for j in [-1,0,1]:
for k in [-1,0,1]:

for l in [-1,0,1]:
yield (i, j, k, l)

def memoize(f):
results = {}
def helper(n):

if n not in results:
results[n] = f(n)

return results[n]
return helper

@memoize
def linear_combination(n):

""" returns the tuple (i,j,k,l) satisfying
n = i*1 + j*3 + k*9 + l*27 """

weighs = (1,3,9,27)

for factors in factors_set():
sum = 0
for i in range(len(factors)):

MEMOIZATION WITH DECORATORS 268

https://www.python-course.eu/linear_combinations.php

sum += factors[i] * weighs[i]
if sum == n:

return factors

With this, it is easy to write our function weigh().

def weigh(pounds):
weights = (1, 3, 9, 27)
scalars = linear_combination(pounds)
left = ""
right = ""
for i in range(len(scalars)):

if scalars[i] == -1:
left += str(weights[i]) + " "

elif scalars[i] == 1:
right += str(weights[i]) + " "

return (left,right)

for i in [2, 3, 4, 7, 8, 9, 20, 40]:
pans = weigh(i)
print("Left pan: " + str(i) + " plus " + pans[0])
print("Right pan: " + pans[1] + "\n")

MEMOIZATION WITH DECORATORS 269

Left pan: 2 plus 1
Right pan: 3

Left pan: 3 plus
Right pan: 3

Left pan: 4 plus
Right pan: 1 3

Left pan: 7 plus 3
Right pan: 1 9

Left pan: 8 plus 1
Right pan: 9

Left pan: 9 plus
Right pan: 9

Left pan: 20 plus 1 9
Right pan: 3 27

Left pan: 40 plus
Right pan: 1 3 9 27

MEMOIZATION WITH DECORATORS 270

F I L E M A N A G E M E N T

FILES IN GENERAL

It's hard to find anyone in the 21st century, who doesn't
know what a file is. When we say file, we mean of course,
a file on a computer. There may be people who don't know
anymore the "container", like a cabinet or a folder, for
keeping papers archived in a convenient order. A file on a
computer is the modern counterpart of this. It is a
collection of information, which can be accessed and used
by a computer program. Usually, a file resides on a durable
storage. Durable means that the data is persistent, i.e. it
can be used by other programs after the program which
has created or manipulated it, has terminated.

The term file management in the context of computers refers to the manipulation of data in a file or files and
documents on a computer. Though everybody has an understanding of the term file, we present a formal
definition anyway:

A file or a computer file is a chunk of logically related data or information which can be used by computer
programs. Usually a file is kept on a permanent storage media, e.g. a hard drive disk. A unique name and path
is used by human users or in programs or scripts to access a file for reading and modification purposes.

The term "file" - as we have described it in the previous paragraph - appeared in the history of computers very
early. Usage can be tracked down to the year 1952, when punch cards where used.

A programming language without the capability to store and retrieve previously stored information would be
hardly useful.

The most basic tasks involved in file manipulation are reading data from files and writing or appending data to
files.

READING AND WRITING FILES IN PYTHON

The syntax for reading and writing files in Python is similar to programming languages like C, C++, Java,
Perl, and others but a lot easier to handle.

We will start with writing a file. We have a string which contains part of the definition of a general file from
Wikipedia:

definition = """
A computer file is a computer resource for recording data discrete
ly in a
computer storage device. Just as words can be written
to paper, so can information be written to a computer

FILE MANAGEMENT 271

file. Files can be edited and transferred through the
internet on that particular computer system."""

We will write this into a file with the name file_definition.txt :

open("file_definition.txt", "w").write(definition)

If you check in your file browser, you will see a file with this name. The file will look like this:
file_definition.txt

We successfully created and have written to a text file. Now, we want to see how to read this file from Python.
We can read the whole text file into one string, as you can see in the following code:

text = open("file_definition.txt").read()

If you call print(text) , you will see the text from above again.

Reading in a text file in one string object is okay, as long as the file is not too large. If a file is large, wwe can
read in the file line by line. We demonstrate how this can be achieved in the following example with a small
file:

with open("ad_lesbiam.txt", "r") as fh:
for line in fh:

print(line.strip())

Output: 283

V. ad Lesbiam

VIVAMUS mea Lesbia, atque amemus,
rumoresque senum severiorum
omnes unius aestimemus assis!
soles occidere et redire possunt:
nobis cum semel occidit breuis lux,
nox est perpetua una dormienda.
da mi basia mille, deinde centum,
dein mille altera, dein secunda centum,
deinde usque altera mille, deinde centum.
dein, cum milia multa fecerimus,
conturbabimus illa, ne sciamus,
aut ne quis malus inuidere possit,
cum tantum sciat esse basiorum.
(GAIUS VALERIUS CATULLUS)

FILE MANAGEMENT 272

https://www.python-course.eu/file_definition.txt

Some people don't use the with statement to read or write files. This is not a good idea. The code above
without with looks like this:

fh = open("ad_lesbiam.txt")
for line in fh:

print(line.strip())
fh.close()

A striking difference between both implementation consists in the usage of close . If we use with , we do
not have to explicitly close the file. The file will be closed automatically, when the with blocks ends. Without
with , we have to explicitly close the file, like in our second example with fh.close() . There is a more

important difference between them: If an exception occurs inside of the ẁith block, the file will be closed.
If an exception occurs in the variant without with before the close , the file will not be closed. This
means, you should alwawys use the with statement.

We saw already how to write into a file with "write". The following code is an example, in which we show
how to read in from one file line by line, change the lines and write the changed content into another file. The
file can be downloaded: pythonista_and_python.txt:

with open("pythonista_and_python.txt") as infile:
with open("python_newbie_and_the_guru.txt", "w") as outfile:

for line in infile:
line = line.replace("Pythonista", "Python newbie")
line = line.replace("Python snake", "Python guru")
print(line.rstrip())
write the line into the file:
outfile.write(line)

As we have already mentioned: If a file is not to large and if we have to do replacements like we did in the
previous example, we wouldn't read in and write out the file line by line. It is much better to use the
read method, which returns a string containing the complete content of the file, including the carriage

returns and line feeds. We can apply the changes to this string and save it into the new file. Working like this,
there is no need for a with construct, because there will be no reference to the file, i.e. it will be
immediately deleted afeter reading and writing:

txt = open("pythonista_and_python.txt").read()

A blue Python newbie, green behind the ears, went to Pythonia.
She wanted to visit the famous wise green Python guru.
She wanted to ask her about the white way to avoid the black.
The bright path to program in a yellow, green, or blue style.
The green Python turned red, when she addressed her.
The Python newbie turned yellow in turn.
After a long but not endless loop the wise Python uttered:
"The rainbow!"

FILE MANAGEMENT 273

https://www.python-course.eu/pythonista_and_python.txt

txt = txt.replace("Pythonista", "Python newbie")
txt = txt.replace("Python snake", "Python guru")
open("python_newbie_and_the_guru.txt", "w").write(txt)
;

RESETTING THE FILES CURRENT POSITION

It's possible to set - or reset - a file's position to a certain position, also called the offset. To do this, we use the
method seek . The parameter of seek determines the offset which we want to set the current position to. To
work with seek , we will often need the method tell which "tells" us the current position. When we
have just opened a file, it will be zero. Before we demonstrate the way of working of both seek and
tell , we create a simple file on which we will perform our commands:

open("small_text.txt", "w").write("brown is her favorite colour")
;

The method tell returns the current stream position, i.e. the position where we will continue, when we use
a "read", "readline" or so on:

fh = open("small_text.txt")
fh.tell()

Zero tells us that we are positioned at the first character of the file.

We will read now the next five characters of the file:

fh.read(5)

Using tell again, shows that we are located at position 5:

fh.tell()

Using read without parameters will read the remainder of the file starting from this position:

Output: ''

Output: ''

Output: 0

Output: 'brown'

Output: 5

FILE MANAGEMENT 274

fh.read()

Using tell again, tells us about the position after the last character of the file. This number corresponds to
the number of characters of the file!

fh.tell()

With seek we can move the position to an arbitrary place in the file. The method seek takes two
parameters:

fh.seek(offset, startpoint_for_offset)

where fh is the file pointer, we are working with. The parameter offset specifies how many positions the
pointer will be moved. The question is from which position should the pointer be moved. This position is
specified by the second parameter startpoint_for_offset . It can have the follwoing values:

0: reference point is the beginning of the file
1: reference point is the current file position
2: reference point is the end of the file

if the startpoint_for_offset parameter is not given, it defaults to 0.

WARNING: The values 1 and 2 for the second parameter work only, if the file has been opened for binary
reading. We will cover this later!

The following examples, use the default behaviour:

fh.seek(13)
print(fh.tell()) # just to show you, what seek did!
fh.read() # reading the remainder of the file

It is also possible to move the position relative to the current position. If we want to move k characters to the
right, we can just set the argument of seek to fh.tell() + k

k = 6
fh.seek(5) # setting the position to 5
fh.seek(fh.tell() + k) # moving k positions to the right

Output: ' is her favorite colour'

Output: 28

13
Output: 'favorite colour'

FILE MANAGEMENT 275

print("We are now at position: ", fh.tell())

seek doesn't like negative arguments for the position. On the other hand it doesn't matter, if the value for
the position is larger than the length of the file. We define a function in the following, which will set the
position to zero, if a negative value is applied. As there is no efficient way to check the length of a file and
because it doesn't matter, if the position is greater than the length of the file, we will keep possible values
greater than the length of a file.

def relative_seek(fp, k):
""" rel_seek moves the position of the file pointer k characte

rs to
the left (k<0) or right (k>0)
"""
position = fp.tell() + k
if position < 0:

position = 0
fh.seek(position)

with open("small_text.txt") as fh:
print(fh.tell())
relative_seek(fh, 7)
print(fh.tell())
relative_seek(fh, -5)
print(fh.tell())
relative_seek(fh, -10)
print(fh.tell())

You might have thought, when we wrote the function relative_seek why do we not use the second
parameter of seek . After all the help file says "1 -- current stream position;". What the help file doesn't say
is the fact that seek needs a file pointer opened with "br" (binary read), if the second parameter is set to 1 or
2. We show this in the next subchapter.

BINARY READ

So far we have only used the first parameter of open , i.e. the filename. The second parameter is optional
and is set to "r" (read) by default. "r" means that the file is read in text mode. In text mode, if encoding

We are now at position: 11

0
7
2
0

FILE MANAGEMENT 276

(another parameter of open) is not specified the encoding used is platform dependent:
locale.getpreferredencoding(False) is called to get the current locale encoding.

The second parameter specifies the mode of access to the file or in other words the mode in which the file is
opened. Files opened in binary mode (appending 'b' to the mode argument) return contents as bytes objects
without any decoding.

We will demonstrate this in the following example. To demonstrate the different effects we need a string
which uses characters which are not included in standard ASCII. This is why we use a Turkish text, because it
uses many special characters and Umlaute. the English translation means "See you, I'll come tomorrow.".

We will write a file with the Turkish text "Görüşürüz, yarın geleceğim.":

txt = "Görüşürüz, yarın geleceğim."
number_of_chars_written = open("see_you_tomorrow.txt", "w").writ
e(txt)

We will read in this files in text mode and binary mode to demonstrate the differences:

text = open("see_you_tomorrow.txt", "r").read()
print("text mode: ", text)
text_binary = open("see_you_tomorrow.txt", "rb").read()
print("binary mode: ", text_binary)

In binary mode, the characters which are not plain ASCII like "ö", "ü", "ş", "ğ" and "ı" are represented by
more than one byte. In our case by two characters. 14 bytes are needed for "görüşürüz":

text_binary[:14]

"ö" for example consists of the two bytes "\xc3" and "\xb6".

text[:9]

There are two ways to turn a byte string into a string again:

t = text_binary.decode("utf-8")

text mode: Görüşürüz, yarın geleceğim.
binary mode: b'G\xc3\xb6r\xc3\xbc\xc5\x9f\xc3\xbcr\xc3\xbcz, yar\
xc4\xb1n gelece\xc4\x9fim.'

Output: b'G\xc3\xb6r\xc3\xbc\xc5\x9f\xc3\xbcr\xc3\xbcz'

Output: 'Görüşürüz'

FILE MANAGEMENT 277

print(t)
t2 = str(text_binary, "utf-8")
print(t2)

It is possible to use the values "1" and "2" for the second parameter of seek , if we open a file in binary
format:

with open("see_you_tomorrow.txt", "rb") as fh:
x = fh.read(14)
print(x)
move 5 bytes to the right from the current position:
fh.seek(5, 1)
x = fh.read(3)
print(x)
print(str(x, "utf-8"))
let's move to the 8th byte from the right side of the byte s

tring:
fh.seek(-8, 2)
x = fh.read(5)
print(x)
print(str(x, "utf-8"))

READ AND WRITE TO THE SAME FILE

In the following example we will open a file for reading and writing at the same time. If the file doesn't exist,
it will be created. If you want to open an existing file for read and write, you should better use "r+", because
this will not delete the content of the file.

fh = open('colours.txt', 'w+')
fh.write('The colour brown')

#Go to the 12th byte in the file, counting starts with 0
fh.seek(11)
print(fh.read(5))
print(fh.tell())
fh.seek(11)

Görüşürüz, yarın geleceğim.
Görüşürüz, yarın geleceğim.

b'G\xc3\xb6r\xc3\xbc\xc5\x9f\xc3\xbcr\xc3\xbcz'
b'\xc4\xb1n'
ın
b'ece\xc4\x9f'
eceğ

FILE MANAGEMENT 278

fh.write('green')
fh.seek(0)
content = fh.read()
print(content)

"HOW TO GET INTO A PICKLE"

We don't really mean what the header says. On the contrary, we want to prevent any
nasty situation, like losing the data, which your Python program has calculated. So,
we will show you, how you can save your data in an easy way that you or better
your program can reread them at a later date again. We are "pickling" the data, so
that nothing gets lost.

Python offers a module for this purpose, which is called "pickle". With the
algorithms of the pickle module we can serialize and de-serialize Python object
structures. "Pickling" denotes the process which converts a Python object hierarchy
into a byte stream, and "unpickling" on the other hand is the inverse operation, i.e.
the byte stream is converted back into an object hierarchy. What we call pickling (and unpickling) is also
known as "serialization" or "flattening" a data structure.

An object can be dumped with the dump method of the pickle module:

pickle.dump(obj, file[,protocol, *, fix_imports=True])

dump() writes a pickled representation of obj to the open file object file. The optional protocol argument tells
the pickler to use the given protocol:

• Protocol version 0 is the original (before Python3) human-readable (ascii) protocol and is
backwards compatible with previous versions of Python.

• Protocol version 1 is the old binary format which is also compatible with previous versions of
Python.

• Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of
new-style classes.

• Protocol version 3 was introduced with Python 3.0. It has explicit support for bytes and cannot
be unpickled by Python 2.x pickle modules. It's the recommended protocol of Python 3.x.

The default protocol of Python3 is 3.

If fix_imports is True and protocol is less than 3, pickle will try to map the new Python3 names to the old
module names used in Python2, so that the pickle data stream is readable with Python 2.

Objects which have been dumped to a file with pickle.dump can be reread into a program by using the method
pickle.load(file). pickle.load recognizes automatically, which format had been used for writing the data. A
simple example:

brown
16
The colour green

FILE MANAGEMENT 279

import pickle

cities = ["Paris", "Dijon", "Lyon", "Strasbourg"]
fh = open("data.pkl", "bw")
pickle.dump(cities, fh)
fh.close()

The file data.pkl can be read in again by Python in the same or another session or by a different program:

import pickle
f = open("data.pkl", "rb")
villes = pickle.load(f)
print(villes)
['Paris', 'Dijon', 'Lyon', 'Strasbourg']

Only the objects and not their names are saved. That's why we use the assignment to villes in the previous
example, i.e. data = pickle.load(f).

In our previous example, we had pickled only one object, i.e. a list of French cities. But what about pickling
multiple objects? The solution is easy: We pack the objects into another object, so we will only have to pickle
one object again. We will pack two lists "programming_languages" and "python_dialects" into a list
pickle_objects in the following example:

import pickle
fh = open("data.pkl","bw")
programming_languages = ["Python", "Perl", "C++", "Java", "Lisp"]
python_dialects = ["Jython", "IronPython", "CPython"]
pickle_object = (programming_languages, python_dialects)
pickle.dump(pickle_object,fh)
fh.close()

The pickled data from the previous example, - i.e. the data which we have written to the file data.pkl, - can be
separated into two lists again, when we reread the data:

</pre> import pickle f = open("data.pkl","rb") languages, dialects) = pickle.load(f) print(languages, dialects)
['Python', 'Perl', 'C++', 'Java', 'Lisp'] ['Jython', 'IronPython', 'CPython'] </pre>

SHELVE MODULE

One drawback of the pickle module is that it is only capable of pickling one object at the time, which has to be
unpickled in one go. Let's imagine this data object is a dictionary. It may be desirable that we don't have to
save and load every time the whole dictionary, but save and load just a single value corresponding to just one
key. The shelve module is the solution to this request. A "shelf" - as used in the shelve module - is a persistent,
dictionary-like object. The difference with dbm databases is that the values (not the keys!) in a shelf can be
essentially arbitrary Python objects -- anything that the "pickle" module can handle. This includes most class
instances, recursive data types, and objects containing lots of shared sub-objects. The keys have to be strings.

The shelve module can be easily used. Actually, it is as easy as using a dictionary in Python. Before we can

FILE MANAGEMENT 280

use a shelf object, we have to import the module. After this, we have to open a shelve object with the shelve
method open. The open method opens a special shelf file for reading and writing:

</pre> import shelve s = shelve.open("MyShelve")</pre>

If the file "MyShelve" already exists, the open method will try to open it. If it isn't a shelf file, - i.e. a file
which has been created with the shelve module, - we will get an error message. If the file doesn't exist, it will
be created.

We can use s like an ordinary dictionary, if we use strings as keys:

s["street"] = "Fleet Str"
s["city"] = "London"
for key in s:

print(key)

A shelf object has to be closed with the close method:

s.close()

We can use the previously created shelf file in another program or in an interactive Python session:

$ python3
Python 3.2.3 (default, Feb 28 2014, 00:22:33)
[GCC 4.7.2] on linux2
Type "help", "copyright", "credits" or "license" for more informati
on.
import shelve
s = shelve.open("MyShelve")
s["street"]
'Fleet Str'
s["city"]
'London'

It is also possible to cast a shelf object into an "ordinary" dictionary with the dict function:

s
≤shelve.DbfilenameShelf object at 0xb7133dcc>
>>> dict(s)
{'city': 'London', 'street': 'Fleet Str'}

The following example uses more complex values for our shelf object:

import shelve
tele = shelve.open("MyPhoneBook")
tele["Mike"] = {"first":"Mike", "last":"Miller", "phone":"4689"}
tele["Steve"] = {"first":"Stephan", "last":"Burns", "phone":"8745"}
tele["Eve"] = {"first":"Eve", "last":"Naomi", "phone":"9069"}

FILE MANAGEMENT 281

tele["Eve"]["phone"]
'9069'

The data is persistent!

To demonstrate this once more, we reopen our MyPhoneBook:

$ python3
Python 3.2.3 (default, Feb 28 2014, 00:22:33)
[GCC 4.7.2] on linux2
Type "help", "copyright", "credits" or "license" for more informati
on.

import shelve
tele = shelve.open("MyPhoneBook")
tele["Steve"]["phone"]

'8745'

EXERCISES

EXERCISE 1

Write a function which reads in a text from file and returns a list of the paragraphs. You may use one of the
following books:

• Virginia Woolf: To the Lighthouse
• Samuel Butler: The Way of all Flash
• Herman Melville: Moby Dick
• David Herbert Lawrence: Sons and Lovers
• Daniel Defoe: The Life and Adventures of Robinson Crusoe
• James Joyce: Ulysses

EXERCISE 2

Save the following text containing city names and times as "cities_and_times.txt".

Chicago Sun 01:52
Columbus Sun 02:52
Riyadh Sun 10:52
Copenhagen Sun 08:52
Kuwait City Sun 10:52
Rome Sun 08:52
Dallas Sun 01:52
Salt Lake City Sun 01:52

FILE MANAGEMENT 282

San Francisco Sun 00:52
Amsterdam Sun 08:52
Denver Sun 01:52
San Salvador Sun 01:52
Detroit Sun 02:52
Las Vegas Sun 00:52
Santiago Sun 04:52
Anchorage Sat 23:52
Ankara Sun 10:52
Lisbon Sun 07:52
São Paulo Sun 05:52
Dubai Sun 11:52
London Sun 07:52
Seattle Sun 00:52
Dublin Sun 07:52
Los Angeles Sun 00:52
Athens Sun 09:52
Edmonton Sun 01:52
Madrid Sun 08:52
Shanghai Sun 15:52
Atlanta Sun 02:52
Frankfurt Sun 08:52
Singapore Sun 15:52
Auckland Sun 20:52
Halifax Sun 03:52
Melbourne Sun 18:52
Stockholm Sun 08:52
Barcelona Sun 08:52
Miami Sun 02:52
Minneapolis Sun 01:52
Sydney Sun 18:52
Beirut Sun 09:52
Helsinki Sun 09:52
Montreal Sun 02:52
Berlin Sun 08:52
Houston Sun 01:52
Moscow Sun 10:52
Indianapolis Sun 02:52
Boston Sun 02:52
Tokyo Sun 16:52
Brasilia Sun 05:52
Istanbul Sun 10:52
Toronto Sun 02:52
Vancouver Sun 00:52
Brussels Sun 08:52
Jerusalem Sun 09:52
New Orleans Sun 01:52
Vienna Sun 08:52

FILE MANAGEMENT 283

Bucharest Sun 09:52
Johannesburg Sun 09:52
New York Sun 02:52
Warsaw Sun 08:52
Budapest Sun 08:52
Oslo Sun 08:52
Washington DC Sun 02:52
Ottawa Sun 02:52
Winnipeg Sun 01:52
Cairo Sun 09:52
Paris Sun 08:52
Calgary Sun 01:52
Kathmandu Sun 13:37
Philadelphia Sun 02:52
Zurich Sun 08:52
Cape Town Sun 09:52
Phoenix Sun 00:52
Prague Sun 08:52
Casablanca Sun 07:52
Reykjavik Sun 07:52

Each line contains the name of the city, followed by the name of the day ("Sun") and the time in the form
hh:mm. Read in the file and create an alphabetically ordered list of the form

[('Amsterdam', 'Sun', (8, 52)), ('Anchorage', 'Sat', (23, 52)), ('A
nkara', 'Sun', (10, 52)), ('Athens', 'Sun', (9, 52)), ('Atlanta',
'Sun', (2, 52)), ('Auckland', 'Sun', (20, 52)), ('Barcelona', 'Su
n', (8, 52)), ('Beirut', 'Sun', (9, 52)),

...

('Toronto', 'Sun', (2, 52)), ('Vancouver', 'Sun', (0, 52)), ('Vien
na', 'Sun', (8, 52)), ('Warsaw', 'Sun', (8, 52)), ('Washington D
C', 'Sun', (2, 52)), ('Winnipeg', 'Sun', (1, 52)), ('Zurich', 'Su
n', (8, 52))]

Finally, the list should be dumped for later usage with the pickle module. We will use this list in our chapter on
Numpy dtype.

SOLUTIONS

SOLUTION 1

def text2paragraphs(filename, min_size=1):

FILE MANAGEMENT 284

https://www.python-course.eu/numpy_dtype.php

""" A text contained in the file 'filename' will be read
and chopped into paragraphs.
Paragraphs with a string length less than min_size will be ign

ored.
A list of paragraph strings will be returned"""

txt = open(filename).read()
paragraphs = [para for para in txt.split("\n\n") if len(para)

> min_size]
return paragraphs

paragraphs = text2paragraphs("books/to_the_lighthouse_woolf.txt",
min_size=100)

for i in range(10, 14):
print(paragraphs[i])

FILE MANAGEMENT 285

SOLUTION 2

“I should think there would be no one to talk to in Manchester,” s
he
replied at random. Mr. Fortescue had been observing her for a mome
nt or
two, as novelists are inclined to observe, and at this remark he s
miled,
and made it the text for a little further speculation.
“In spite of a slight tendency to exaggeration, Katharine decidedl
y
hits the mark,” he said, and lying back in his chair, with his opa
que
contemplative eyes fixed on the ceiling, and the tips of his finge
rs
pressed together, he depicted, first the horrors of the streets of
Manchester, and then the bare, immense moors on the outskirts of t
he
town, and then the scrubby little house in which the girl would li
ve,
and then the professors and the miserable young students devoted t
o the
more strenuous works of our younger dramatists, who would visit he
r,
and how her appearance would change by degrees, and how she would
fly to
London, and how Katharine would have to lead her about, as one lea
ds an
eager dog on a chain, past rows of clamorous butchers’ shops, poo
r dear
creature.
“Oh, Mr. Fortescue,” exclaimed Mrs. Hilbery, as he finished, “I ha
d just
written to say how I envied her! I was thinking of the big garden
s and
the dear old ladies in mittens, who read nothing but the “Spectato
r,”
and snuff the candles. Have they ALL disappeared? I told her she

would
find the nice things of London without the horrid streets that dep
ress
one so.”
“There is the University,” said the thin gentleman, who had previo
usly
insisted upon the existence of people knowing Persian.

FILE MANAGEMENT 286

import pickle

lines = open("cities_and_times.txt").readlines()
lines.sort()

cities = []
for line in lines:

*city, day, time = line.split()
hours, minutes = time.split(":")
cities.append((" ".join(city), day, (int(hours), int(minute

s))))

fh = open("cities_and_times.pkl", "bw")
pickle.dump(cities, fh)

City names can consist of multiple words like "Salt Lake City". That is why we have to use the asterisk in the
line, in which we split a line. So city will be a list with the words of the city, e.g. ["Salt", "Lake", "City"]. "
".join(city) turns such a list into a "proper" string with the city name, i.e. in our example "Salt Lake City".

FILE MANAGEMENT 287

M O D U L A R P R O G R A M M I N G A N D
M O D U L E S

MODULAR PROGRAMMING

Modular programming is a software design technique, which is
based on the general principal of modular design. Modular design
is an approach which has been proven as indispensable in
engineering even long before the first computers. Modular design
means that a complex system is broken down into smaller parts or
components, i.e. modules. These components can be independently
created and tested. In many cases, they can be even used in other
systems as well.

There is hardly any product nowadays, which doesn't heavily rely
on modularisation, like cars and mobile phones. Computers belong
to those products which are modularised to the utmost. So, what's a
must for the hardware is an unavoidable necessity for the software
running on the computers.

If you want to develop programs which are readable, reliable and
maintainable without too much effort, you have to use some kind
of modular software design. Especially if your application has a certain size. There exists a variety of concepts
to design software in modular form. Modular programming is a software design technique to split your code
into separate parts. These parts are called modules. The focus for this separation should be to have modules
with no or just few dependencies upon other modules. In other words: Minimization of dependencies is the
goal. When creating a modular system, several modules are built separately and more or less independently.
The executable application will be created by putting them together.

IMPORTING MODULES

So far we haven't explained what a Python module is. In a nutshell: every file, which has the file extension .py
and consists of proper Python code, can be seen or is a module! There is no special syntax required to make
such a file a module. A module can contain arbitrary objects, for example files, classes or attributes. All those
objects can be accessed after an import. There are different ways to import a modules. We demonstrate this
with the math module:

In []:

import math

The module math provides mathematical constants and functions, e.g. π (math.pi), the sine function
(math.sin()) and the cosine function (math.cos()). Every attribute or function can only be accessed by putting
"math." in front of the name:

MODULAR PROGRAMMING AND MODULES 288

math.pi

math.sin(math.pi/2)

math.cos(math.pi/2)

math.cos(math.pi)

It's possible to import more than one module in one import statement. In this case the module names are
separated by commas:

In []:

import math, random

import statements can be positioned anywhere in the program, but it's good style to place them directly at the
beginning of a program.

If only certain objects of a module are needed, we can import only those:

In []:

from math import sin, pi

The other objects, e.g. cos, are not available after this import. We are capable of accessing sin and pi directly,
i.e. without prefixing them with "math." Instead of explicitly importing certain objects from a module, it's also
possible to import everything in the namespace of the importing module. This can be achieved by using an
asterisk in the import:

from math import *
sin(3.01) + tan(cos(2.1)) + e

e

It's not recommended to use the asterisk notation in an import statement, except when working in the
interactive Python shell. One reason is that the origin of a name can be quite obscure, because it can't be seen

Output: 3.141592653589793

Output: 1.0

Output: 6.123233995736766e-17

Output: -1.0

Output: 2.2968833711382604

Output: 2.718281828459045

MODULAR PROGRAMMING AND MODULES 289

from which module it might have been imported. We will demonstrate another serious complication in the
following example:

from numpy import *
from math import *
print(sin(3))

sin(3)

Let's modify the previous example slightly by changing the order of the imports:

from math import *
from numpy import *
print(sin(3))

sin(3)

People use the asterisk notation, because it is so convenient. It means avoiding a lot of tedious typing. Another
way to shrink the typing effort lies in renaming a namespace. A good example for this is the numpy module.
You will hardly find an example or a tutorial, in which they will import this module with the statement.

import numpy

It's like an unwritten law to import it with

import numpy as np

Now you can prefix all the objects of numpy with "np." instead of "numpy.":

import numpy as np
np.diag([3, 11, 7, 9])

0.1411200080598672

Output: 0.1411200080598672

0.1411200080598672

Output: 0.1411200080598672

Output: array([[3, 0, 0, 0],
[0, 11, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 9]])

MODULAR PROGRAMMING AND MODULES 290

DESIGNING AND WRITING MODULES

But how do we create modules in Python? A module in Python is just a file containing Python definitions and
statements. The module name is moulded out of the file name by removing the suffix .py. For example, if the
file name is fibonacci.py, the module name is fibonacci.

Let's turn our Fibonacci functions into a module. There is hardly anything to be done, we just save the
following code in the file fibonacci.py:

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1) + fib(n-2)
def ifib(n):

a, b = 0, 1
for i in range(n):

a, b = b, a + b
return a

The newly created module "fibonacci" is ready for use now. We can import this module like any other module
in a program or script. We will demonstrate this in the following interactive Python shell:

import fibonacci
fibonacci.fib(7)

fibonacci.fib(20)

fibonacci.ifib(42)

fibonacci.ifib(1000)

Don't try to call the recursive version of the Fibonacci function with large arguments like we did with the
iterative version. A value like 42 is already too large. You will have to wait for a long time!

Output: 13

Output: 6765

Output: 267914296

Output: 4346655768693745643568852767504062580256466051737178040248172
9089536555417949051890403879840079255169295922593080322634775
2096896232398733224711616429964409065331879382989696499285160
03704476137795166849228875

MODULAR PROGRAMMING AND MODULES 291

As you can easily imagine: It's a pain if you have to use those functions often in your program and you always
have to type in the fully qualified name, i.e. fibonacci.fib(7). One solution consists in assigning a local name
to a module function to get a shorter name:

fib = fibonacci.ifib
fib(10)

But it's better, if you import the necessary functions directly into your module, as we will demonstrate further
down in this chapter.

MORE ON MODULES

Usually, modules contain functions or classes, but there can be "plain" statements in them as well. These
statements can be used to initialize the module. They are only executed when the module is imported.

Let's look at a module, which only consists of just one statement:

print("The module is imported now!")

We save with the name "one_time.py" and import it two times in an interactive session:

import one_time

We can see that it was only imported once. Each module can only be imported once per interpreter session or
in a program or script. If you change a module and if you want to reload it, you must restart the interpreter
again. In Python 2.x, it was possible to reimport the module by using the built-in reload,
i.e.reload(modulename):

$ python
Python 2.6.5 (r265:79063, Apr 16 2010, 13:57:41)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more informati
on.
import one_time
The module is imported now!
reload(one_time)
The module is imported now!

Output: 55

The module is imported now!

The module is imported now!

MODULAR PROGRAMMING AND MODULES 292

This is not possible anymore in Python 3.x. You will cause the following error:

import one_time
reload(one_time)

Since Python 3.0 the reload built-in function has been moved into the imp standard library module. So it's still
possible to reload files as before, but the functionality has to be imported. You have to execute an "import
imp" and use imp.reload(my_module). Alternatively, you can use "imp import reload" and use
reload(my_module).

Example with reloading the Python3 way:

$ python3
Python 3.1.2 (r312:79147, Sep 27 2010, 09:57:50)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more informati
on.
from imp import reload
import one_time
The module is imported now!
reload(one_time)
The module is imported now!

Since version 3.4 you should use the "importlib" module, because imp.reload is marked as deprecated:

from importlib import reload
import one_time
The module is imported now!
reload(one_time)
The module is imported now!

A module has a private symbol table, which is used as the global symbol table by all functions defined in the
module. This is a way to prevent that a global variable of a module accidentally clashes with a user's global
variable with the same name. Global variables of a module can be accessed with the same notation as
functions, i.e. modname.name A module can import other modules. It is customary to place all import
statements at the beginning of a module or a script.

NameError Traceback (most recent call last)
<ipython-input-7-102e1bec2702> in <module>
----> 1 reload(one_time)
NameError: name 'reload' is not defined

MODULAR PROGRAMMING AND MODULES 293

IMPORTING NAMES FROM A MODULE DIRECTLY

Names from a module can directly be imported into the importing module's symbol table:

from fibonacci import fib, ifib
ifib(500)

This does not introduce the module name from which the imports are taken in the local symbol table. It's
possible but not recommended to import all names defined in a module, except those beginning with an
underscore "_":

In []:

from fibonacci import *
fib(500)

This shouldn't be done in scripts but it's possible to use it in interactive sessions to save typing.

EXECUTING MODULES AS SCRIPTS

Essentially a Python module is a script, so it can be run as a script:

python fibo.py

The module which has been started as a script will be executed as if it had been imported, but with one
exception: The system variable name is set to "main". So it's possible to program different behaviour into a
module for the two cases. With the following conditional statement the file can be used as a module or as a
script, but only if it is run as a script the method fib will be started with a command line argument:

if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))

If it is run as a script, we get the following output:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

If it is imported, the code in the if block will not be executed:

Output: 1394232245616978801397243828704072839500702565876973072641089
62948325571622863290691557658876222521294125

MODULAR PROGRAMMING AND MODULES 294

import fibo

RENAMING A NAMESPACE

While importing a module, the name of the namespace can be changed:

import math as mathematics
print(mathematics.cos(mathematics.pi))

After this import there exists a namespace mathematics but no namespace math. It's possible to import just a
few methods from a module:

from math import pi,pow as power, sin as sinus
power(2,3)

sinus(pi)

KINDS OF MODULES

There are different kind of modules:

• Those written in Python
They have the suffix: .py

• Dynamically linked C modules
Suffixes are: .dll, .pyd, .so, .sl, ...

• C-Modules linked with the Interpreter
It's possible to get a complete list of these modules:

import sys
print(sys.builtin_module_names)

-1.0

Output: 8.0

Output: 1.2246467991473532e-16

MODULAR PROGRAMMING AND MODULES 295

An error message is returned for Built-in-Modules.

MODULE SEARCH PATH

If you import a module, let's say "import xyz", the interpreter searches for this module in the following
locations and in the order given:

The directory of the top-level file, i.e. the file being executed.
The directories of PYTHONPATH, if this global environment variable
of your operating system is set.
standard installation path Linux/Unix e.g. in /usr/lib/python3.5.

It's possible to find out where a module is located after it has been imported:

import numpy
numpy.file
'/usr/lib/python3/dist-packages/numpy/init.py'
import random
random.file
'/usr/lib/python3.5/random.py'

</pre>
The file attribute doesn't always exist. This is the case with modu
les which are statically linked C libraries.

import math
math.__file__

('_abc', '_ast', '_bisect', '_blake2', '_codecs', '_codecs_cn',
'_codecs_hk', '_codecs_iso2022', '_codecs_jp', '_codecs_kr', '_cod
ecs_tw', '_collections', '_contextvars', '_csv', '_datetime', '_fu
nctools', '_heapq', '_imp', '_io', '_json', '_locale', '_lsprof',
'_md5', '_multibytecodec', '_opcode', '_operator', '_pickle', '_ra
ndom', '_sha1', '_sha256', '_sha3', '_sha512', '_signal', '_sre',
'_stat', '_string', '_struct', '_symtable', '_thread', '_tracemall
oc', '_warnings', '_weakref', '_winapi', 'array', 'atexit', 'audio
op', 'binascii', 'builtins', 'cmath', 'errno', 'faulthandler', 'g
c', 'itertools', 'marshal', 'math', 'mmap', 'msvcrt', 'nt', 'parse
r', 'sys', 'time', 'winreg', 'xxsubtype', 'zipimport', 'zlib')

MODULAR PROGRAMMING AND MODULES 296

CONTENT OF A MODULE

With the built-in function dir() and the name of the module as an argument, you can list all valid attributes and
methods for that module.

import math
dir(math)

AttributeError Traceback (most recent call last)
<ipython-input-4-bb98ec32d2a8> in <module>

1 import math
----> 2 math.__file__
AttributeError: module 'math' has no attribute '__file__'

MODULAR PROGRAMMING AND MODULES 297

Output: ['__doc__',
'__loader__',
'__name__',
'__package__',
'__spec__',
'acos',
'acosh',
'asin',
'asinh',
'atan',
'atan2',
'atanh',
'ceil',
'copysign',
'cos',
'cosh',
'degrees',
'e',
'erf',
'erfc',
'exp',
'expm1',
'fabs',
'factorial',
'floor',
'fmod',
'frexp',
'fsum',
'gamma',
'gcd',
'hypot',
'inf',
'isclose',
'isfinite',
'isinf',
'isnan',
'ldexp',
'lgamma',
'log',
'log10',
'log1p',
'log2',
'modf',
'nan',
'pi',
'pow',

MODULAR PROGRAMMING AND MODULES 298

Calling dir() without an argument, a list with the names in the current local scope is returned:

import math
cities = ["New York", "Toronto", "Berlin", "Washington", "Amsterda
m", "Hamburg"]
dir()

'radians',
'remainder',
'sin',
'sinh',
'sqrt',
'tan',
'tanh',
'tau',
'trunc']

Output: ['In',
'Out',
'_',
'_1',
'__',
'___',
'__builtin__',
'__builtins__',
'__doc__',
'__loader__',
'__name__',
'__package__',
'__spec__',
'_dh',
'_i',
'_i1',
'_i2',
'_ih',
'_ii',
'_iii',
'_oh',
'builtins',
'cities',
'exit',
'get_ipython',
'math',
'quit']

MODULAR PROGRAMMING AND MODULES 299

It's possible to get a list of the Built-in functions, exceptions, and other objects by importing the builtins
module:

import builtins
dir(builtins)

MODULAR PROGRAMMING AND MODULES 300

Output: ['ArithmeticError',
'AssertionError',
'AttributeError',
'BaseException',
'BlockingIOError',
'BrokenPipeError',
'BufferError',
'BytesWarning',
'ChildProcessError',
'ConnectionAbortedError',
'ConnectionError',
'ConnectionRefusedError',
'ConnectionResetError',
'DeprecationWarning',
'EOFError',
'Ellipsis',
'EnvironmentError',
'Exception',
'False',
'FileExistsError',
'FileNotFoundError',
'FloatingPointError',
'FutureWarning',
'GeneratorExit',
'IOError',
'ImportError',
'ImportWarning',
'IndentationError',
'IndexError',
'InterruptedError',
'IsADirectoryError',
'KeyError',
'KeyboardInterrupt',
'LookupError',
'MemoryError',
'ModuleNotFoundError',
'NameError',
'None',
'NotADirectoryError',
'NotImplemented',
'NotImplementedError',
'OSError',
'OverflowError',
'PendingDeprecationWarning',
'PermissionError',
'ProcessLookupError',

MODULAR PROGRAMMING AND MODULES 301

'RecursionError',
'ReferenceError',
'ResourceWarning',
'RuntimeError',
'RuntimeWarning',
'StopAsyncIteration',
'StopIteration',
'SyntaxError',
'SyntaxWarning',
'SystemError',
'SystemExit',
'TabError',
'TimeoutError',
'True',
'TypeError',
'UnboundLocalError',
'UnicodeDecodeError',
'UnicodeEncodeError',
'UnicodeError',
'UnicodeTranslateError',
'UnicodeWarning',
'UserWarning',
'ValueError',
'Warning',
'WindowsError',
'ZeroDivisionError',
'__IPYTHON__',
'__build_class__',
'__debug__',
'__doc__',
'__import__',
'__loader__',
'__name__',
'__package__',
'__spec__',
'abs',
'all',
'any',
'ascii',
'bin',
'bool',
'breakpoint',
'bytearray',
'bytes',
'callable',
'chr',

MODULAR PROGRAMMING AND MODULES 302

'classmethod',
'compile',
'complex',
'copyright',
'credits',
'delattr',
'dict',
'dir',
'display',
'divmod',
'enumerate',
'eval',
'exec',
'filter',
'float',
'format',
'frozenset',
'get_ipython',
'getattr',
'globals',
'hasattr',
'hash',
'help',
'hex',
'id',
'input',
'int',
'isinstance',
'issubclass',
'iter',
'len',
'license',
'list',
'locals',
'map',
'max',
'memoryview',
'min',
'next',
'object',
'oct',
'open',
'ord',
'pow',
'print',
'property',

MODULAR PROGRAMMING AND MODULES 303

PACKAGES

If you have created a lot of modules at some point in time, you may loose the overview about them. You may
have dozens or hundreds of modules and they can be categorized into different categories. It is similar to the
situation in a file system: Instead of having all files in just one directory, you put them into different ones,
being organized according to the topics of the files. We will show in the next chapter of our Python tutorial
how to organize modules into packages.

'range',
'repr',
'reversed',
'round',
'set',
'setattr',
'slice',
'sorted',
'staticmethod',
'str',
'sum',
'super',
'tuple',
'type',
'vars',
'zip']

MODULAR PROGRAMMING AND MODULES 304

R E G U L A R E X P R E S S I O N S

The aim of this chapter of our Python tutorial is to present a detailed and
descriptive introduction into regular expressions. This introduction will
explain the theoretical aspects of regular expressions and will show you
how to use them in Python scripts.

The term "regular expression", sometimes also called regex or regexp, has
originated in theoretical computer science. In theoretical computer science,
they are used to define a language family with certain characteristics, the
so-called regular languages. A finite state machine (FSM), which accepts
language defined by a regular expression, exists for every regular expression. You can find an implementation
of a Finite State Machine in Python on our website.

Regular Expressions are used in programming languages to filter texts or textstrings. It's possible to check, if a
text or a string matches a regular expression. A great thing about regular expressions: The syntax of regular
expressions is the same for all programming and script languages, e.g. Python, Perl, Java, SED, AWK and
even X#.

The first programs which had incorporated the capability to use regular expressions were the Unix tools ed
(editor), the stream editor sed and the filter grep.

There is another mechanism in operating systems, which shouldn't be mistaken for regular expressions.
Wildcards, also known as globbing, look very similar in their syntax to regular expressions. However, the
semantics differ considerably. Globbing is known from many command line shells, like the Bourne shell, the
Bash shell or even DOS. In Bash e.g. the command "ls .txt" lists all files (or even directories) ending with the
suffix .txt; in regular expression notation ".txt" wouldn't make sense, it would have to be written as ".*.txt"

INTRODUCTION

When we introduced the sequential data types, we got to know the "in" operator. We check in the following
example, if the string "easily" is a substring of the string "Regular expressions easily explained!":

s = "Regular expressions easily explained!"
"easily" in s

We show step by step with the following diagrams how this matching is performed: We check if the string sub
= "abc"

Output: True

REGULAR EXPRESSIONS 305

https://www.python-course.eu/finite_state_machine.php

is contained in the string s = "xaababcbcd"

By the way, the string sub = "abc" can be seen as a regular expression, just a very simple one.

In the first place, we check, if the first positions of the two string match, i.e. s[0] == sub[0]. This is not
satisfied in our example. We mark this fact by the colour red:

Then we check, if s[1:4] == sub. In other words, we have to check at first, if sub[0] is equal to s[1]. This is
true and we mark it with the colour green. Then, we have to compare the next positions. s[2] is not equal to
sub[1], so we don't have to proceed further with the next position of sub and s:

Now we have to check if s[2:5] and sub are equal. The first two positions are equal but not the third:

The following steps should be clear without any explanations:

Finally, we have a complete match with s[4:7] == sub :

REGULAR EXPRESSIONS 306

A SIMPLE REGULAR EXPRESSION

As we have already mentioned in the previous section, we can see the variable "sub" from the introduction as
a very simple regular expression. If you want to use regular expressions in Python, you have to import the re
module, which provides methods and functions to deal with regular expressions.

REPRESENTING REGULAR EXPRESSIONS IN PYTHON

From other languages you might be used to representing regular expressions within Slashes "/", e.g. that's the
way Perl, SED or AWK deals with them. In Python there is no special notation. Regular expressions are
represented as normal strings.

But this convenience brings along a small problem: The backslash is a special character used in regular
expressions, but is also used as an escape character in strings. This implies that Python would first evaluate
every backslash of a string and after this - without the necessary backslashes - it would be used as a regular
expression. One way to prevent this could be writing every backslash as "\" and this way keep it for the
evaluation of the regular expression. This can cause extremely clumsy expressions. E.g. a backslash in a
regular expression has to be written as a double backslash, because the backslash functions as an escape
character in regular expressions. Therefore, it has to be quoted. The same is valid for Python strings. The
backslash has to be quoted by a backslash. So, a regular expression to match the Windows path "C:\programs"
corresponds to a string in regular expression notation with four backslashes, i.e. "C:\\programs".

The best way to overcome this problem would be marking regular expressions as raw strings. The solution to
our Windows path example looks like this as a raw string:

r"C:\\programs"

Let's look at another example, which might be quite disturbing for people who are used to wildcards:

r"^a.*\.html$"

The regular expression of our previous example matches all file names (strings) which start with an "a" and
end with ".html". We will the structure of the example above in detail explain in the following sections.

REGULAR EXPRESSIONS 307

SYNTAX OF REGULAR EXPRESSION

r"cat"

is a regular expression, though a very simple one without any
metacharacters. Our RE

r"cat"

matches, for example, the following string: "A cat and a rat can't be
friends."

Interestingly, the previous example shows already a "favourite" example
for a mistake, frequently made not only by beginners and novices but also
by advanced users of regular expressions. The idea of this example is to
match strings containing the word "cat". We are successful at this, but
unfortunately we are matching a lot of other words as well. If we match "cats" in a string that might be still
okay, but what about all those words containing this character sequence "cat"? We match words like
"education", "communicate", "falsification", "ramifications", "cattle" and many more. This is a case of "over
matching", i.e. we receive positive results, which are wrong according to the problem we want to solve.

We have illustrated this problem in the diagram above. The dark green Circle C corresponds to the set of
"objects" we want to recognize. But instead we match all the elements of the set O (blue circle). C is a subset
of O. The set U (light green circle) in this diagram is a subset of C. U is a case of "under matching", i.e. if the
regular expression is not matching all the intended strings. If we try to fix the previous RE, so that it doesn't
create over matching, we might try the expression

r" cat "

. These blanks prevent the matching of the above mentioned words like "education", "falsification" and
"ramification", but we fall prey to another mistake. What about the string "The cat, called Oscar, climbed on
the roof."? The problem is that we don't expect a comma but only a blank surrounding the word "cat".

Before we go on with the description of the syntax of regular expressions, we want to explain how to use them
in Python:

import re
x = re.search("cat", "A cat and a rat can't be friends.")
print(x)

x = re.search("cow", "A cat and a rat can't be friends.")
print(x)

<re.Match object; span=(2, 5), match='cat'>

None

REGULAR EXPRESSIONS 308

In the previous example we had to import the module re to be able to work with regular expressions. Then we
used the method search from the re module. This is most probably the most important and the most often used
method of this module. re.search(expr,s) checks a string s for an occurrence of a substring which matches the
regular expression expr. The first substring (from left), which satisfies this condition will be returned. If a
match has been possible, we get a so-called match object as a result, otherwise the value will be None. This
method is already enough to use regular expressions in a basic way in Python programs. We can use it in
conditional statements: If a regular expression matches, we get an SRE object returned, which is taken as a
True value, and None, which is the return value if it doesn't match, is taken as False:

if re.search("cat", "A cat and a rat can't be friends."):
print("Some kind of cat has been found :-)")

else:
print("No cat has been found :-)")

if re.search("cow", "A cat and a rat can't be friends."):
print("Cats and Rats and a cow.")

else:
print("No cow around.")

ANY CHARACTER

Let's assume that we have not been interested in the previous example to recognize the word cat, but all three
letter words, which end with "at". The syntax of regular expressions supplies a metacharacter ".", which is
used like a placeholder for "any character". The regular expression of our example can be written like this: r"
.at " This RE matches three letter words, isolated by blanks, which end in "at". Now we get words like "rat",
"cat", "bat", "eat", "sat" and many others.

But what if the text contains "words" like "@at" or "3at"? These words match as well, meaning we have
caused over matching again. We will learn a solution in the following section.

CHARACTER CLASSES

Square brackets, "[" and "]", are used to include a character class. [xyz] means e.g. either an "x", an "y" or a
"z". Let's look at a more practical example:

r"M[ae][iy]er"

This is a regular expression, which matches a surname which is quite common in German. A name with the
same pronunciation and four different spellings: Maier, Mayer, Meier, Meyer A finite state automata to
recognize this expression can be build like this:

Some kind of cat has been found :-)

No cow around.

REGULAR EXPRESSIONS 309

The graph of the finite state machine (FSM) is simplified to keep the design easy. There should be an arrow in
the start node pointing back on its own, i.e. if a character other than an upper case "M" has been processed, the
machine should stay in the start condition. Furthermore, there should be an arrow pointing back from all nodes
except the final nodes (the green ones) to the start node, unless the expected letter has been processed. E.g. if
the machine is in state Ma, after having processed a "M" and an "a", the machine has to go back to state
"Start", if any character except "i" or "y" can be read. Those who have problems with this FSM, shouldn't
worry, since it is not a prerequisite for the rest of the chapter.

Instead of a choice between two characters, we often need a choice between larger character classes. We might
need e.g. a class of letters between "a" and "e" or between "0" and "5". To manage such character classes, the
syntax of regular expressions supplies a metacharacter "-". [a-e] a simplified writing for [abcde] or [0-5]
denotes [012345].

The advantage is obvious and even more impressive, if we have to coin expressions like "any uppercase letter"
into regular expressions. So instead of [ABCDEFGHIJKLMNOPQRSTUVWXYZ] we can write [A-Z]. If this
is not convincing: Write an expression for the character class "any lower case or uppercase letter" [A-Za-z]

There is something more about the dash, we used to mark the begin and the end of a character class. The dash
has only a special meaning if it is used within square brackets and in this case only if it isn't positioned directly
after an opening or immediately in front of a closing bracket. So the expression [-az] is only the choice
between the three characters "-", "a" and "z", but no other characters. The same is true for [az-].

Exercise: What character class is described by [-a-z]?

Answer The character "-" and all the characters "a", "b", "c" all the way up to "z".

The only other special character inside square brackets (character class choice) is the caret "^". If it is used
directly after an opening sqare bracket, it negates the choice. [^0-9] denotes the choice "any character but a
digit". The position of the caret within the square brackets is crucial. If it is not positioned as the first character
following the opening square bracket, it has no special meaning. [^abc] means anything but an "a", "b" or "c"

REGULAR EXPRESSIONS 310

[a^bc] means an "a", "b", "c" or a "^"

A PRACTICAL EXERCISE IN PYTHON

Before we go on with our introduction into regular expressions, we want to insert a practical exercise with
Python. We have a phone list of the Simpsons, yes, the famous Simpsons from the American animated TV
series. There are some people with the surname Neu. We are looking for a Neu, but we don't know the first
name, we just know that it starts with a J. Let's write a Python script, which finds all the lines of the phone
book, which contain a person with the described surname and a first name starting with J. If you don't know
how to read and work with files, you should work through our chapter File Management. So here is our
example script:

import re
fh = open("simpsons_phone_book.txt")
for line in fh:

if re.search(r"J.*Neu",line):
print(line.rstrip())

fh.close()

Instead of downloading simpsons_phone_book.txt, we can also use the file directly from the website by using
urlopen from the module urllib.request:

import re
from urllib.request import urlopen
with urlopen('https://www.python-course.eu/simpsons_phone_book.tx
t') as fh:

for line in fh:
line is a byte string so we transform it to utf-8:
line = line.decode('utf-8').rstrip()
if re.search(r"J.*Neu",line):

print(line)

Jack Neu 555-7666
Jeb Neu 555-5543
Jennifer Neu 555-3652

Jack Neu 555-7666
Jeb Neu 555-5543
Jennifer Neu 555-3652

REGULAR EXPRESSIONS 311

https://www.python-course.eu/python3_file_management.php

PREDEFINED CHARACTER CLASSES

You might have realized that it can be quite cumbersome to construe certain character classes. A good
example is the character class, which describes a valid word character. These are all lower case and uppercase
characters plus all the digits and the underscore, corresponding to the following regular expression: r"[a-zA-
Z0-9_]"

The special sequences consist of "\\" and a character from the foll
owing list:
\d Matches any decimal digit; equivalent to the set [0-9].
\D The complement of \d. It matches any non-digit character; equiv
alent to the set [^0-9].
\s Matches any whitespace character; equivalent to [\t\n\r\f\v].
\S The complement of \s. It matches any non-whitespace character;
equiv. to [^ \t\n\r\f\v].
\w Matches any alphanumeric character; equivalent to [a-zA-Z
0-9_]. With LOCALE, it will match the set [a-zA-Z0-9_] plus charact
ers defined as letters for the current locale.
\W Matches the complement of \w.
\b Matches the empty string, but only at the start or end of a wor
d.
\B Matches the empty string, but not at the start or end of a wor
d.
\\ Matches a literal backslash.

WORD BOUNDARIES

The \b and \B of the previous overview of special sequences, is often not properly understood or even
misunderstood especially by novices. While the other sequences match characters, - e.g. \w matches characters
like "a", "b", "m", "3" and so on, - \b and \B don't match a character. They match empty strings depending on
their neighbourhood, i.e. what kind of a character the predecessor and the successor is. So \b matches any
empty string between a \W and a \w character and also between a \w and a \W character. \B is the
complement, i.e empty strings between \W and \W or empty strings between \w and \w. We illustrate this in
the following example:

We will get to know further "virtual" matching characters, i.e. the caret (^), which is used to mark the
beginning of a string, and the dollar sign ($), which is used to mark the end of a string, respectively. \A and \Z,
which can also be found in our previous diagram, are very seldom used as alternatives to the caret and the
dollar sign.

MATCHING BEGINNING AND END

As we have previously carried out in this introduction, the expression r"M[ae][iy]er" is capable of matching
various spellings of the name Mayer and the name can be anywhere in the string:

REGULAR EXPRESSIONS 312

import re
line = "He is a German called Mayer."
if re.search(r"M[ae][iy]er", line):

print("I found one!")

But what if we want to match a regular expression at the beginning of a string and only at the beginning?

The re module of Python provides two functions to match regular expressions. We have met already one of
them, i.e. search(). The other has in our opinion a misleading name: match() Misleading, because match(re_str,
s) checks for a match of re_str merely at the beginning of the string. But anyway, match() is the solution to our
question, as we can see in the following example:

import re
s1 = "Mayer is a very common Name"
s2 = "He is called Meyer but he isn't German."
print(re.search(r"M[ae][iy]er", s1))
print(re.search(r"M[ae][iy]er", s2))
matches because it starts with Mayer

print(re.match(r"M[ae][iy]er", s1))
doesn't match because it doesn't start with Meyer or Meyer, Meie
r and so on:
print(re.match(r"M[ae][iy]er", s2))

So, this is a way to match the start of a string, but it's a Python specific method, i.e. it can't be used in other
languages like Perl, AWK and so on. There is a general solution which is a standard for regular expressions:

The caret '^' matches the start of the string, and in MULTILINE (will be explained further down) mode also
matches immediately after each newline, which the Python method match() doesn't do. The caret has to be the
first character of a regular expression:

import re
s1 = "Mayer is a very common Name"
s2 = "He is called Meyer but he isn't German."
print(re.search(r"^M[ae][iy]er", s1))
print(re.search(r"^M[ae][iy]er", s2))

I found one!

<re.Match object; span=(0, 5), match='Mayer'>
<re.Match object; span=(13, 18), match='Meyer'>
<re.Match object; span=(0, 5), match='Mayer'>
None

<re.Match object; span=(0, 5), match='Mayer'>
None

REGULAR EXPRESSIONS 313

But what happens if we concatenate the two strings s1 and s2 in the following way?

s = s2 + "\n" + s1

Now the string doesn't start with a Maier of any kind, but the name follows a newline character:

s = s2 + "\n" + s1
print(re.search(r"^M[ae][iy]er", s))

The name hasn't been found, because only the beginning of the string is checked. It changes, if we use the
multiline mode, which can be activated by adding the following parameters to search:

print(re.search(r"^M[ae][iy]er", s, re.MULTILINE))
print(re.search(r"^M[ae][iy]er", s, re.M))
print(re.match(r"^M[ae][iy]er", s, re.M))

The previous example also shows that the multiline mode doesn't affect the match method. match() never
checks anything but the beginning of the string for a match.

We have learnt how to match the beginning of a string. What about the end? Of course that's possible to. The
dollar sign ""isusedasametacharacterforthispurpose.′' matches the end of a string or just before the newline at
the end of the string. If in MULTILINE mode, it also matches before a newline. We demonstrate the usage of
the "$" character in the following example:

print(re.search(r"Python\.$","I like Python."))
print(re.search(r"Python\.$","I like Python and Perl."))
print(re.search(r"Python\.$","I like Python.\nSome prefer Java or
Perl."))
print(re.search(r"Python\.$","I like Python.\nSome prefer Java or
Perl.", re.M))

None

<re.Match object; span=(40, 45), match='Mayer'>
<re.Match object; span=(40, 45), match='Mayer'>
None

<re.Match object; span=(7, 14), match='Python.'>
None
None
<re.Match object; span=(7, 14), match='Python.'>

REGULAR EXPRESSIONS 314

OPTIONAL ITEMS

If you thought that our collection of Mayer names was complete, you were wrong. There are other ones all
over the world, e.g. London and Paris, who dropped their "e". So we have four more names ["Mayr", "Meyr",
"Meir", "Mair"] plus our old set ["Mayer", "Meyer", "Meier", "Maier"].

If we try to figure out a fitting regular expression, we realize that we miss something. A way to tell the
computer "this "e" may or may not occur". A question mark is used as a notation for this. A question mark
declares that the preceding character or expression is optional.

The final Mayer-Recognizer looks now like this:

r"M[ae][iy]e?r"

A subexpression is grouped by round brackets and a question mark following such a group means that this
group may or may not exist. With the following expression we can match dates like "Feb 2011" or February
2011":

r"Feb(ruary)? 2011"

QUANTIFIERS

If you just use what we have introduced so far, you will still need a lot of things, above all some way of
repeating characters or regular expressions. For this purpose, quantifiers are used. We have encountered one in
the previous paragraph, i.e. the question mark.

A quantifier after a token, which can be a single character or group in brackets, specifies how often that
preceding element is allowed to occur. The most common quantifiers are

• the question mark ?
• the asterisk or star character *, which is derived from the Kleene star
• and the plus sign +, derived from the Kleene cross

We have already previously used one of these quantifiers without explaining it, i.e. the asterisk. A star
following a character or a subexpression group means that this expression or character may be repeated
arbitrarily, even zero times.

r"[0-9]*"

The above expression matches any sequence of digits, even the empty string. r".*" matches any sequence of
characters and the empty string.

Exercise: Write a regular expression which matches strings which starts with a sequence of digits - at least
one digit - followed by a blank.

Solution:

r"^[0-9][0-9]* "

REGULAR EXPRESSIONS 315

So, you used the plus character "+". That's fine, but in this case you have either cheated by going ahead in the
text or you know already more about regular expressions than we have covered in our course :-)

Now that we mentioned it: The plus operator is very convenient to solve the previous exercise. The plus
operator is very similar to the star operator, except that the character or subexpression followed by a "+" sign
has to be repeated at least one time. Here follows the solution to our exercise with the plus quantifier:

Solution with the plus quantifier:

r"^[0-9]+ "

If you work with this arsenal of operators for a while, you will inevitably miss the possibility to repeat
expressions for an exact number of times at some point. Let's assume you want to recognize the last lines of
addresses on envelopes in Switzerland. These lines usually contain a four digits long post code followed by a
blank and a city name. Using + or * are too unspecific for our purpose and the following expression seems to
be too clumsy:

r"^[0-9][0-9][0-9][0-9] [A-Za-z]+"

Fortunately, there is an alternative available:

r"^[0-9]{4} [A-Za-z]*"

Now we want to improve our regular expression. Let's assume that there is no city name in Switzerland, which
consists of less than 3 letters, at least 3 letters. We can denote this by [A-Za-z]{3,}. Now we have to recognize
lines with German post code (5 digits) lines as well, i.e. the post code can now consist of either four or five
digits:

r"^[0-9]{4,5} [A-Z][a-z]{2,}"

The general syntax is {from, to}, meaning the expression has to appear at least "from" times and not more
than "to" times. {, to} is an abbreviated spelling for {0,to} and {from,} is an abbreviation for "at least from
times but no upper limit"

GROUPING

We can group a part of a regular expression by surrounding it with parenthesis (round brackets). This way we
can apply operators to the complete group instead of a single character.

REGULAR EXPRESSIONS 316

CAPTURING GROUPS AND BACK REFERENCES

Parenthesis (round brackets, braces) are not only group subexpressions but they also create back references.
The part of the string matched by the grouped part of the regular expression, i.e. the subexpression in
parenthesis, is stored in a back reference. With the aid of back references we can reuse parts of regular
expressions. These stored values can be both reused inside the expression itself and afterwards, when the
regexpr is executed. Before we continue with our treatise about back references, we want to strew in a
paragraph about match objects, which is important for our next examples with back references.

A CLOSER LOOK AT THE MATCH OBJECTS

So far we have just checked, if an expression matched or not. We used the fact the re.search() returns a match
object if it matches and None otherwise. We haven't been interested e.g. in what has been matched. The match
object contains a lot of data about what has been matched, positions and so on.

A match object contains the methods group(), span(), start() and end(), as it can be seen in the following
application:

import re
mo = re.search("[0-9]+", "Customer number: 232454, Date: February
12, 2011")
mo.group()

mo.span()

mo.start()

mo.end()

mo.span()[0]

mo.span()[1]

Output: '232454'

Output: (17, 23)

Output: 17

Output: 23

Output: 17

Output: 23

REGULAR EXPRESSIONS 317

These methods are not difficult to understand. span() returns a tuple with the start and end position, i.e. the
string index where the regular expression started matching in the string and ended matching. The methods
start() and end() are in a way superfluous as the information is contained in span(), i.e. span()[0] is equal to
start() and span()[1] is equal to end(). group(), if called without argument, it returns the substring, which had
been matched by the complete regular expression. With the help of group() we are also capable of accessing
the matched substring by grouping parentheses, to get the matched substring of the n-th group, we call group()
with the argument n: group(n). We can also call group with more than integer argument, e.g. group(n,m).
group(n,m) - provided there exists a subgoup n and m - returns a tuple with the matched substrings.
group(n,m) is equal to (group(n), group(m)):

import re
mo = re.search("([0-9]+).*: (.*)", "Customer number: 232454, Dat
e: February 12, 2011")
mo.group()

mo.group(1)

mo.group(2)

mo.group(1,2)

A very intuitive example are XML or HTML tags. E.g. let's assume we have a file (called "tags.txt") with
content like this:

<composer> Wolfgang Amadeus Mozart </composer>
<author> Samuel Beckett </author>
<city> London </city>

We want to rewrite this text automatically to

composer: Wolfgang Amadeus Mozart
author: Samuel Beckett
city: London

The following little Python script does the trick. The core of this script is the regular expression. This regular
expression works like this: It tries to match a less than symbol "<". After this it is reading lower case letters

Output: '232454, Date: February 12, 2011'

Output: '232454'

Output: 'February 12, 2011'

Output: ('232454', 'February 12, 2011')

REGULAR EXPRESSIONS 318

until it reaches the greater than symbol. Everything encountered within "<" and ">" has been stored in a back
reference which can be accessed within the expression by writing \1. Let's assume \1 contains the value
"composer". When the expression has reached the first ">", it continues matching, as the original expression
had been "(.*)":

import re
fh = open("tags.txt")
for i in fh:

res = re.search(r"<([a-z]+)>(.*)</\1>",i)
print(res.group(1) + ": " + res.group(2))

If there are more than one pair of parenthesis (round brackets) inside the expression, the backreferences are
numbered \1, \2, \3, in the order of the pairs of parenthesis.

Exercise: The next Python example makes use of three back references. We have an imaginary phone list of
the Simpsons in a list. Not all entries contain a phone number, but if a phone number exists it is the first part of
an entry. Then, separated by a blank, a surname follows, which is followed by first names. Surname and first
name are separated by a comma. The task is to rewrite this example in the following way:

Allison Neu 555-8396
C. Montgomery Burns
Lionel Putz 555-5299
Homer Jay Simpson 555-73347

Python script solving the rearrangement problem:

import re
l = ["555-8396 Neu, Allison",

"Burns, C. Montgomery",
"555-5299 Putz, Lionel",
"555-7334 Simpson, Homer Jay"]

for i in l:
res = re.search(r"([0-9-]*)\s*([A-Za-z]+),\s+(.*)", i)
print(res.group(3) + " " + res.group(2) + " " + res.group(1))

composer: Wolfgang Amadeus Mozart
author: Samuel Beckett
city: London

Allison Neu 555-8396
C. Montgomery Burns
Lionel Putz 555-5299
Homer Jay Simpson 555-7334

REGULAR EXPRESSIONS 319

NAMED BACKREFERENCES

In the previous paragraph we introduced "Capturing Groups" and "Back references". More precisely, we could
have called them "Numbered Capturing Groups" and "Numbered Backreferences". Using capturing groups
instead of "numbered" capturing groups allows you to assign descriptive names instead of automatic numbers
to the groups. In the following example, we demonstrate this approach by catching the hours, minutes and
seconds from a UNIX date string.

import re
s = "Sun Oct 14 13:47:03 CEST 2012"
expr = r"\b(?P<hours>\d\d):(?P<minutes>\d\d):(?P<seconds>\d\d)\b"
x = re.search(expr,s)
x.group('hours')

x.group('minutes')

x.start('minutes')

x.end('minutes')

x.span('seconds')

COMPREHENSIVE PYTHON EXERCISE

In this comprehensive exercise, we have to bring the information of two files together. In the first file, we have
a list of nearly 15000 lines of post codes with the corresponding city names plus additional information. Here
are some arbitrary lines of this file:

osm_id ort plz bundesland
1104550 Aach 78267 Baden-Württemberg
...
446465 Freiburg (Elbe) 21729 Niedersachsen
62768 Freiburg im Breisgau 79098 Baden-Württemberg
62768 Freiburg im Breisgau 79100 Baden-Württemberg
62768 Freiburg im Breisgau 79102 Baden-Württemberg
...
454863 Fulda 36037 Hessen

Output: '13'

Output: '47'

Output: 14

Output: 16

Output: (17, 19)

REGULAR EXPRESSIONS 320

454863 Fulda 36039 Hessen
454863 Fulda 36041 Hessen
...
1451600 Gallin 19258 Mecklenburg-Vorpommern
449887 Gallin-Kuppentin 19386 Mecklenburg-Vorpommern
...
57082 Gärtringen 71116 Baden-Württemberg
1334113 Gartz (Oder) 16307 Brandenburg
...
2791802 Giengen an der Brenz 89522 Baden-Württemberg
2791802 Giengen an der Brenz 89537 Baden-Württemberg
...
1187159 Saarbrücken 66133 Saarland
1256034 Saarburg 54439 Rheinland-Pfalz
1184570 Saarlouis 66740 Saarland
1184566 Saarwellingen 66793 Saarland

The other file contains a list of the 19 largest German cities. Each line consists of the rank, the name of the
city, the population, and the state (Bundesland):

1. Berlin 3.382.169 Berlin
2. Hamburg 1.715.392 Hamburg
3. München 1.210.223 Bayern
4. Köln 962.884 Nordrhein-Westfalen
5. Frankfurt am Main 646.550 Hessen
6. Essen 595.243 Nordrhein-Westfalen
7. Dortmund 588.994 Nordrhein-Westfalen
8. Stuttgart 583.874 Baden-Württemberg
9. Düsseldorf 569.364 Nordrhein-Westfalen
10. Bremen 539.403 Bremen
11. Hannover 515.001 Niedersachsen
12. Duisburg 514.915 Nordrhein-Westfalen
13. Leipzig 493.208 Sachsen
14. Nürnberg 488.400 Bayern
15. Dresden 477.807 Sachsen
16. Bochum 391.147 Nordrhein-Westfalen
17. Wuppertal 366.434 Nordrhein-Westfalen
18. Bielefeld 321.758 Nordrhein-Westfalen
19. Mannheim 306.729 Baden-Württemberg

Our task is to create a list with the top 19 cities, with the city names accompanied by the postal code. If you
want to test the following program, you have to save the list above in a file called largest_cities_germany.txt
and you have to download and save the list of German post codes.

import re

REGULAR EXPRESSIONS 321

https://www.python-course.eu/post_codes_germany.txt

with open("zuordnung_plz_ort.txt", encoding="utf-8") as fh_post_co
des:

codes4city = {}
for line in fh_post_codes:

res = re.search(r"[\d]+([^\d]+[a-z])\s(\d+)", line)
if res:

city, post_code = res.groups()
if city in codes4city:

codes4city[city].add(post_code)
else:

codes4city[city] = {post_code}

with open("largest_cities_germany.txt", encoding="utf-8") as fh_la
rgest_cities:

for line in fh_largest_cities:
re_obj = re.search(r"^[0-9]{1,2}\.\s+([\w\s-

]+\w)\s+[0-9]", line)
city = re_obj.group(1)
print(city, codes4city[city])

REGULAR EXPRESSIONS 322

Berlin {'12685', '12279', '12353', '12681', '13465', '12163', '103
65', '12351', '13156', '12629', '12689', '12053', '13086', '1205
7', '12157', '10823', '12621', '14129', '13359', '13435', '1096
3', '12209', '12683', '10369', '10787', '12277', '14059', '1245
9', '13593', '12687', '10785', '12526', '10717', '12487', '1220
3', '13583', '12347', '12627', '10783', '12559', '14050', '1096
9', '10367', '12207', '13409', '10555', '10623', '10249', '1031
5', '12109', '12055', '13353', '13509', '10407', '12051', '1215
9', '10629', '13503', '13591', '10961', '10777', '13439', '1305
7', '10999', '12309', '12437', '10781', '12305', '10965', '1216
7', '10318', '10409', '12359', '10779', '14169', '10437', '1216
1', '10589', '13581', '12679', '13505', '12555', '10405', '1011
9', '13355', '10179', '12357', '13469', '13351', '14055', '1408
9', '10627', '10829', '12107', '12435', '10319', '13507', '1055
1', '13437', '13347', '13627', '12524', '13599', '13189', '1312
9', '13467', '12589', '12489', '10825', '13585', '10625', '1252
7', '13405', '10439', '13597', '10317', '10553', '12101', '1055
7', '12355', '13587', '13053', '10967', '12439', '13589', '1070
7', '13629', '13088', '10719', '10243', '12045', '12105', '1234
9', '13125', '10117', '14199', '13187', '13357', '13349', '1340
3', '10178', '12047', '13055', '12165', '12249', '13407', '1216
9', '12587', '14053', '14052', '12103', '10245', '14193', '1220
5', '10827', '10585', '10587', '12557', '10435', '12623', '1071
3', '12059', '13059', '14109', '13051', '13127', '12307', '1071
5', '14057', '14195', '12619', '13158', '12043', '13089', '1071
1', '10997', '12099', '10247', '10709', '13595', '14165', '1224
7', '13159', '14167', '10789', '12049', '14197', '10559', '1011
5', '14163'}
Hamburg {'22589', '22305', '22587', '22395', '20457', '22391', '22
763', '20359', '22393', '22527', '20249', '22605', '21037', '2749
9', '22547', '20097', '22147', '20255', '22765', '22115', '2230
9', '20259', '22767', '20095', '22399', '22113', '22087', '2112
9', '22299', '22159', '22083', '22455', '20144', '21033', '2211
9', '20354', '22145', '22041', '22049', '21035', '21077', '2009
9', '20459', '20149', '21031', '22453', '20539', '21039', '2229
7', '22149', '20251', '22607', '22529', '22179', '21075', '2233
9', '22397', '22335', '22047', '22175', '22085', '21079', '2230
3', '22111', '22525', '21107', '20537', '22143', '21029', '2208
1', '20253', '22301', '22337', '21109', '22459', '20355', '2255
9', '22549', '22761', '21149', '20357', '22415', '22307', '2217
7', '22045', '20146', '22457', '22089', '22417', '22769', '2241
9', '22117', '22609', '20535', '21073', '20257', '22523', '2235
9', '20148', '22043', '21147'}
München {'81241', '81669', '80336', '80796', '80799', '80339', '80
539', '80689', '80939', '81929', '80634', '81249', '81545', '8046
9', '81475', '80803', '81371', '81373', '81476', '80686', '8099

REGULAR EXPRESSIONS 323

9', '81667', '81927', '80804', '81739', '80997', '80687', '8079
8', '80933', '81477', '81541', '81369', '81379', '81549', '8167
5', '80637', '80801', '80992', '80993', '81377', '81543', '8167
7', '81925', '81479', '81247', '80337', '81673', '85540', '8080
2', '80797', '80333', '80638', '81827', '81671', '80809', '8063
9', '81547', '81825', '81245', '81829', '81243', '81375', '8173
7', '80805', '80335', '81679', '80331', '80636', '80935', '8053
8', '80807', '80937', '81539', '80995', '81735'}
Köln {'50939', '50827', '50668', '50676', '50999', '51065', '5096
8', '50733', '50937', '50769', '51147', '50670', '51061', '5082
3', '50767', '50829', '50674', '51069', '50735', '50672', '5067
9', '50737', '50931', '50678', '50969', '51103', '50667', '5085
8', '50859', '50933', '51105', '51467', '51063', '51107', '5082
5', '50996', '51109', '51145', '50935', '50765', '51067', '5099
7', '51149', '50739', '50677', '51143'}
Frankfurt am Main {'60437', '60311', '60439', '60329', '60549', '6
0320', '60322', '60486', '65934', '60489', '60599', '60438', '6043
1', '60594', '60529', '60488', '60386', '60310', '60306', '6032
5', '60313', '60598', '65931', '60389', '60308', '65936', '6032
7', '60435', '60385', '60316', '60596', '60433', '60318', '6052
8', '65933', '60487', '60314', '60388', '60323', '65929', '60326'}
Essen {'45259', '45276', '45327', '45145', '45138', '45355', '4521
9', '45257', '45326', '45141', '45128', '45277', '45130', '4528
9', '45279', '45139', '45307', '45356', '45136', '45144', '4523
9', '45357', '45147', '45131', '45359', '45127', '45329', '4530
9', '45134', '45143', '45133', '45149'}
Dortmund {'44139', '44263', '44141', '44267', '44265', '44319', '4
4145', '44289', '44339', '44229', '44309', '44357', '44147', '4437
9', '44143', '44149', '44227', '44328', '44135', '44359', '4413
7', '44329', '44269', '44287', '44369', '44388', '44225'}
Stuttgart {'70191', '70186', '70193', '70195', '70176', '70378',
'70197', '70327', '70435', '70192', '70376', '70182', '70174', '70
569', '70190', '70188', '70597', '70374', '70567', '70499', '7059
9', '70184', '70329', '70178', '70565', '70563', '70439', '7062
9', '70469', '70619', '70199', '70372', '70173', '70180', '70437'}
Düsseldorf {'40227', '40215', '40549', '40225', '40593', '40476',
'40625', '40231', '40595', '40221', '40217', '40229', '40470', '40
721', '40489', '40627', '40479', '40212', '40211', '40219', '4023
5', '40547', '40223', '40477', '40629', '40233', '40599', '4058
9', '40597', '40213', '40237', '40472', '40474', '40468', '4059
1', '40210', '40545', '40239'}
Bremen {'28195', '28201', '28215', '27568', '28759', '28307', '287
55', '28217', '28279', '28777', '28213', '28719', '28325', '2819
7', '28779', '28757', '28209', '28309', '28207', '28219', '2827
7', '28203', '28199', '28327', '28237', '28205', '28211', '2832
9', '28717', '28357', '28359', '28355', '28239', '28259'}

REGULAR EXPRESSIONS 324

ANOTHER COMPREHENSIVE EXAMPLE

We want to present another real life example in our Python course. A regular expression for UK postcodes.We
write an expression, which is capable of recognizing the postal codes or postcodes of the UK.

Postcode units consist of between five and seven characters, which are separated into two parts by a space.
The two to four characters before the space represent the so-called outward code or out code intended to
directly mail from the sorting office to the delivery office. The part following the space, which consists of a
digit followed by two uppercase characters, comprises the so-called inward code, which is needed to sort mail

Hannover {'30459', '30519', '30627', '30669', '30539', '30419', '3
0177', '30521', '30629', '30559', '30453', '30655', '30659', '3016
9', '30455', '30449', '30179', '30175', '30625', '30159', '3045
1', '30171', '30457', '30657', '30165', '30173', '30161', '3016
3', '30167'}
Duisburg {'47249', '47229', '47055', '47179', '47138', '47139', '4
7198', '47057', '47166', '47199', '47279', '47169', '47259', '4726
9', '47228', '47137', '47226', '47119', '47051', '47167', '4705
8', '47059', '47239', '47178', '47053'}
Leipzig {'4155', '4289', '4357', '4205', '4349', '4229', '4288',
'4275', '4209', '4179', '4347', '4328', '4177', '4129', '4319', '4
178', '4318', '4277', '4315', '4103', '4105', '4317', '4249', '431
6', '4158', '4329', '4109', '4356', '4279', '4107', '4207', '415
9', '4157', '4299'}
Nürnberg {'90480', '90482', '90427', '90475', '90411', '90471', '9
0439', '90403', '90478', '90451', '90443', '90431', '90453', '9047
3', '90459', '90469', '90402', '90408', '90455', '90489', '9044
1', '90449', '90461', '90419', '90491', '90425', '90409', '90429'}
Dresden {'1159', '1139', '1326', '1187', '1156', '1069', '1108',
'1099', '1465', '1109', '1127', '1169', '1324', '1328', '1259', '1
277', '1239', '1257', '1237', '1217', '1157', '1097', '1219', '130
7', '1309', '1129', '1189', '1279', '1067'}
Bochum {'44869', '44809', '44799', '44787', '44803', '44867', '448
01', '44866', '44795', '44894', '44793', '44805', '44807', '4479
1', '44879', '44797', '44892', '44789'}
Wuppertal {'42389', '42399', '42327', '42115', '42107', '42279',
'42109', '42103', '42369', '42111', '42275', '42117', '42113', '42
283', '42281', '42329', '42105', '42289', '42119', '42277', '4228
7', '42349', '42285'}
Bielefeld {'33613', '33699', '33729', '33611', '33602', '33615',
'33739', '33605', '33659', '33609', '33689', '33617', '33647', '33
619', '33719', '33607', '33604', '33649'}
Mannheim {'68199', '68309', '68239', '68305', '68161', '68167', '6
8165', '68229', '68159', '68307', '68163', '68259', '68169', '6821
9'}

REGULAR EXPRESSIONS 325

at the final delivery office. The last two uppercase characters do not use the letters CIKMOV, so as not to
resemble digits or each other when hand-written.

The outward code can have the following form: One or two uppercase characters, followed by either a digit or
the letter R, optionally followed by an uppercase character or a digit. (We do not consider all the detailed rules
for postcodes, i.e only certain character sets are valid depending on the position and the context.)A regular
expression for matching this superset of UK postcodes looks like this:

r"\b[A-Z]{1,2}[0-9R][0-9A-Z]? [0-9][ABD-HJLNP-UW-Z]{2}\b"

The following Python program uses the regexp above:

import re
example_codes = ["SW1A 0AA", # House of Commons

"SW1A 1AA", # Buckingham Palace
"SW1A 2AA", # Downing Street
"BX3 2BB", # Barclays Bank
"DH98 1BT", # British Telecom
"N1 9GU", # Guardian Newspaper
"E98 1TT", # The Times
"TIM E22", # a fake postcode
"A B1 A22", # not a valid postcode
"EC2N 2DB", # Deutsche Bank
"SE9 2UG", # University of Greenwhich
"N1 0UY", # Islington, London
"EC1V 8DS", # Clerkenwell, London
"WC1X 9DT", # WC1X 9DT
"B42 1LG", # Birmingham
"B28 9AD", # Birmingham
"W12 7RJ", # London, BBC News Centre
"BBC 007" # a fake postcode

]

pc_re = r"[A-z]{1,2}[0-9R][0-9A-Z]? [0-9][ABD-HJLNP-UW-Z]{2}"
for postcode in example_codes:

r = re.search(pc_re, postcode)
if r:

print(postcode + " matched!")
else:

print(postcode + " is not a valid postcode!")

REGULAR EXPRESSIONS 326

SW1A 0AA matched!
SW1A 1AA matched!
SW1A 2AA matched!
BX3 2BB matched!
DH98 1BT matched!
N1 9GU matched!
E98 1TT matched!
TIM E22 is not a valid postcode!
A B1 A22 is not a valid postcode!
EC2N 2DB matched!
SE9 2UG matched!
N1 0UY matched!
EC1V 8DS matched!
WC1X 9DT matched!
B42 1LG matched!
B28 9AD matched!
W12 7RJ matched!
BBC 007 is not a valid postcode!

REGULAR EXPRESSIONS 327

A D V A N C E D R E G U L A R
E X P R E S S I O N S

INTRODUCTION

In our introduction to regular expressions of our tutorial we have covered
the basic principles of regular expressions. We have shown, how the
simplest regular expression looks like. We have also learnt, how to use
regular expressions in Python by using the search() and the match()
methods of the re module. The concept of formulating and using
character classes should be well known by now, as well as the predefined
character classes like \d, \D, \s, \S, and so on. You must have learnt how
to match the beginning and the end of a string with a regular expression.
You must know the special meaning of the question mark to make items
optional. We have also introduced the quantifiers to repeat characters and
groups arbitrarily or in certain ranges.

You must also be familiar with the use of grouping and the syntax and
usage of back references.

Furthermore, we had explained the match objects of the re module and
the information they contain and how to retrieve this information by
using the methods span(), start(), end(), and group().

The introduction ended with a comprehensive example in Python.

In this chapter we will continue with our explanations about the syntax of the regular expressions. We will also
explain further methods of the Python module re. E.g. how to find all the matched substrings of a regular
expression. A task which needs programming in other programming languages like Perl or Java, but can be
dealt with the call of one method of the re module of Python. So far, we only know how to define a choice of
characters with a character class. We will demonstrate how to formulate alternations of substrings in this
chapter of our tutorial,

FINDING ALL MATCHED SUBSTRINGS

The Python module re provides another great method, which other languages like Perl and Java don't provide.
If you want to find all the substrings in a string, which match a regular expression, you have to use a loop in
Perl and other languages, as can be seen in the following Perl snippet:

while ($string =~ m/regex/g) {
print "Found '$&'. Next attempt at character " . pos($string)+1

. "\n";
}

It's a lot easier in Python. No need to loop. We can just use the findall method of the re module:

ADVANCED REGULAR EXPRESSIONS 328

https://www.python-course.eu/python3_re.php

re.findall(pattern, string[, flags])

findall returns all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-
to-right, and matches are returned in the order in which they are found.

t="A fat cat doesn't eat oat but a rat eats bats."
mo = re.findall("[force]at", t)
print(mo)

If one or more groups are present in the pattern, findall returns a list of groups. This will be a list of tuples if
the pattern has more than one group. We demonstrate this in our next example. We have a long string with
various Python training courses and their dates. With the first call to findall, we don't use any grouping and
receive the complete string as a result. In the next call, we use grouping and findall returns a list of 2-tuples,
each having the course name as the first component and the dates as the second component:

import re
courses = "Python Training Course for Beginners: 15/Aug/2011 - 19/
Aug/2011;Python Training Course Intermediate: 12/Dec/2011 - 16/De
c/2011;Python Text Processing Course:31/Oct/2011 - 4/Nov/2011"
items = re.findall("[^:]*:[^;]*;?", courses)
items

items = re.findall("([^:]*):([^;]*;?)", courses)
items

ALTERNATIONS

In our introduction to regular expressions we had introduced character classes. Character classes offer a choice
out of a set of characters. Sometimes we need a choice between several regular expressions. It's a logical "or"
and that's why the symbol for this construct is the "|" symbol. In the following example, we check, if one of

['fat', 'cat', 'eat', 'oat', 'rat', 'eat']

Output: ['Python Training Course for Beginners: 15/Aug/2011 - 19/Aug/
2011;',
'Python Training Course Intermediate: 12/Dec/2011 - 16/Dec/2

011;',
'Python Text Processing Course:31/Oct/2011 - 4/Nov/2011']

Output: [('Python Training Course for Beginners', ' 15/Aug/2011 - 19/
Aug/2011;'),
('Python Training Course Intermediate', ' 12/Dec/2011 - 16/D

ec/2011;'),
('Python Text Processing Course', '31/Oct/2011 - 4/Nov/201

1')]

ADVANCED REGULAR EXPRESSIONS 329

the cities London, Paris, Zurich, Konstanz Bern or Strasbourg appear in a string preceded by the word
"location":

import re
str = "Course location is London or Paris!"
mo = re.search(r"location.*(London|Paris|Zurich|Strasbourg)",str)
if mo: print(mo.group())

If you consider the previous example as too artificial, here is another one. Let's assume, you want to filter your
email. You want to find all the correspondence (conversations) between you and Guido van Rossum, the
creator and designer of Python. The following regular expression is helpful for this purpose:

r"(^To:|^From:) (Guido|van Rossum)"

This expression matches all lines starting with either 'To:' or 'From:', followed by a space and then either by
the first name 'Guido' or the surname 'van Rossum'.

COMPILING REGULAR EXPRESSIONS

If you want to use the same regexp more than once in a script, it might be a good idea to use a regular
expression object, i.e. the regex is compiled.

The general syntax:

re.compile(pattern[, flags])

compile returns a regex object, which can be used later for searching and replacing. The expressions behaviour
can be modified by specifying a flag value.

Abbreviation Full name Description

re.I re.IGNORECASE Makes the regular expression case-insensitive

re.L re.LOCALE
The behaviour of some special sequences like \w, \W, \b,\s, \S will be made dependent on

the current locale, i.e. the user's language, country etc.

re.M re.MULTILINE
^ and $ will match at the beginning and at the end of each line and not just at the

beginning and the end of the string

re.S re.DOTALL The dot "." will match every character plus the newline

re.U re.UNICODE Makes \w, \W, \b, \B, \d, \D, \s, \S dependent on Unicode character properties

location is London or Paris

ADVANCED REGULAR EXPRESSIONS 330

re.X re.VERBOSE

Allowing "verbose regular expressions", i.e. whitespace are ignored. This means that
spaces, tabs, and carriage returns are not matched as such. If you want to match a space in

a verbose regular expression, you'll need to escape it by escaping it with a backslash in
front of it or include it in a character class.

are also ignored, except when in a character class or preceded by an non-escaped
backslash. Everything following a "#" will be ignored until the end of the line, so this

character can be used to start a comment.

Compiled regular objects usually are not saving much time, because Python internally compiles AND
CACHES regexes whenever you use them with re.search() or re.match(). The only extra time a non-compiled
regex takes is the time it needs to check the cache, which is a key lookup of a dictionary.

A good reason to use them is to separate the definition of a regex from its use.

EXAMPLE

We have already introduced a regular expression for matching a superset of UK postcodes in our introductory
chapter:

r"[A-z]{1,2}[0-9R][0-9A-Z]? [0-9][ABD-HJLNP-UW-Z]{2}"

We demonstrate with this regular expression, how we can use the compile functionality of the module re in the
following interactive session. The regular expression "regex" is compiled with re.compile(regex) and the
compiled object is saved in the object compiled_re. Now we call the method search() of the object
compiled_re:

import re
regex = r"[A-z]{1,2}[0-9R][0-9A-Z]? [0-9][ABD-HJLNP-UW-Z]{2}"
address = "BBC News Centre, London, W12 7RJ"
compiled_re = re.compile(regex)
res = compiled_re.search(address)
print(res)

SPLITTING A STRING WITH OR WITHOUT REGULAR EXPRESSIONS

There is a string method split, which can be used to split a string into a list of substrings.

str.split([sep[, maxsplit]])

As you can see, the method split has two optional parameters. If none is given (or is None) , a string will be
separated into substring using whitespaces as delimiters, i.e. every substring consisting purely of whitespaces
is used as a delimiter.

<re.Match object; span=(25, 32), match='W12 7RJ'>

ADVANCED REGULAR EXPRESSIONS 331

We demonstrate this behaviour with a famous quotation by Abraham Lincoln:

law_courses = "Let reverence for the laws be breathed by every Ame
rican mother to the lisping babe that prattles on her lap. Let it
be taught in schools, in seminaries, and in colleges. Let it be wr
itten in primers, spelling books, and in almanacs. Let it be preac
hed from the pulpit, proclaimed in legislative halls, and enforce
d in the courts of justice. And, in short, let it become the polit
ical religion of the nation."
law_courses.split()

ADVANCED REGULAR EXPRESSIONS 332

Output: ['Let',
'reverence',
'for',
'the',
'laws',
'be',
'breathed',
'by',
'every',
'American',
'mother',
'to',
'the',
'lisping',
'babe',
'that',
'prattles',
'on',
'her',
'lap.',
'Let',
'it',
'be',
'taught',
'in',
'schools,',
'in',
'seminaries,',
'and',
'in',
'colleges.',
'Let',
'it',
'be',
'written',
'in',
'primers,',
'spelling',
'books,',
'and',
'in',
'almanacs.',
'Let',
'it',
'be',
'preached',

ADVANCED REGULAR EXPRESSIONS 333

Now we look at a string, which could stem from an Excel or an OpenOffice calc file. We have seen in our
previous example that split takes whitespaces as default separators. We want to split the string in the following
little example using semicolons as separators. The only thing we have to do is to use ";" as an argument of
split():

line = "James;Miller;teacher;Perl"
line.split(";")

The method split() has another optional parameter: maxsplit. If maxsplit is given, at most maxsplit splits are
done. This means that the resulting list will have at most "maxsplit + 1" elements. We will illustrate the mode
of operation of maxsplit in the next example:

mammon = "The god of the world's leading religion. The chief templ
e is in the holy city of New York."
mammon.split(" ",3)

'from',
'the',
'pulpit,',
'proclaimed',
'in',
'legislative',
'halls,',
'and',
'enforced',
'in',
'the',
'courts',
'of',
'justice.',
'And,',
'in',
'short,',
'let',
'it',
'become',
'the',
'political',
'religion',
'of',
'the',
'nation.']

Output: ['James', 'Miller', 'teacher', 'Perl']

ADVANCED REGULAR EXPRESSIONS 334

We used a Blank as a delimiter string in the previous example, which can be a problem: If multiple blanks or
whitespaces are connected, split() will split the string after every single blank, so that we will get empty
strings and strings with only a tab inside ('\t') in our result list:

mammon = "The god \t of the world's leading religion. The chief t
emple is in the holy city of New York."
mammon.split(" ",5)

We can prevent the separation of empty strings by using None as the first argument. Now split will use the
default behaviour, i.e. every substring consisting of connected whitespace characters will be taken as one
separator:

mammon.split(None,5)

REGULAR EXPRESSION SPLIT

The string method split() is the right tool in many cases, but what, if you want e.g. to get the bare words of a
text, i.e. without any special characters and whitespaces. If we want this, we have to use the split function
from the re module. We illustrate this method with a short text from the beginning of Metamorphoses by Ovid:

import re
metamorphoses = "OF bodies chang'd to various forms, I sing: Ye Go

Output: ['The',
'god',
'of',
"the world's leading religion. The chief temple is in the ho

ly city of New York."]

Output: ['The',
'god',
'',
'\t',
'of',
"the world's leading religion. The chief temple is in the ho

ly city of New York."]

Output: ['The',
'god',
'of',
'the',
"world's",
'leading religion. The chief temple is in the holy city of N

ew York.']

ADVANCED REGULAR EXPRESSIONS 335

ds, from whom these miracles did spring, Inspire my numbers with c
oelestial heat;"
re.split("\W+",metamorphoses)

The following example is a good case, where the regular expression is really superior to the string split. Let's
assume that we have data lines with surnames, first names and professions of names. We want to clear the data
line of the superfluous and redundant text descriptions, i.e. "surname: ", "prename: " and so on, so that we
have solely the surname in the first column, the first name in the second column and the profession in the third
column:

import re
lines = ["surname: Obama, prename: Barack, profession: presiden
t", "surname: Merkel, prename: Angela, profession: chancellor"]
for line in lines:

print(re.split(",* *\w*: ", line))

We can easily improve the script by using a slice operator, so that we don't have the empty string as the first

Output: ['OF',
'bodies',
'chang',
'd',
'to',
'various',
'forms',
'I',
'sing',
'Ye',
'Gods',
'from',
'whom',
'these',
'miracles',
'did',
'spring',
'Inspire',
'my',
'numbers',
'with',
'coelestial',
'heat',
'']

['', 'Obama', 'Barack', 'president']
['', 'Merkel', 'Angela', 'chancellor']

ADVANCED REGULAR EXPRESSIONS 336

element of our result lists:

import re
lines = ["surname: Obama, prename: Barack, profession: presiden
t", "surname: Merkel, prename: Angela, profession: chancellor"]
for line in lines:

print(re.split(",* *\w*: ", line)[1:])

And now for something completely different: There is a connection between Barack Obama and Python, or
better Monty Python. John Cleese, one of the members of Monty Python told the Western Daily Press in April
2008: "I'm going to offer my services to him as a speech writer because I think he is a brilliant man."

SEARCH AND REPLACE WITH SUB

re.sub(regex, replacement, subject)

Every match of the regular expression regex in the string subject will be replaced by the string replacement.
Example:

import re
str = "yes I said yes I will Yes."
res = re.sub("[yY]es","no", str)
print(res)

EXERCISES

EXERCISE 1

Given is a file with the name 'order_journal.txt' in the following format:

%%writefile order_journal.txt
customer-id 1289
T83456
customer-id 1289
customer-id 1205
T10032
B77301
customer-id 1205

['Obama', 'Barack', 'president']
['Merkel', 'Angela', 'chancellor']

no I said no I will no.

ADVANCED REGULAR EXPRESSIONS 337

customer-id 1410
K34001
T98987
customer-id 1410
customer-id 1205
T10786
C77502
customer-id 1205
customer-id 1289
Z22334
customer-id 1289

Write a new file 'order_journal_regrouped.txt', in which the data is regrouped in the following way:

1289,T83456
1289,Z22334
1205,T10032
1205,B77301
1205,T10786
1205,C77502
1410,K34001
1410,T98987

SOLUTIONS

SOLUTION TO EXERCISE 1

import re
txt = open("order_journal.txt").read()

data = {} # will contain the chustomer-id as keys and the oder
s as a value string
for x in re.finditer(r"customer-id ([\d\n]{4})(.*?)customer-id
\1", txt, re.DOTALL):

key, values = x.groups()

if key in data:
data[key] += values

else:
data[key] = values

with open("order_journal_regrouped.txt", "w") as fh:
for key in data:

Overwriting order_journal.txt

ADVANCED REGULAR EXPRESSIONS 338

for art_no in data[key].split():
fh.write(f"{key},{art_no}\n")

We can check the content of the newly created file:

content = open("order_journal_regrouped.txt").read()
print(content)
1289,T83456
1289,Z22334
1205,T10032
1205,B77301
1205,T10786
1205,C77502
1410,K34001
1410,T98987

ADVANCED REGULAR EXPRESSIONS 339

L A M B D A , F I L T E R , R E D U C E A N D
M A P

If Guido van Rossum, the author of the programming language Python,
had got his will, this chapter would have been missing in our tutorial. In
his article from May 2005 "All Things Pythonic: The fate of reduce() in
Python 3000", he gives his reasons for dropping lambda, map(), filter()
and reduce(). He expected resistance from the Lisp and the scheme
"folks". What he didn't anticipate was the rigidity of this opposition.
Enough that Guido van Rossum wrote hardly a year later: "After so
many attempts to come up with an alternative for lambda, perhaps we
should admit defeat. I've not had the time to follow the most recent
rounds, but I propose that we keep lambda, so as to stop wasting
everybody's talent and time on an impossible quest." We can see the
result: lambda, map() and filter() are still part of core Python. Only
reduce() had to go; it moved into the module functools.

His reasoning for dropping them is like this:

• There is an equally powerful alternative to lambda, filter, map and reduce, i.e. list
comprehension

• List comprehension(is more evident and easier to understand
• Having both list comprehension and "Filter, map, reduce and lambda" is transgressing the

Python motto "There should be one obvious way to solve a problem"

Some like it, others hate it and many are afraid of the lambda operator. The lambda operator or lambda
function is a way to create small anonymous functions, i.e. functions without a name. These functions are
throw-away functions, i.e. they are just needed where they have been created. Lambda functions are mainly
used in combination with the functions filter(), map() and reduce(). The lambda feature was added to Python
due to the demand from Lisp programmers.

The general syntax of a lambda function is quite simple:

lambda argument_list: expression

The argument list consists of a comma separated list of arguments and the expression is an arithmetic
expression using these arguments. You can assign the function to a variable to give it a name.

The following example of a lambda function returns the sum of its two arguments:

sum = lambda x, y : x + y
sum(3,4)

Output: 7

LAMBDA, FILTER, REDUCE AND MAP 340

The above example might look like a plaything for a mathematician. A formalism which turns an easy to
comprehend issue into an abstract harder to grasp formalism. Above all, we could have had the same effect by
just using the following conventional function definition:

def sum(x,y):
return x + y

sum(3,4)

We can assure you that the advantages of this approach will be apparent, when you will have learnt to use the
map() function.

THE MAP() FUNCTION

As we have mentioned earlier, the advantage of the lambda operator can be seen when it is used in
combination with the map() function. map() is a function which takes two arguments:

r = map(func, seq)

The first argument func is the name of a function and the second a sequence (e.g. a list) seq. map() applies the
function func to all the elements of the sequence seq. Before Python3, map() used to return a list, where each
element of the result list was the result of the function func applied on the corresponding element of the list or
tuple "seq". With Python 3, map() returns an iterator.

The following example illustrates the way of working of map():

def fahrenheit(T):
return ((float(9)/5)*T + 32)

def celsius(T):
return (float(5)/9)*(T-32)

temperatures = (36.5, 37, 37.5, 38, 39)
F = map(fahrenheit, temperatures)
C = map(celsius, F)
temperatures_in_Fahrenheit = list(map(fahrenheit, temperatures))
temperatures_in_Celsius = list(map(celsius, temperatures_in_Fahren
heit))
print(temperatures_in_Fahrenheit)
print(temperatures_in_Celsius)

Output: 7

[97.7, 98.60000000000001, 99.5, 100.4, 102.2]
[36.5, 37.00000000000001, 37.5, 38.00000000000001, 39.0]

LAMBDA, FILTER, REDUCE AND MAP 341

In the example above we haven't used lambda. By using lambda, we wouldn't have had to define and name the
functions fahrenheit() and celsius(). You can see this in the following interactive session:

C = [39.2, 36.5, 37.3, 38, 37.8]
F = list(map(lambda x: (float(9)/5)*x + 32, C))
print(F)

C = list(map(lambda x: (float(5)/9)*(x-32), F))
print(C)

map() can be applied to more than one list. The lists don't have to have the same length. map() will apply its
lambda function to the elements of the argument lists, i.e. it first applies to the elements with the 0th index,
then to the elements with the 1st index until the n-th index is reached:

a = [1, 2, 3, 4]
b = [17, 12, 11, 10]
c = [-1, -4, 5, 9]
list(map(lambda x, y, z : x+y+z, a, b, c))

list(map(lambda x, y : x+y, a, b))

list(map(lambda x, y, z : 2.5*x + 2*y - z, a, b, c))

If one list has fewer elements than the others, map will stop when the shortest list has been consumed:

a = [1, 2, 3]
b = [17, 12, 11, 10]
c = [-1, -4, 5, 9]

list(map(lambda x, y, z : 2.5*x + 2*y - z, a, b, c))

We can see in the example above that the parameter x gets its values from the list a, while y gets its values

[102.56, 97.7, 99.14, 100.4, 100.03999999999999]

[39.2, 36.5, 37.300000000000004, 38.00000000000001, 37.8]

Output: [17, 10, 19, 23]

Output: [18, 14, 14, 14]

Output: [37.5, 33.0, 24.5, 21.0]

Output: [37.5, 33.0, 24.5]

LAMBDA, FILTER, REDUCE AND MAP 342

from b, and z from list c.

MAPPING A LIST OF FUNCTIONS

The map function of the previous chapter was used to apply one function to one or more iterables. We will
now write a function which applies a bunch of functions, which may be an iterable such as a list or a tuple, for
example, to one Python object.

from math import sin, cos, tan, pi

def map_functions(x, functions):
""" map an iterable of functions on the the object x """
res = []
for func in functions:

res.append(func(x))
return res

family_of_functions = (sin, cos, tan)
print(map_functions(pi, family_of_functions))

The previously defined map_functions function can be simplified with the list comprehension technique,
which we will cover in the chapter list comprehension:

def map_functions(x, functions):
return [func(x) for func in functions]

FILTERING

The function

filter(function, sequence)

offers an elegant way to filter out all the elements of a sequence "sequence", for which the function function
returns True. i.e. an item will be produced by the iterator result of filter(function, sequence) if item is included
in the sequence "sequence" and if function(item) returns True.

In other words: The function filter(f,l) needs a function f as its first argument. f has to return a Boolean value,
i.e. either True or False. This function will be applied to every element of the list l. Only if f returns True will
the element be produced by the iterator, which is the return value of filter(function, sequence).

In the following example, we filter out first the odd and then the even elements of the sequence of the first 11
Fibonacci numbers:

[1.2246467991473532e-16, -1.0, -1.2246467991473532e-16]

LAMBDA, FILTER, REDUCE AND MAP 343

https://www.python-course.eu/python3_list_comprehension.php

fibonacci = [0,1,1,2,3,5,8,13,21,34,55]
odd_numbers = list(filter(lambda x: x % 2, fibonacci))
print(odd_numbers)

even_numbers = list(filter(lambda x: x % 2 == 0, fibonacci))
print(even_numbers)

even_numbers = list(filter(lambda x: x % 2 -1, fibonacci))
print(even_numbers)

REDUCING A LIST

As we mentioned in the introduction of this chapter of our tutorial. reduce() had been dropped from the core of
Python when migrating to Python 3. Guido van Rossum hates reduce(), as we can learn from his statement in a
posting, March 10, 2005, in artima.com:

"So now reduce(). This is actually the one I've always hated most,
because, apart from a few examples involving + or *, almost every t
ime I see a reduce() call with a non-trivial function argument, I n
eed to grab pen and paper to diagram what's actually being fed int
o that function before I understand what the reduce() is supposed t
o do. So in my mind, the applicability of reduce() is pretty much l
imited to associative operators, and in all other cases it's bette
r to write out the accumulation loop explicitly."

The function

reduce(func, seq)

continually applies the function func() to the sequence seq. It returns a single value.

If seq = [s1, s2, s3, ... , sn], calling reduce(func, seq) works like this:

At first the first two elements of seq will be applied to func,
i.e. func(s1,s2) The list on which reduce() works looks now like th
is: [func(s1, s2), s3, ... , sn]
In the next step func will be applied on the previous result and th
e third element of the list, i.e. func(func(s1, s2),s3)
The list looks like this now: [func(func(s1, s2),s3), ... , sn]
Continues like this until just one element is left and returns thi
s element as the result of reduce()

[1, 1, 3, 5, 13, 21, 55]

[0, 2, 8, 34]

[0, 2, 8, 34]

LAMBDA, FILTER, REDUCE AND MAP 344

If n is equal to 4 the previous explanation can be illustrated like this:

We want to illustrate this way of working of reduce() with a simple example. We have to import functools to
be capable of using reduce:

import functools
functools.reduce(lambda x,y: x+y, [47,11,42,13])

The following diagram shows the intermediate steps of the calculation:

Output: 113

LAMBDA, FILTER, REDUCE AND MAP 345

EXAMPLES OF REDUCE()

Determining the maximum of a list of numerical values by using reduce:

from functools import reduce
f = lambda a,b: a if (a > b) else b
reduce(f, [47,11,42,102,13])

Calculating the sum of the numbers from 1 to 100:

from functools import reduce
reduce(lambda x, y: x+y, range(1,101))

It's very simple to change the previous example to calculate the product (the factorial) from 1 to a number, but
do not choose 100. We just have to turn the "+" operator into "*":

reduce(lambda x, y: x*y, range(1,49))

If you are into lottery, here are the chances to win a 6 out of 49 drawing:

reduce(lambda x, y: x*y, range(44,50))/reduce(lambda x, y: x*y, ra
nge(1,7))

EXERCISES

1) Imagine an accounting routine used in a book shop. It works on a list with sublists, which look like this:

Order Number Book Title and Author Quantity Pri
ce per Item
34587 Learning Python, Mark Lutz 4 4
0.95
98762 Programming Python, Mark Lutz 5 5
6.80
77226 Head First Python, Paul Barry 3 3
2.95
88112 Einführung in Python3, Bernd Klein 3 2

Output: 102

Output: 5050

Output: 1241391559253607267086228904737337503852148635467776000000000
0

Output: 13983816.0

LAMBDA, FILTER, REDUCE AND MAP 346

4.99

Write a Python program, which returns a list with 2-tuples. Each tu
ple consists of a the order number and the product of the price pe
r items and the quantity. The product should be increased by 10,-
€ if the value of the order is smaller than 100,00 €.
Write a Python program using lambda and map.

2) The same bookshop, but this time we work on a different list. The sublists of our lists look like this:
[ordernumber, (article number, quantity, price per unit), ... (article number, quantity, price per unit)] Write a
program which returns a list of two tuples with (order number, total amount of order).

SOLUTIONS TO THE EXERCISES
orders = [["34587", "Learning Python, Mark Lutz", 4, 40.95],

["98762", "Programming Python, Mark Lutz", 5, 56.80],
["77226", "Head First Python, Paul Barry", 3,32.95],
["88112", "Einführung in Python3, Bernd Klei

n", 3, 24.99]]

min_order = 100
invoice_totals = list(map(lambda x: x if x[1] >= min_order else
(x[0], x[1] + 10),

map(lambda x: (x[0],x[2] * x[3]), orders)))

print(invoice_totals)

from functools import reduce

orders = [[1, ("5464", 4, 9.99), ("8274",18,12.99), ("9744", 9, 4
4.95)],

[2, ("5464", 9, 9.99), ("9744", 9, 44.95)],
[3, ("5464", 9, 9.99), ("88112", 11, 24.99)],
[4, ("8732", 7, 11.99), ("7733",11,18.99), ("88112",

5, 39.95)]]

min_order = 100
invoice_totals = list(map(lambda x: [x[0]] + list(map(lambda y:
y[1]*y[2], x[1:])), orders))
invoice_totals = list(map(lambda x: [x[0]] + [reduce(lambda a,b:

[('34587', 163.8), ('98762', 284.0), ('77226', 108.8500000000000
1), ('88112', 84.97)]

LAMBDA, FILTER, REDUCE AND MAP 347

a + b, x[1:])], invoice_totals))
invoice_totals = list(map(lambda x: x if x[1] >= min_order else
(x[0], x[1] + 10), invoice_totals))

print (invoice_totals)
[[1, 678.3299999999999], [2, 494.46000000000004], [3, 364.79999999
999995], [4, 492.57]]

LAMBDA, FILTER, REDUCE AND MAP 348

L I S T C O M P R E H E N S I O N

INTRODUCTION

We learned in the previous chapter "Lambda Operator, Filter, Reduce and
Map" that Guido van Rossum prefers list comprehensions to constructs using
map, filter, reduce and lambda. In this chapter we will cover the essentials
about list comprehensions.

List comprehensions were added with Python 2.0. Essentially, it is Python's
way of implementing a well-known notation for sets as used by
mathematicians. In mathematics the square numbers of the natural numbers
are, for example, created by { x2 | x ∈ ℕ } or the set of complex integers {
(x,y) | x ∈ ℤ ∧ y ∈ ℤ }.

List comprehension is an elegant way to define and create lists in Python.
These lists have often the qualities of sets, but are not necessarily sets.

List comprehension is a complete substitute for the lambda function as well as the functions map(), filter() and
reduce(). For most people the syntax of list comprehension is easier to be grasped.

EXAMPLES

In the chapter on lambda and map() we designed a map() function to convert Celsius values into Fahrenheit
and vice versa. It looks like this with list comprehension:

Celsius = [39.2, 36.5, 37.3, 37.8]
Fahrenheit = [((float(9)/5)*x + 32) for x in Celsius]
print(Fahrenheit)

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is
commonly written (a, b, c), and the best known example is (3, 4, 5). The following list comprehension creates
the Pythagorean triples:

[(x,y,z) for x in range(1,30) for y in range(x,30) for z in rang
e(y,30) if x**2 + y**2 == z**2]

[102.56, 97.7, 99.14, 100.03999999999999]

LIST COMPREHENSION 349

Another example: Let A and B be two sets, the cross product (or Cartesian product) of A and B, written A×B,
is the set of all pairs wherein the first element is a member of the set A and the second element is a member of
the set B.

Mathematical definition: A×B = {(a, b) : a belongs to A, b belongs to B}. It's easy to be accomplished in
Python:

colours = ["red", "green", "yellow", "blue"]
things = ["house", "car", "tree"]
coloured_things = [(x,y) for x in colours for y in things]
print(coloured_things)

GENERATOR COMPREHENSION

Generator comprehensions were introduced with Python 2.6. They are simply like a list comprehension but
with parentheses - round brackets - instead of (square) brackets around it. Otherwise, the syntax and the way
of working is like list comprehension, but a generator comprehension returns a generator instead of a list.

x = (x **2 for x in range(20))
print(x)
x = list(x)
print(x)

Output: [(3, 4, 5),
(5, 12, 13),
(6, 8, 10),
(7, 24, 25),
(8, 15, 17),
(9, 12, 15),
(10, 24, 26),
(12, 16, 20),
(15, 20, 25),
(20, 21, 29)]

[('red', 'house'), ('red', 'car'), ('red', 'tree'), ('green', 'hou
se'), ('green', 'car'), ('green', 'tree'), ('yellow', 'house'),
('yellow', 'car'), ('yellow', 'tree'), ('blue', 'house'), ('blu
e', 'car'), ('blue', 'tree')]

<generator object <genexpr> at 0x000002441374D1C8>
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 22
5, 256, 289, 324, 361]

LIST COMPREHENSION 350

A MORE DEMANDING EXAMPLE

Calculation of the prime numbers between 1 and 100 using the sieve of Eratosthenes:

noprimes = [j for i in range(2, 8) for j in range(i*2, 100, i)]
primes = [x for x in range(2, 100) if x not in noprimes]
print(primes)

We want to bring the previous example into more general form, so that we can calculate the list of prime
numbers up to an arbitrary number n:

from math import sqrt
n = 100
sqrt_n = int(sqrt(n))
no_primes = [j for i in range(2, sqrt_n+1) for j in range(i*2, n,
i)]
no_primes

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 6
1, 67, 71, 73, 79, 83, 89, 97]

LIST COMPREHENSION 351

Output: [4,
6,
8,
10,
12,
14,
16,
18,
20,
22,
24,
26,
28,
30,
32,
34,
36,
38,
40,
42,
44,
46,
48,
50,
52,
54,
56,
58,
60,
62,
64,
66,
68,
70,
72,
74,
76,
78,
80,
82,
84,
86,
88,
90,
92,
94,

LIST COMPREHENSION 352

96,
98,
6,
9,
12,
15,
18,
21,
24,
27,
30,
33,
36,
39,
42,
45,
48,
51,
54,
57,
60,
63,
66,
69,
72,
75,
78,
81,
84,
87,
90,
93,
96,
99,
8,
12,
16,
20,
24,
28,
32,
36,
40,
44,
48,
52,

LIST COMPREHENSION 353

56,
60,
64,
68,
72,
76,
80,
84,
88,
92,
96,
10,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
65,
70,
75,
80,
85,
90,
95,
12,
18,
24,
30,
36,
42,
48,
54,
60,
66,
72,
78,
84,
90,
96,
14,
21,

LIST COMPREHENSION 354

If we have a look at the content of no_primes, we can see that we have a problem. There are lots of double
entries contained in this list:

28,
35,
42,
49,
56,
63,
70,
77,
84,
91,
98,
16,
24,
32,
40,
48,
56,
64,
72,
80,
88,
96,
18,
27,
36,
45,
54,
63,
72,
81,
90,
99,
20,
30,
40,
50,
60,
70,
80,
90]

LIST COMPREHENSION 355

Output: [4,
6,
8,
10,
12,
14,
16,
18,
20,
22,
24,
26,
28,
30,
32,
34,
36,
38,
40,
42,
44,
46,
48,
50,
52,
54,
56,
58,
60,
62,
64,
66,
68,
70,
72,
74,
76,
78,
80,
82,
84,
86,
88,
90,
92,
94,

LIST COMPREHENSION 356

96,
98,
6,
9,
12,
15,
18,
21,
24,
27,
30,
33,
36,
39,
42,
45,
48,
51,
54,
57,
60,
63,
66,
69,
72,
75,
78,
81,
84,
87,
90,
93,
96,
99,
8,
12,
16,
20,
24,
28,
32,
36,
40,
44,
48,
52,

LIST COMPREHENSION 357

56,
60,
64,
68,
72,
76,
80,
84,
88,
92,
96,
10,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
65,
70,
75,
80,
85,
90,
95,
12,
18,
24,
30,
36,
42,
48,
54,
60,
66,
72,
78,
84,
90,
96,
14,
21,

LIST COMPREHENSION 358

The solution to this unbearable problem is easier than you may think. It's just a matter of changing square
brackets into braces, or in other words: We will use set comprehension.

28,
35,
42,
49,
56,
63,
70,
77,
84,
91,
98,
16,
24,
32,
40,
48,
56,
64,
72,
80,
88,
96,
18,
27,
36,
45,
54,
63,
72,
81,
90,
99,
20,
30,
40,
50,
60,
70,
80,
90]

LIST COMPREHENSION 359

SET COMPREHENSION

A set comprehension is similar to a list comprehension, but returns a set and not a list. Syntactically, we use
curly brackets instead of square brackets to create a set. Set comprehension is the right functionality to solve
our problem from the previous subsection. We are able to create the set of non primes without doublets:

from math import sqrt
n = 100
sqrt_n = int(sqrt(n))
no_primes = {j for i in range(2, sqrt_n+1) for j in range(i*2, n,
i)}
no_primes

LIST COMPREHENSION 360

Output: {4,
6,
8,
9,
10,
12,
14,
15,
16,
18,
20,
21,
22,
24,
25,
26,
27,
28,
30,
32,
33,
34,
35,
36,
38,
39,
40,
42,
44,
45,
46,
48,
49,
50,
51,
52,
54,
55,
56,
57,
58,
60,
62,
63,
64,
65,

LIST COMPREHENSION 361

primes = {i for i in range(2, n) if i not in no_primes}
print(primes)

RECURSIVE FUNCTION TO CALCULATE THE PRIMES

The following Python script uses a recursive function to calculate the prime numbers. It incorporates the fact
that it is enough to examine the multiples of the prime numbers up to the square root of n:

from math import sqrt
def primes(n):

if n == 0:
return []

elif n == 1:
return []

else:

66,
68,
69,
70,
72,
74,
75,
76,
77,
78,
80,
81,
82,
84,
85,
86,
87,
88,
90,
91,
92,
93,
94,
95,
96,
98,
99}

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 6
1, 67, 71, 73, 79, 83, 89, 97}

LIST COMPREHENSION 362

p = primes(int(sqrt(n)))
no_p = {j for i in p for j in range(i*2, n+1, i)}
p = {x for x in range(2, n + 1) if x not in no_p}

return p

for i in range(1,50):
print(i, primes(i))

LIST COMPREHENSION 363

1 []
2 {2}
3 {2, 3}
4 {2, 3}
5 {2, 3, 5}
6 {2, 3, 5}
7 {2, 3, 5, 7}
8 {2, 3, 5, 7}
9 {2, 3, 5, 7}
10 {2, 3, 5, 7}
11 {2, 3, 5, 7, 11}
12 {2, 3, 5, 7, 11}
13 {2, 3, 5, 7, 11, 13}
14 {2, 3, 5, 7, 11, 13}
15 {2, 3, 5, 7, 11, 13}
16 {2, 3, 5, 7, 11, 13}
17 {2, 3, 5, 7, 11, 13, 17}
18 {2, 3, 5, 7, 11, 13, 17}
19 {2, 3, 5, 7, 11, 13, 17, 19}
20 {2, 3, 5, 7, 11, 13, 17, 19}
21 {2, 3, 5, 7, 11, 13, 17, 19}
22 {2, 3, 5, 7, 11, 13, 17, 19}
23 {2, 3, 5, 7, 11, 13, 17, 19, 23}
24 {2, 3, 5, 7, 11, 13, 17, 19, 23}
25 {2, 3, 5, 7, 11, 13, 17, 19, 23}
26 {2, 3, 5, 7, 11, 13, 17, 19, 23}
27 {2, 3, 5, 7, 11, 13, 17, 19, 23}
28 {2, 3, 5, 7, 11, 13, 17, 19, 23}
29 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
30 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
31 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
32 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
33 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
34 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
35 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
36 {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
37 {2, 3, 5, 37, 7, 11, 13, 17, 19, 23, 29, 31}
38 {2, 3, 5, 37, 7, 11, 13, 17, 19, 23, 29, 31}
39 {2, 3, 5, 37, 7, 11, 13, 17, 19, 23, 29, 31}
40 {2, 3, 5, 37, 7, 11, 13, 17, 19, 23, 29, 31}
41 {2, 3, 5, 37, 7, 41, 11, 13, 17, 19, 23, 29, 31}
42 {2, 3, 5, 37, 7, 41, 11, 13, 17, 19, 23, 29, 31}
43 {2, 3, 5, 37, 7, 41, 11, 43, 13, 17, 19, 23, 29, 31}
44 {2, 3, 5, 37, 7, 41, 11, 43, 13, 17, 19, 23, 29, 31}
45 {2, 3, 5, 37, 7, 41, 11, 43, 13, 17, 19, 23, 29, 31}
46 {2, 3, 5, 37, 7, 41, 11, 43, 13, 17, 19, 23, 29, 31}

LIST COMPREHENSION 364

DIFFERENCES BETWEEN VERSION 2.X AND 3.X

In Python 2, the loop control variable is not local, i.e. it can change another variable of that name outside of
the list comprehension, as we can see in the following example:

x = "This value will be changed in the list comprehension"
res = [x for x in range(3)]
res
[0, 1, 2]
x
2
res = [i for i in range(5)]
i
4

Guido van Rossum referred to this effect as "one of Python's 'dirty little secrets' for years".1 The reason for
doing this was efficiency. "It started out as an intentional compromise to make list comprehensions blindingly
fast, and while it was not a common pitfall for beginners, it definitely stung people occasionally."2

This "dirty little secret" is fixed in Python3, as you can see in the following code:

x = "Python 3 fixed the dirty little secret"
res = [x for x in range(3)]
print(res)
[0, 1, 2]
x

Footnotes: 1 Guido van Rossum: From List Comprehensions to Generator Expressions

2 dto.

47 {2, 3, 5, 37, 7, 41, 11, 43, 13, 47, 17, 19, 23, 29, 31}
48 {2, 3, 5, 37, 7, 41, 11, 43, 13, 47, 17, 19, 23, 29, 31}
49 {2, 3, 5, 37, 7, 41, 11, 43, 13, 47, 17, 19, 23, 29, 31}

[0, 1, 2]
Output: 'Python 3 fixed the dirty little secret'

LIST COMPREHENSION 365

G E N E R A T O R S A N D I T E R A T O R S

INTRODUCTION

What is an iterator? Iterators are objects that can be
iterated over like we do in a for loop. We can also say that
an iterator is an object, which returns data, one element at
a time. That is, they do not do any work until we explicitly
ask for their next item. They work on a principle, which is
known in computer science as lazy evaluation. Lazy
evaluation is an evaluation strategy which delays the
evaluation of an expression until its value is really needed.
Due to the laziness of Python iterators, they are a great
way to deal with infinity, i.e. iterables which can iterate for
ever. You can hardly find Python programs that are not
teaming with iterators.

Iterators are a fundamental concept of Python. You already
learned in your first Python programs that you can iterate
over container objects such as lists and strings. To do this,
Python creates an iterator version of the list or string. In this case, an iterator can be seen as a pointer to a
container, which enables us to iterate over all the elements of this container. An iterator is an abstraction,
which enables the programmer to access all the elements of an iterable object (a set, a string, a list etc.)
without any deeper knowledge of the data structure of this object.

Generators are a special kind of function, which enable us to implement or generate iterators.

Mostly, iterators are implicitly used, like in the for-loop of Python. We demonstrate this in the following
example. We are iterating over a list, but you shouldn't be mistaken: A list is not an iterator, but it can be used
like an iterator:

cities = ["Paris", "Berlin", "Hamburg",
"Frankfurt", "London", "Vienna",
"Amsterdam", "Den Haag"]

for location in cities:
print("location: " + location)

location: Paris
location: Berlin
location: Hamburg
location: Frankfurt
location: London
location: Vienna
location: Amsterdam
location: Den Haag

GENERATORS AND ITERATORS 366

What is really going on when a for loop is executed? The function 'iter' is applied to the object following the
'in' keyword, e.g. for i in o:. Two cases are possible: o is either iterable or not. If o is not iterable, an exception
will be raised, saying that the type of the object is not iterable. On the other hand, if o is iterable the call iter(o)
will return an iterator, let us call it iterator_obj The for loop uses this iterator to iterate over the object o by
using the next method. The for loop stops when next(iterator_obj) is exhausted, which means it returns a
StopIteration exception. We demonstrate this behaviour in the following code example:

expertises = ["Python Beginner",
"Python Intermediate",
"Python Proficient",
"Python Advanced"]

expertises_iterator = iter(expertises)
print("Calling 'next' for the first time: ", next(expertises_itera
tor))
print("Calling 'next' for the second time: ", next(expertises_iter
ator))

We could have called next two more times, but after this we will get a StopIteration Exception.

We can simulate this iteration behavior of the for loop in a while loop: You might have noticed that there is
something missing in our program: We have to catch the "Stop Iteration" exception:

other_cities = ["Strasbourg", "Freiburg", "Stuttgart",
"Vienna / Wien", "Hannover", "Berlin",
"Zurich"]

city_iterator = iter(other_cities)
while city_iterator:

try:
city = next(city_iterator)
print(city)

except StopIteration:
break

Calling 'next' for the first time: Python Beginner
Calling 'next' for the second time: Python Intermediate

Strasbourg
Freiburg
Stuttgart
Vienna / Wien
Hannover
Berlin
Zurich

GENERATORS AND ITERATORS 367

The sequential base types as well as the majority of the classes of the standard library of Python support
iteration. The dictionary data type dict supports iterators as well. In this case the iteration runs over the keys of
the dictionary:

capitals = {
"France":"Paris",
"Netherlands":"Amsterdam",
"Germany":"Berlin",
"Switzerland":"Bern",
"Austria":"Vienna"}

for country in capitals:
print("The capital city of " + country + " is " + capitals[co

untry])

Off-topic: Some readers may be confused to learn from our example that the capital of the Netherlands is not
Den Haag (The Hague) but Amsterdam. Amsterdam is the capital of the Netherlands according to the
constitution, even though the Dutch parliament and the Dutch government are situated in The Hague, as well
as the Supreme Court and the Council of State.

IMPLEMENTING AN ITERATOR AS A CLASS

One way to create iterators in Python is defining a class which implements the methods __init__ and
__next__ . We show this by implementing a class cycle, which can be used to cycle over an iterable object

forever. In other words, an instance of this class returns the element of an iterable until it is exhausted. Then it
repeats the sequence indefinitely.

class Cycle(object):
def __init__(self, iterable):

self.iterable = iterable
self.iter_obj = iter(iterable)

def __iter__(self):
return self

def __next__(self):
while True:

The capital city of France is Paris
The capital city of Netherlands is Amsterdam
The capital city of Germany is Berlin
The capital city of Switzerland is Bern
The capital city of Austria is Vienna

GENERATORS AND ITERATORS 368

try:
next_obj = next(self.iter_obj)
return next_obj

except StopIteration:
self.iter_obj = iter(self.iterable)

x = Cycle("abc")

for i in range(10):
print(next(x), end=", ")

Even though the object-oriented approach to creating an iterator may be very interesting, this is not the
pythonic method.

The usual and easiest way to create an iterator in Python consists in using a generator function. You will learn
this in the following chapter.

GENERATORS

On the surface, generators in Python look like functions, but there is both a syntactic and a semantic
difference. One distinguishing characteristic is the yield statements. The yield statement turns a functions into
a generator. A generator is a function which returns a generator object. This generator object can be seen like a
function which produces a sequence of results instead of a single object. This sequence of values is produced
by iterating over it, e.g. with a for loop. The values, on which can be iterated, are created by using the yield
statement. The value created by the yield statement is the value following the yield keyword. The execution of
the code stops when a yield statement is reached. The value behind the yield will be returned. The execution
of the generator is interrupted now. As soon as "next" is called again on the generator object, the generator
function will resume execution right after the yield statement in the code, where the last call is made. The
execution will continue in the state in which the generator was left after the last yield. In other words, all the
local variables still exist, because they are automatically saved between calls. This is a fundamental difference
to functions: functions always start their execution at the beginning of the function body, regardless of where
they had left in previous calls. They don't have any static or persistent values. There may be more than one
yield statement in the code of a generator or the yield statement might be inside the body of a loop. If there is a
return statement in the code of a generator, the execution will stop with a StopIteration exception error when
this code is executed by the Python interpreter. The word "generator" is sometimes ambiguously used to mean
both the generator function itself and the objects which are generated by a generator.

Everything which can be done with a generator can also be implemented with a class based iterator as well.
However, the crucial advantage of generators consists in automatically creating the methods __iter__ ()
and next(). Generators provide a very neat way of producing data which is huge or even infinite.

The following is a simple example of a generator, which is capable of producing various city names.

a, b, c, a, b, c, a, b, c, a,

GENERATORS AND ITERATORS 369

It's possible to create a generator object with this generator, which generates all the city names, one after the
other.

def city_generator():
yield("Hamburg")
yield("Konstanz")
yield("Berlin")
yield("Zurich")
yield("Schaffhausen")
yield("Stuttgart")

We created an iterator by calling city_generator():

city = city_generator()
print(next(city))

print(next(city))

print(next(city))

print(next(city))

print(next(city))

print(next(city))

print(next(city))

Hamburg

Konstanz

Berlin

Zurich

Schaffhausen

Stuttgart

StopIteration Traceback (most recent call last)
<ipython-input-22-02870f953c83> in <module>
----> 1 print(next(city))

StopIteration:

GENERATORS AND ITERATORS 370

As we can see, we have generated an iterator city in the interactive shell. Every call of the method
next(city) returns another city. After the last city, i.e. Stuttgart, has been created, another call of
next(city) raises an exception, saying that the iteration has stopped, i.e. StopIteration . "Can we

send a reset to an iterator?" is a frequently asked question, so that it can start the iteration all over again. There
is no reset, but it's possible to create another generator. This can be done e.g. by using the statement "city =
city_generator()" again. Though at the first sight the yield statement looks like the return statement of a
function, we can see in this example that there is a huge difference. If we had a return statement instead of a
yield in the previous example, it would be a function. But this function would always return the first city
"Hamburg" and never any of the other cities, i.e. "Konstanz", "Berlin", "Zurich", "Schaffhausen", and
"Stuttgart"

METHOD OF OPERATION

As we have elaborated in the introduction of this chapter, the generators offer a comfortable method to
generate iterators, and that's why they are called generators.

Method of working:

• A generator is called like a function. Its return value is an iterator, i.e. a generator object. The
code of the generator will not be executed at this stage.

• The iterator can be used by calling the next method. The first time the execution starts like a
function, i.e. the first line of code within the body of the iterator. The code is executed until a
yield statement is reached.

• yield returns the value of the expression, which is following the keyword yield. This is like a
function, but Python keeps track of the position of this yield and the state of the local variables is
stored for the next call. At the next call, the execution continues with the statement following the
yield statement and the variables have the same values as they had in the previous call.

• The iterator is finished, if the generator body is completely worked through or if the program
flow encounters a return statement without a value.

We will illustrate this behaviour in the following example. The generator count creates an iterator which
creates a sequence of values by counting from the start value 'firstval' and using 'step' as the increment for
counting:

def count(firstval=0, step=1):
x = firstval
while True:

yield x
x += step

counter = count() # count will start with 0
for i in range(10):

print(next(counter), end=", ")

start_value = 2.1
stop_value = 0.3

GENERATORS AND ITERATORS 371

print("\nNew counter:")
counter = count(start_value, stop_value)
for i in range(10):

new_value = next(counter)
print(f"{new_value:2.2f}", end=", ")

Fibonacci as a Generator:

The Fibonacci sequence is named after Leonardo of Pisa, who was known as Fibonacci (a contraction of filius
Bonacci, "son of Bonaccio"). In his textbook Liber Abaci, which appeared in the year 1202) he had an
exercise about the rabbits and their breeding: It starts with a newly-born pair of rabbits, i.e. a male and a
female. It takes one month until they can mate. At the end of the second month the female gives birth to a new
pair of rabbits. Now let's suppose that every female rabbit will bring forth another pair of rabbits every month
after the end of the first month. We have to mention that Fibonacci's rabbits never die. They question is how
large the population will be after a certain period of time.

This produces a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13

This sequence can be defined in mathematical terms like this:

Fn = Fn − 1 + Fn − 2 with the seed values: F0 = 0 and F1 = 1

def fibonacci(n):
""" A generator for creating the Fibonacci numbers """
a, b, counter = 0, 1, 0
while True:

if (counter > n):
return

yield a
a, b = b, a + b
counter += 1

f = fibonacci(5)
for x in f:

print(x, " ", end="") #
print()

The generator above can be used to create the first n Fibonacci numbers separated by blanks, or better (n+1)
numbers because the 0th number is also included. In the next example we present a version which is capable
of returning an endless iterator. We have to take care when we use this iterator that a termination criterion is

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
New counter:
2.10, 2.40, 2.70, 3.00, 3.30, 3.60, 3.90, 4.20, 4.50, 4.80,

0 1 1 2 3 5

GENERATORS AND ITERATORS 372

used:

def fibonacci():
"""Generates an infinite sequence of Fibonacci numbers on dema

nd"""
a, b = 0, 1
while True:

yield a
a, b = b, a + b

f = fibonacci()

counter = 0
for x in f:

print(x, " ", end="")
counter += 1
if (counter > 10):

break
print()

USING A 'RETURN' IN A GENERATOR

Since Python 3.3, generators can also use return statements, but a generator still needs at least one yield
statement to be a generator! A return statement inside of a generator is equivalent to raise StopIteration()

Let's have a look at a generator in which we raise StopIteration:

def gen():
yield 1
raise StopIteration(42)
yield 2

g = gen()
next(g)

next(g)

0 1 1 2 3 5 8 13 21 34 55

Output: 1

GENERATORS AND ITERATORS 373

We demonstrate now that return is "nearly" equivalent to raising the 'StopIteration' exception.

def gen():
yield 1
return 42
yield 2

g = gen()
next(g)

next(g)

SEND METHOD /COROUTINES

Generators can not only send objects but also receive objects. Sending a message, i.e. an object, into the
generator can be achieved by applying the send method to the generator object. Be aware of the fact that send
both sends a value to the generator and returns the value yielded by the generator. We will demonstrate this
behavior in the following simple example of a coroutine:

def simple_coroutine():

StopIteration Traceback (most recent call last)
<ipython-input-26-6735830131e8> in gen()

2 yield 1
----> 3 raise StopIteration(42)

4 yield 2

StopIteration: 42

The above exception was the direct cause of the following exception:

RuntimeError Traceback (most recent call last)
<ipython-input-29-e734f8aca5ac> in <module>
----> 1 next(g)

RuntimeError: generator raised StopIteration

Output: 1

StopIteration Traceback (most recent call last)
<ipython-input-32-e734f8aca5ac> in <module>
----> 1 next(g)

StopIteration: 42

GENERATORS AND ITERATORS 374

print("coroutine has been started!")
while True:

x = yield "foo"
print("coroutine received: ", x)

cr = simple_coroutine()
cr

next(cr)

ret_value = cr.send("Hi")
print("'send' returned: ", ret_value)

We had to call next on the generator first, because the generator needed to be started. Using send to a
generator which hasn't been started leads to an exception.

To use the send method, the generator must wait for a yield statement so that the data sent can be processed or
assigned to the variable on the left. What we haven't said so far: A next call also sends and receives. It always
sends a None object. The values sent by "next" and "send" are assigned to a variable within the generator: this
variable is called new_counter_val in the following example.

The following example modifies the generator 'count' from the previous subchapter by adding a send
feature.

In []:

def count(firstval=0, step=1):
counter = firstval
while True:

new_counter_val = yield counter
if new_counter_val is None:

counter += step
else:

counter = new_counter_val

start_value = 2.1
stop_value = 0.3

Output: <generator object simple_coroutine at 0x7fa2a8049ac0>

coroutine has been started!
Output: 'foo'

coroutine received: Hi
'send' returned: foo

GENERATORS AND ITERATORS 375

counter = count(start_value, stop_value)
for i in range(10):

new_value = next(counter)
print(f"{new_value:2.2f}", end=", ")

print("set current count value to another value:")
counter.send(100.5)
for i in range(10):

new_value = next(counter)
print(f"{new_value:2.2f}", end=", ")

ANOTHER EXAMPLE FOR SEND

from random import choice

def song_generator(song_list):
new_song = None
while True:

if new_song != None:
if new_song not in song_list:

song_list.append(new_song)
new_song = yield new_song

else:
new_song = yield(choice(song_list))

songs = ["Her Şeyi Yak - Sezen Aksu",
"Bluesette - Toots Thielemans",
"Six Marimbas - Steve Reich",
"Riverside - Agnes Obel",
"Not for Radio - Nas",
"What's going on - Taste",
"On Stream - Nils Petter Molvær",
"La' Inta Habibi - Fayrouz",
"Ik Leef Niet Meer Voor Jou - Marco Borsato",
"Δέκα λεπτά - Αθηνά Ανδρεάδη"]

radio_program = song_generator(songs)
next(radio_program)

for i in range(3):
print(next(radio_program))

Output: 'Riverside - Agnes Obel'

GENERATORS AND ITERATORS 376

radio_program.send("Distorted Angels - Archive")

songs

So far, we could change the behavior of the song interator by sending a new song, i.e. a title plus the
performer. We will extend the generator now. We make it possible to send a new song list. We have to send a
tuple to the new iterator, either a tuple:

(,) or

("-songlist-",)

from random import choice
def song_generator(song_list):

new_song = None
while True:

if new_song != None:
if new_song[0] == "-songlist-":

song_list = new_song[1]
new_song = yield(choice(song_list))

else:
title, performer = new_song
new_song = title + " - " + performer
if new_song not in song_list:

song_list.append(new_song)
new_song = yield new_song

else:
new_song = yield(choice(song_list))

Bluesette - Toots Thielemans
Six Marimbas - Steve Reich
Six Marimbas - Steve Reich

Output: 'Distorted Angels - Archive'

Output: ['Her Şeyi Yak - Sezen Aksu',
'Bluesette - Toots Thielemans',
'Six Marimbas - Steve Reich',
'Riverside - Agnes Obel',
'Not for Radio - Nas',
"What's going on - Taste",
'On Stream - Nils Petter Molvær',
"La' Inta Habibi - Fayrouz",
'Ik Leef Niet Meer Voor Jou - Marco Borsato',
'Δέκα λεπτά - Αθηνά Ανδρεάδη',
'Distorted Angels - Archive']

GENERATORS AND ITERATORS 377

songs1 = ["Après un Rêve - Gabriel Fauré"
"On Stream - Nils Petter Molvær",
"Der Wanderer Michael - Michael Wollny",
"Les barricades mystérieuses - Barbara Thompson",
"Monday - Ludovico Einaudi"]

songs2 = ["Dünyadan Uszak - Pinhani",
"Again - Archive",
"If I had a Hear - Fever Ray"
"Every you, every me - Placebo",
"Familiar - Angnes Obel"]

radio_prog = song_generator(songs1)
for i in range(5):

print(next(radio_prog))

We change the radio program now by exchanging the song list:

radio_prog.send(("-songlist-", songs2))

for i in range(5):
print(next(radio_prog))

THE THROW METHOD

The throw() method raises an exception at the point where the generator was paused, and returns the next
value yielded by the generator. It raises StopIteration if the generator exits without yielding another value. The
generator has to catch the passed-in exception, otherwise the exception will be propagated to the caller.

The infinite loop of our count generator from our previous example keeps yielding the elements of the
sequential data, but we don't have any information about the index or the state of the variables of "counter".

Les barricades mystérieuses - Barbara Thompson
Après un Rêve - Gabriel FauréOn Stream - Nils Petter Molvær
Les barricades mystérieuses - Barbara Thompson
Les barricades mystérieuses - Barbara Thompson
Après un Rêve - Gabriel FauréOn Stream - Nils Petter Molvær

Output: 'Familiar - Angnes Obel'

Again - Archive
If I had a Hear - Fever RayEvery you, every me - Placebo
Dünyadan Uszak - Pinhani
Dünyadan Uszak - Pinhani
If I had a Hear - Fever RayEvery you, every me - Placebo

GENERATORS AND ITERATORS 378

We can get this information, i.e. the state of the variables in count by throwing an exception with the
throw method. We catch this exception inside of the generator and print the state of the values of "count":

def count(firstval=0, step=1):
counter = firstval
while True:

try:
new_counter_val = yield counter
if new_counter_val is None:

counter += step
else:

counter = new_counter_val
except Exception:

yield (firstval, step, counter)

In the following code block, we will show how to use this generator:

c = count()
for i in range(6):

print(next(c))
print("Let us see what the state of the iterator is:")
state_of_count = c.throw(Exception)
print(state_of_count)
print("now, we can continue:")
for i in range(3):

print(next(c))

We can improve the previous example by defining our own exception class StateOfGenerator:

class StateOfGenerator(Exception):
def __init__(self, message=None):

0
1
2
3
4
5
Let us see what the state of the iterator is:
(0, 1, 5)
now, we can continue:
5
6
7

GENERATORS AND ITERATORS 379

self.message = message

def count(firstval=0, step=1):
counter = firstval
while True:

try:
new_counter_val = yield counter
if new_counter_val is None:

counter += step
else:

counter = new_counter_val
except StateOfGenerator:

yield (firstval, step, counter)

We can use the previous generator like this:

c = count()
for i in range(3):

print(next(c))
print("Let us see what the state of the iterator is:")
i = c.throw(StateOfGenerator)
print(i)
print("now, we can continue:")
for i in range(3):

print(next(c))

YIELD FROM

"yield from" is available since Python 3.3! The yield from <expr> statement can be used inside the
body of a generator. <expr> has to be an expression evaluating to an iterable, from which an iterator will
be extracted. The iterator is run to exhaustion, i.e. until it encounters a StopIteration exception. This
iterator yields and receives values to or from the caller of the generator, i.e. the one which contains the yield
from statement.

We can learn from the following example by looking at the two generators 'gen1' and 'gen2' that the yield

0
1
2
Let us see what the state of the iterator is:
(0, 1, 2)
now, we can continue:
2
3
4

GENERATORS AND ITERATORS 380

from from gen2 are substituting the for loops of 'gen1':

def gen1():
for char in "Python":

yield char
for i in range(5):

yield i

def gen2():
yield from "Python"
yield from range(5)

g1 = gen1()
g2 = gen2()
print("g1: ", end=", ")
for x in g1:

print(x, end=", ")
print("\ng2: ", end=", ")
for x in g2:

print(x, end=", ")
print()

We can see from the output that both generators are the same.

The benefit of a yield from statement can be seen as a way to split a generator into multiple generators. That's
what we have done in our previous example and we will demonstrate this more explicitely in the following
example:

def cities():
for city in ["Berlin", "Hamburg", "Munich", "Freiburg"]:

yield city

def squares():
for number in range(10):

yield number ** 2

def generator_all_in_one():
for city in cities():

yield city
for number in squares():

yield number

g1: , P, y, t, h, o, n, 0, 1, 2, 3, 4,
g2: , P, y, t, h, o, n, 0, 1, 2, 3, 4,

GENERATORS AND ITERATORS 381

def generator_splitted():
yield from cities()
yield from squares()

lst1 = [el for el in generator_all_in_one()]
lst2 = [el for el in generator_splitted()]
print(lst1 == lst2)

The previous code returns True because the generators generator_all_in_one and
generator_splitted yield the same elements. This means that if the <expr> from the yield
from is another generator, the effect is the same as if the body of the sub‐generator were inlined at the point
of the yield from statement. Furthermore, the subgenerator is allowed to execute a return statement
with a value, and that value becomes the value of the yield from expression. We demonstrate this with
the following little script:

def subgenerator():
yield 1
return 42

def delegating_generator():
x = yield from subgenerator()
print(x)

for x in delegating_generator():
print(x)

The full semantics of the yield from expression is described in six points in "PEP 380 -- Syntax for Delegating
to a Subgenerator" in terms of the generator protocol:

• Any values that the iterator yields are passed directly to the caller.
• Any values sent to the delegating generator using send() are passed directly to the iterator. If the

sent value is None, the iterator's next() method is called. If the sent value is not None, the
iterator's send() method is called. If the call raises StopIteration, the delegating generator is
resumed. Any other exception is propagated to the delegating generator.

• Exceptions other than GeneratorExit thrown into the delegating generator are passed to the
throw() method of the iterator. If the call raises StopIteration, the delegating generator is
resumed. Any other exception is propagated to the delegating generator.

• If a GeneratorExit exception is thrown into the delegating generator, or the close() method of the
delegating generator is called, then the close() method of the iterator is called if it has one. If this

True

1
42

GENERATORS AND ITERATORS 382

call results in an exception, it is propagated to the delegating generator. Otherwise,
GeneratorExit is raised in the delegating generator.

• The value of the yield from expression is the first argument to the StopIteration exception raised
by the iterator when it terminates.

• return expr in a generator causes StopIteration(expr) to be raised upon exit from the generator.

RECURSIVE GENERATORS

The following example is a generator to create all the permutations of a given list of items.

For those who don't know what permutations are, we have a short introduction:

Formal Definition: The term "permutation" stems from the latin verb "permutare" which means A permutation
is a rearrangement of the elements of an ordered list. In other words: Every arrangement of n elements is
called a permutation.

In the following lines we show you all the permutations of the letter a, b and c:

a b c
a c b
b a c
b c a
c a b
c b a

The number of permutations on a set of n elements is given by n!

n! = n(n-1)(n-2) ... 2 * 1

n! is called the factorial of n.

The permutation generator can be called with an arbitrary list of objects. The iterator returned by this
generator generates all the possible permutations:

def permutations(items):
n = len(items)
if n==0: yield []
else:

for i in range(len(items)):
for cc in permutations(items[:i]+items[i+1:]):

yield [items[i]]+cc

for p in permutations(['r','e','d']): print(''.join(p))
for p in permutations(list("game")): print(''.join(p) + ", ", en
d="")

GENERATORS AND ITERATORS 383

The previous example can be hard to understand for newbies. Like always, Python offers a convenient
solution. We need the module itertools for this purpose. Itertools is a very handy tool to create and operate on
iterators.

Creating permutations with itertools:

import itertools
perms = itertools.permutations(['r','e','d'])
list(perms)

The term "permutations" can sometimes be used in a weaker meaning. Permutations can denote in this weaker
meaning a sequence of elements, where each element occurs just once, but without the requirement to contain
all the elements of a given set. So in this sense (1,3,5,2) is a permutation of the set of digits {1,2,3,4,5,6}. We
can build, for example, all the sequences of a fixed length k of elements taken from a given set of size n with k
≤ n.

These are are all the 3-permutations of the set {"a","b","c","d"}.

These atypical permutations are also known as sequences without repetition. By using this term we can avoid
confusion with the term "permutation". The number of such k-permutations of n is denoted by Pn , k and its

value is calculated by the product:

n · (n − 1) · …(n − k + 1)

By using the factorial notation, the above mentioned expression can be written as:

Pn , k = n ! / (n − k) !

red
rde
erd
edr
dre
der
game, gaem, gmae, gmea, geam, gema, agme, agem, amge, ameg, aegm,
aemg, mgae, mgea, mage, maeg, mega, meag, egam, egma, eagm, eamg,
emga, emag,

Output: [('r', 'e', 'd'),
('r', 'd', 'e'),
('e', 'r', 'd'),
('e', 'd', 'r'),
('d', 'r', 'e'),
('d', 'e', 'r')]

GENERATORS AND ITERATORS 384

A generator for the creation of k-permuations of n objects looks very similar to our previous permutations
generator:

def k_permutations(items, n):
if n==0:

yield []
else:

for item in items:
for kp in k_permutations(items, n-1):

if item not in kp:
yield [item] + kp

for kp in k_permutations("abcd", 3):
print(kp)

A GENERATOR OF GENERATORS

The second generator of our Fibonacci sequence example generates an iterator, which can theoretically
produce all the Fibonacci numbers, i.e. an infinite number. But you shouldn't try to produce all these numbers
in a list with the following line.

['a', 'b', 'c']
['a', 'b', 'd']
['a', 'c', 'b']
['a', 'c', 'd']
['a', 'd', 'b']
['a', 'd', 'c']
['b', 'a', 'c']
['b', 'a', 'd']
['b', 'c', 'a']
['b', 'c', 'd']
['b', 'd', 'a']
['b', 'd', 'c']
['c', 'a', 'b']
['c', 'a', 'd']
['c', 'b', 'a']
['c', 'b', 'd']
['c', 'd', 'a']
['c', 'd', 'b']
['d', 'a', 'b']
['d', 'a', 'c']
['d', 'b', 'a']
['d', 'b', 'c']
['d', 'c', 'a']
['d', 'c', 'b']

GENERATORS AND ITERATORS 385

list(fibonacci())

This will show you very fast the limits of your computer. In most practical applications, we only need the first
n elements of and other "endless" iterators. We can use another generator, in our example firstn , to

create the first n elements of a generator generator :

def firstn(generator, n):
g = generator()
for i in range(n):

yield next(g)

The following script returns the first 10 elements of the Fibonacci sequence:

def fibonacci():
""" A Fibonacci number generator """
a, b = 0, 1
while True:

yield a
a, b = b, a + b

print(list(firstn(fibonacci, 10)))

EXERCISES

EXERCISE 1

Write a generator which computes the running average.

EXERCISE 2

Write a generator frange , which behaves like range but accepts float values.

EXERCISE 3

3) Write a generator trange , which generates a sequence of time tuples from start to stop incremented by
step. A time tuple is a 3-tuple of integers: (hours, minutes, seconds) So a call to trange might look like
this:

trange((10, 10, 10), (13, 50, 15), (0, 15, 12))

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

GENERATORS AND ITERATORS 386

EXERCISE 4

Write a version "rtrange" of the previous generator, which can receive messages to reset the start value.

EXERCISE 5

Write a program, using the newly written generator "trange", to create a file "times_and_temperatures.txt".
The lines of this file contain a time in the format hh::mm::ss and random temperatures between 10.0 and
25.0 degrees. The times should be ascending in steps of 90 seconds starting with 6:00:00. For example:

06:00:00 20.1
06:01:30 16.1
06:03:00 16.9
06:04:30 13.4
06:06:00 23.7
06:07:30 23.6
06:09:00 17.5
06:10:30 11.0

EXERCISE 6

Write a generator with the name "random_ones_and_zeroes", which returns
a bitstream, i.e. a zero or a one in every iteration. The probability p for
returning a 1 is defined in a variable p. The generator will initialize this
value to 0.5. In other words, zeroes and ones will be returned with the same
probability.

EXERCISE 7

We wrote a class Cycle in the beginning of this chapter of our Python tutorial. Write a generator cycle
performing the same task.

SOLUTIONS TO OUR EXERCISES

SOLUTION TO EXERCISE 1

def running_average():
total = 0.0
counter = 0
average = None
while True:

term = yield average

GENERATORS AND ITERATORS 387

total += term
counter += 1
average = total / counter

ra = running_average() # initialize the coroutine
next(ra) # we have to start the coroutine
for value in [7, 13, 17, 231, 12, 8, 3]:

out_str = "sent: {val:3d}, new average: {avg:6.2f}"
print(out_str.format(val=value, avg=ra.send(value)))

SOLUTION TO EXERCISE 2

def frange(*args):
""" dfgdg """
startval = 0
stepsize = 1
if len(args) == 1:

endval = args[0]
elif len(args) == 2:

startval, endval = args
elif len(args) == 3:

startval, endval, stepsize = args
else:

txt = "range expected at most 3 arguments, got " + len(arg
s)

raise TypeError(txt)
value = startval
factor = -1 if stepsize < 0 else 1
while (value - endval) * (factor) < 0:

yield value
value += stepsize

Using frange may llok like this:

sent: 7, new average: 7.00
sent: 13, new average: 10.00
sent: 17, new average: 12.33
sent: 231, new average: 67.00
sent: 12, new average: 56.00
sent: 8, new average: 48.00
sent: 3, new average: 41.57

GENERATORS AND ITERATORS 388

for i in frange(5.6):
print(i, end=", ")

print()
for i in frange(0.3, 5.6):

print(i, end=", ")
print()
for i in frange(0.3, 5.6, 0.8):

print(i, end=", ")
print()

SOLUTION TO EXERCISE 3

def trange(start, stop, step):
"""
trange(stop) -> time as a 3-tuple (hours, minutes, seconds)
trange(start, stop[, step]) -> time tuple

start: time tuple (hours, minutes, seconds)
stop: time tuple
step: time tuple

returns a sequence of time tuples from start to stop increment
ed by step

"""

current = list(start)
while current < list(stop):

yield tuple(current)
seconds = step[2] + current[2]
min_borrow = 0
hours_borrow = 0
if seconds < 60:

current[2] = seconds
else:

current[2] = seconds - 60
min_borrow = 1

minutes = step[1] + current[1] + min_borrow
if minutes < 60:

current[1] = minutes
else:

current[1] = minutes - 60

0, 1, 2, 3, 4, 5,
0.3, 1.3, 2.3, 3.3, 4.3, 5.3,
0.3, 1.1, 1.9000000000000001, 2.7, 3.5, 4.3, 5.1,

GENERATORS AND ITERATORS 389

hours_borrow = 1
hours = step[0] + current[0] + hours_borrow
if hours < 24:

current[0] = hours
else:

current[0] = hours - 24

from timerange import trange

for time in trange((10, 10, 10), (19, 53, 15), (1, 24, 12)):
print(time)

SOLUTION TO EXERCISE 4

def rtrange(start, stop, step):
"""
trange(stop) -> time as a 3-tuple (hours, minutes, second

s)
trange(start, stop[, step]) -> time tuple

start: time tuple (hours, minutes, seconds)
stop: time tuple
step: time tuple

returns a sequence of time tuples from start to stop incre
mented by step

The generator can be reset by sending a new "start" value.
"""

current = list(start)
while current < list(stop):

new_start = yield tuple(current)
if new_start != None:

current = list(new_start)

Overwriting timerange.py

(10, 10, 10)
(11, 34, 22)
(12, 58, 34)
(14, 22, 46)
(15, 46, 58)
(17, 11, 10)
(18, 35, 22)

GENERATORS AND ITERATORS 390

continue
seconds = step[2] + current[2]
min_borrow = 0
hours_borrow = 0
if seconds < 60:

current[2] = seconds
else:

current[2] = seconds - 60
min_borrow = 1

minutes = step[1] + current[1] + min_borrow
if minutes < 60:

current[1] = minutes
else:

current[1] = minutes - 60
hours_borrow = 1

hours = step[0] + current[0] + hours_borrow
if hours < 24:

current[0] = hours
else:

current[0] = hours -24

from rtimerange import rtrange

ts = rtrange((10, 10, 10), (17, 50, 15), (1, 15, 12))
for _ in range(3):

print(next(ts))

print(ts.send((8, 5, 50)))
for _ in range(3):

print(next(ts))

SOLUTION TO EXERCISE 5

from timerange import trange

Overwriting rtimerange.py

(10, 10, 10)
(11, 25, 22)
(12, 40, 34)
(8, 5, 50)
(9, 21, 2)
(10, 36, 14)
(11, 51, 26)

GENERATORS AND ITERATORS 391

import random
fh = open("times_and_temperatures.txt", "w")

for time in trange((6, 0, 0), (23, 0, 0), (0, 1, 30)):
random_number = random.randint(100, 250) / 10
lst = time + (random_number,)
output = "{:02d}:{:02d}:{:02d} {:4.1f}\n".format(*lst)
fh.write(output)

You can find further details and the mathematical background about this exercise in our chapter on Weighted
Probabilities

SOLUTION TO EXERCISE 6

import random
def random_ones_and_zeros():

p = 0.5
while True:

x = random.random()
message = yield 1 if x < p else 0
if message != None:

p = message

x = random_ones_and_zeros()
next(x) # we are not interested in the return value
for p in [0.2, 0.8]:

print("\nWe change the probability to : " + str(p))
x.send(p)
for i in range(20):

print(next(x), end=" ")
print()

SOLUTION TO EXERCISE 7

The "cycle" generator is part of the module 'itertools'. The following code is the implementation in itertools:

def cycle(iterable):

We change the probability to : 0.2
1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 1 0 0
We change the probability to : 0.8
0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1

GENERATORS AND ITERATORS 392

cycle('ABCD') --> A B C D A B C D A B C D ...
saved = []
for element in iterable:

yield element
saved.append(element)

while saved:
for element in saved:

yield element

countries = ["Germany", "Switzerland", "Austria"]
country_iterator = cycle(countries)
for i in range(7):

print(next(country_iterator))
Germany
Switzerland
Austria
Germany
Switzerland
Austria
Germany

GENERATORS AND ITERATORS 393

E R R O R S A N D E X C E P T I O N S

EXCEPTION HANDLING

An exception is an error that happens during the execution of a program.
Exceptions are known to non-programmers as instances that do not
conform to a general rule. The name "exception" in computer science has
this meaning as well: It implies that the problem (the exception) doesn't
occur frequently, i.e. the exception is the "exception to the rule". Exception
handling is a construct in some programming languages to handle or deal
with errors automatically. Many programming languages like C++,
Objective-C, PHP, Java, Ruby, Python, and many others have built-in
support for exception handling.

Error handling is generally resolved by saving the state of execution at the
moment the error occurred and interrupting the normal flow of the program
to execute a special function or piece of code, which is known as the
exception handler. Depending on the kind of error ("division by zero", "file
open error" and so on) which had occurred, the error handler can "fix" the problem and the programm can be
continued afterwards with the previously saved data.

EXCEPTION HANDLING IN PYTHON

Exception handling in Python is very similar to Java. The code, which harbours the risk of an exception, is
embedded in a try block. While in Java exceptions are caught by catch clauses, in Python we have statements
introduced by an "except" keyword. It's possible to create "custom-made" exceptions: With the raise statement
it's possible to force a specified exception to occur.

Let's look at a simple example. Assuming we want to ask the user to enter an integer number. If we use a
input(), the input will be a string, which we have to cast into an integer. If the input isn't a valid integer, we
will generate (raise) a ValueError. We show this in the following interactive session:

In []:

n = int(input("Please enter a number: "))

With the aid of exception handling, we can write robust code for reading an integer from input:

In []:

while True:
try:

n = input("Please enter an integer: ")
n = int(n)
break

except ValueError:

ERRORS AND EXCEPTIONS 394

print("No valid integer! Please try again ...")
print("Great, you successfully entered an integer!")

It's a loop, which breaks only if a valid integer has been given. The while loop is entered. The code within the
try clause will be executed statement by statement. If no exception occurs during the execution, the execution
will reach the break statement and the while loop will be left. If an exception occurs, i.e. in the casting of n,
the rest of the try block will be skipped and the except clause will be executed. The raised error, in our case a
ValueError, has to match one of the names after except. In our example only one, i.e. "ValueError:". After
having printed the text of the print statement, the execution does another loop. It starts with a new input().

We could turn the code above into a function, which can be used to have a foolproof input.

def int_input(prompt):
while True:

try:
age = int(input(prompt))
return age

except ValueError as e:
print("Not a proper integer! Try it again")

We use this with our dog age example from the chapter Conditional Statements.

def dog2human_age(dog_age):
human_age = -1
if dog_age < 0:

human_age = -1
elif dog_age == 0:

human_age = 0
elif dog_age == 1:

human_age = 14
elif dog_age == 2:

human_age = 22
else:

human_age = 22 + (dog_age -2) * 5
return human_age

age = int_input("Age of your dog? ")
print("Age of the dog: ", dog2human_age(age))
Not a proper integer! Try it again
Not a proper integer! Try it again
Age of the dog: 37

ERRORS AND EXCEPTIONS 395

https://www.python-course.eu/python3_conditional_statements.php

MULTIPLE EXCEPT CLAUSES

A try statement may have more than one except clause for different exceptions. But at most one except clause
will be executed.

Our next example shows a try clause, in which we open a file for reading, read a line from this file and convert
this line into an integer. There are at least two possible exceptions:

an IOError
ValueError

Just in case we have an additional unnamed except clause for an unexpected error:

import sys
try:

f = open('integers.txt')
s = f.readline()
i = int(s.strip())

except IOError as e:
errno, strerror = e.args
print("I/O error({0}): {1}".format(errno,strerror))
e can be printed directly without using .args:
print(e)

except ValueError:
print("No valid integer in line.")

except:
print("Unexpected error:", sys.exc_info()[0])
raise

The handling of the IOError in the previous example is of special interest. The except clause for the IOError
specifies a variable "e" after the exception name (IOError). The variable "e" is bound to an exception instance
with the arguments stored in instance.args. If we call the above script with a non-existing file, we get the
message:

I/O error(2): No such file or directory

And if the file integers.txt is not readable, e.g. if we don't have the permission to read it, we get the following
message:

I/O error(13): Permission denied

An except clause may name more than one exception in a tuple of error names, as we see in the following
example:

I/O error(2): No such file or directory

ERRORS AND EXCEPTIONS 396

try:
f = open('integers.txt')
s = f.readline()
i = int(s.strip())

except (IOError, ValueError):
print("An I/O error or a ValueError occurred")

except:
print("An unexpected error occurred")
raise

We want to demonstrate now, what happens, if we call a function within a try block and if an exception occurs
inside the function call:

def f():
x = int("four")

try:
f()

except ValueError as e:
print("got it :-) ", e)

print("Let's get on")

the function catches the exception.

We will extend our example now so that the function will catch the exception directly:

def f():
try:

x = int("four")
except ValueError as e:

print("got it in the function :-) ", e)

try:
f()

except ValueError as e:
print("got it :-) ", e)

An I/O error or a ValueError occurred

got it :-) invalid literal for int() with base 10: 'four'
Let's get on

ERRORS AND EXCEPTIONS 397

print("Let's get on")

As we have expected, the exception is caught inside the function and not in the callers exception:

We add now a "raise", which generates the ValueError again, so that the exception will be propagated to the
caller:

def f():
try:

x = int("four")
except ValueError as e:

print("got it in the function :-) ", e)
raise

try:
f()

except ValueError as e:
print("got it :-) ", e)

print("Let's get on")

CUSTOM-MADE EXCEPTIONS

It's possible to create Exceptions yourself:

raise SyntaxError("Sorry, my fault!")

got it in the function :-) invalid literal for int() with base 1
0: 'four'
Let's get on

got it in the function :-) invalid literal for int() with base 1
0: 'four'
got it :-) invalid literal for int() with base 10: 'four'
Let's get on

ERRORS AND EXCEPTIONS 398

The best or the Pythonic way to do this, consists in defining an exception class which inherits from the
Exception class. You will have to go through the chapter on Object Oriented Programming to fully understand
the following example:

class MyException(Exception):
pass

raise MyException("An exception doesn't always prove the rule!")

CLEAN-UP ACTIONS (TRY ... FINALLY)

So far the try statement had always been paired with except clauses. But there is another way to use it as well.
The try statement can be followed by a finally clause. Finally clauses are called clean-up or termination
clauses, because they must be executed under all circumstances, i.e. a "finally" clause is always executed
regardless if an exception occurred in a try block or not. A simple example to demonstrate the finally clause:

try:
x = float(input("Your number: "))
inverse = 1.0 / x

finally:
print("There may or may not have been an exception.")

print("The inverse: ", inverse)

Traceback (most recent call last):
File "C:\Users\melis\Anaconda3\lib\site-packages\IPython\core\in

teractiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)

File "<ipython-input-15-a5649918d59e>", line 1, in <module>
raise SyntaxError("Sorry, my fault!")

File "<string>", line unknown
SyntaxError: Sorry, my fault!

MyException Traceback (most recent call last)
<ipython-input-3-d75bff75fe3a> in <module>

2 pass
3

----> 4 raise MyException("An exception doesn't always prove the rule!")
MyException: An exception doesn't always prove the rule!

ERRORS AND EXCEPTIONS 399

https://www.python-course.eu/python3_object_oriented_programming.php

COMBINING TRY, EXCEPT AND FINALLY

"finally" and "except" can be used together for the same try block, as it can be seen in the following Python
example:

try:
x = float(input("Your number: "))
inverse = 1.0 / x

except ValueError:
print("You should have given either an int or a float")

except ZeroDivisionError:
print("Infinity")

finally:
print("There may or may not have been an exception.")

ELSE CLAUSE

The try ... except statement has an optional else clause. An else block has to be positioned after all the except
clauses. An else clause will be executed if the try clause doesn't raise an exception.

The following example opens a file and reads in all the lines into a list called "text":

import sys
file_name = sys.argv[1]
text = []
try:

fh = open(file_name, 'r')
text = fh.readlines()
fh.close()

except IOError:
print('cannot open', file_name)

if text:
print(text[100])

This example receives the file name via a command line argument. So make sure that you call it properly:

Your number: 34
There may or may not have been an exception.
The inverse: 0.029411764705882353

Your number: 23
There may or may not have been an exception.

cannot open -f

ERRORS AND EXCEPTIONS 400

Let's assume that you saved this program as "exception_test.py". In this case, you have to call it with

python exception_test.py integers.txt

If you don't want this behaviour, just change the line "file_name = sys.argv[1]" to "file_name = 'integers.txt'".

The previous example is nearly the same as:

import sys
file_name = sys.argv[1]
text = []
try:

fh = open(file_name, 'r')
except IOError:

print('cannot open', file_name)
else:

text = fh.readlines()
fh.close()

if text:
print(text[100])

The main difference is that in the first case, all statements of the try block can lead to the same error message
"cannot open ...", which is wrong, if fh.close() or fh.readlines() raise an error.

cannot open -f

ERRORS AND EXCEPTIONS 401

P Y T H O N T E S T S

ERRORS AND TESTS

Usually, programmers and program developers spend a great deal of their time with
debugging and testing. It's hard to give exact percentages, because it highly depends
on other factors like the individual programming style, the problems to be solved
and of course on the qualification of a programmer. Without doubt, the
programming language is another important factor.

You don't have to program to get pestered by errors, as even the ancient Romans
knew. The philosopher Cicero coined more than 2000 years ago an unforgettable
aphorism, which is often quoted: "errare humanum est"* This aphorism is often used as an excuse for failure.
Even though it's hardly possible to completely eliminate all errors in a software product, we should always
work ambitiously to this end, i.e. to keep the number of errors minimal.

KINDS OF ERRORS

There are various kinds of errors. During program development there are lots of "small errors", mostly typos.
Whether a colon is missing - for example, behind an "if" or an "else" - or the keyword "True" is wrongly
written with a lower case "t" can make a big difference. These errors are called syntactical errors.** In most
cases, syntactical errors can easily be found, but other type of errors are harder to solve. A semantic error is a
syntactically correct code, but the program doesn't behave in the intended way. Imagine somebody wants to
increment the value of a variable x by one, but instead of "x += 1" he or she writes "x = 1". The following
longer code example may harbour another semantic error:

x = int(input("x? "))
y = int(input("y? "))

if x > 10:
if y == x:

print("Fine")
else:

print("So what?")

We can see two if statements. One nested inside of the other. The code is definitely syntactically correct. But it
can be the case that the writer of the program only wanted to output "So what?", if the value of the variable x
is both greater than 10 and x is not equal to y. In this case, the code should look like this:

x = int(input("x? "))
y = int(input("y? "))

So what?

PYTHON TESTS 402

if x > 10:
if y == x:

print("Fine")
else:

print("So what?")

Both code versions are syntactically correct, but one of them violates the intended semantics. Let's look at
another example:

for i in range(7):
print(i)

The statement ran without raising an exception, so we know that it is syntactically correct. Though it is not
possible to decide if the statement is semantically correct, as we don't know the problem. It may be that the
programmer wanted to output the numbers from 1 to 7, i.e. 1,2,...7 In this case, he or she does not properly
understand the range function.

So we can divide semantic errors into two categories.

• Errors caused by lack of understanding of a language construct.
• Errors due to logically incorrect code conversion.

UNIT TESTS

This paragraph is about unit tests. As the name implies they are used for testing
units or components of the code, typically, classes or functions. The underlying
concept is to simplify the testing of large programming systems by testing "small"
units. To accomplish this the parts of a program have to be isolated into
independent testable "units". One can define "unit testing" as a method whereby
individual units of source code are tested to determine if they meet the
requirements, i.e. return the expected output for all possible - or defined - input
data. A unit can be seen as the smallest testable part of a program, which are often
functions or methods from classes. Testing one unit should be independent from the other units as a unit is
"quite" small, i.e. manageable to ensure complete correctness. Usually, this is not possible for large scale
systems like large software programs or operating systems.

0
1
2
3
4
5
6

PYTHON TESTS 403

MODULE TESTS WITH NAME

Every module has a name, which is defined in the built-in attribute __name__ . Let's assume that we have
written a module "xyz" which we have saved as "xyz.py". If we import this module with "import xyz", the
string "xyz" will be assigned to __name__ . If we call the file xyz.py as a standalone program, i.e. in the
following way,

$python3 xyz.py

the value of __name__ will be the string '__main__' .

The following module can be used for calculating fibonacci numbers. But it is not important what the module
is doing. We want to demonstrate, how it is possible to create a simple module test inside of a module file, - in
our case the file "xyz.py", - by using an if statement and checking the value of __name__ . We check if the
module has been started standalone, in which case the value of __name__ will be __main__ . Please
save the following code as "fibonacci1.py":

-Fibonacci Module-

def fib(n):
""" Calculates the n-th Fibonacci number iteratively """
a, b = 0, 1
for i in range(n):

a, b = b, a + b
return a

def fiblist(n):
""" creates a list of Fibonacci numbers up to the n-th generat

ion """
fib = [0,1]
for i in range(1,n):

fib += [fib[-1]+fib[-2]]
return fib

It's possible to test this module manually in the interactive Python shell:

from fibonacci1 import fib, fiblist
fib(0)

fib(1)

Test for the fib function was successful!
Output: 0

PYTHON TESTS 404

fib(10)

fiblist(10)

fiblist(-8)

fib(-1)

fib(0.5)

We can see that the functions make only sense, if the input consists of positive integers. The function fib
returns 0 for a negative input and fiblist returns always the list [0,1], if the input is a negative integer. Both
functions raise a TypeError exception, because the range function is not defined for floats. We can test our
module by checking the return values for some characteristic calls to fib() and fiblist(). So we can add the
following if statement

if fib(0) == 0 and fib(10) == 55 and fib(50) == 12586269025:
print("Test for the fib function was successful!")

else:
print("The fib function is returning wrong values!")

to our module, but give it a new name fibonacci2.py . We can import this module now in a Python shell
or inside of a Python program. If the program with the import gets executed, we receive the following output:

Output: 1

Output: 55

Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Output: [0, 1]

Output: 0

TypeError Traceback (most recent call last)
<ipython-input-13-d518fced90e3> in <module>
----> 1 fib(0.5)

~/Dropbox (Bodenseo)/Bodenseo Team Folder/melisa/notebooks_en/fibonacci1.p
y in fib(n)

2 """ Calculates the n-th Fibonacci number iteratively """
3 a, b = 0, 1

----> 4 for i in range(n):
5 a, b = b, a + b
6 return a

TypeError: 'float' object cannot be interpreted as an integer

PYTHON TESTS 405

import fibonacci2

This approach has a crucial disadvantage. If we import the module, we will get output, saying the test was
okay. This is omething we don't want to see, when we import the module. Apart from being disturbing it is not
common practice. Modules should be silent when being imported, i.e. modules should not produce any output.
We can prevent this from happening by using the special built-in variable __name__ . We can guard the test
code by putting it inside the following if statement:

if __name__ == "__main__":
if fib(0) == 0 and fib(10) == 55 and fib(50) == 12586269025:

print("Test for the fib function was successful!")
else:

print("The fib function is returning wrong values!")

The value of the variable __name__ is set automatically by Python. Let us imagine that we import some
crazy module with the names foobar.py blubla.py and blimblam.py, the values of the variable __name__
will be foobar , blubla and blimblam correspondingly.

If we change our fibonacci module correspondingly and save it as fibonacci3.py, we get a silent import:

import fibonacci3

We were successful at silencing the output. Yet, our module should perform the test, if it is started standalone.

(base) bernd@moon:~/$ python fibonacci3.py
Test for the fib function was successful!
(base) bernd@moon:~/$

If you want to start a Python program from inside of another Python program, you can do this by using the
exec command, as we do in the following code:

exec(open("fibonacci3.py").read())

We will deliberately add an error into our code now.

We change the following line

a, b = 0, 1

into

a, b = 1, 1

Test for the fib function was successful!

Test for the fib function was successful!

PYTHON TESTS 406

and save as fibonacci4.py.

Principally, the function fib is still calculating the Fibonacci values, but fib(n) is returning the Fibonacci value
for the argument "n+1". If we call our changed module, we receive this error message:

exec(open("fibonacci4.py").read())

Let's rewrite our module:

""" Fibonacci Module """
def fib(n):

""" Calculates the n-th Fibonacci number iteratively """
a, b = 0, 1
for i in range(n):

a, b = b, a + b
return a

def fiblist(n):
""" creates a list of Fibonacci numbers up to the n-th generat

ion """
fib = [0,1]
for i in range(1,n):

fib += [fib[-1]+fib[-2]]
return fib

if __name__ == "__main__":
if fib(0) == 0 and fib(10) == 55 and fib(50) == 12586269025:

print("Test for the fib function was successful!")
else:

print("The fib function is returning wrong values!")

import fibonacci5

We have squelched our module now. There will be no messages, if the module is imported. This is the
simplest and widest used method for unit tests. But it is definitely not the best one.

DOCTEST MODULE

The doctest module is often considered easier to use than the unittest, though the latter is more suitable for
more complex tests. doctest is a test framework that comes prepackaged with Python. The doctest module

The fib function is returning wrong values!

Test for the fib function was successful!

PYTHON TESTS 407

searches for pieces of text that look like interactive Python sessions inside the documentation parts of a
module, and then executes (or reexecutes) the commands of those sessions to verify that they work exactly as
shown, i.e. that the same results can be achieved. In other words: The help text of the module is parsed, for
example, python sessions. These examples are run and the results are compared to the expected value.

Usage of doctest: "doctest" has to be imported. The part of an interactive Python sessions with the examples
and the output has to be copied inside the docstring the corresponding function.

We demonstrate this way of proceeding with the following simple example. We have slimmed down the
previous module, so that only the function fib is left:

import doctest
def fib(n):

""" Calculates the n-th Fibonacci number iteratively """
a, b = 0, 1
for i in range(n):

a, b = b, a + b
return a

We now call this module in an interactive Python shell and do some calculations:

from fibonacci import fib
fib(0)

fib(1)

fib(10)

fib(15)

We copy the complete session of the interactive shell into the docstring of our function. To start the module
doctest we have to call the method testmod(), but only if the module is called standalone. The complete
module looks like this now:

import doctest
def fib(n):

Output: 0

Output: 1

Output: 55

Output: 610

PYTHON TESTS 408

"""
Calculates the n-th Fibonacci number iteratively

>>> fib(0)
0
>>> fib(1)
1
>>> fib(10)
55
>>> fib(15)
610
>>>

"""
a, b = 0, 1
for i in range(n):

a, b = b, a + b
return a

if __name__ == "__main__":
doctest.testmod()

If we start our module directly like this

import fibonacci_doctest

we get no output, because everything is okay.

To see how doctest works, if something is wrong, we place an error in our code: We change again

a, b = 0, 1

into

a, b = 1, 1

and save the file as fibonacci_doctest1.py

exec(open("fibonacci_doctest1.py").read())

PYTHON TESTS 409

The output depicts all the calls, which return faulty results. We can see the call with the arguments in the line
following "Failed example:". We can see the expected value for the argument in the line following
"Expected:". The output shows us the newly calculated value as well. We can find this value behind "Got:"

TEST-DRIVEN DEVELOPMENT (TDD)

In the previous chapters, we tested functions, which we had already been finished. What about testing code
you haven't yet written? You think that this is not possible? It is not only possible, it is the underlying idea of
test-driven development. In the extreme case, you define tests before you start coding the actual source code.
The program developer writes an automated test case which defines the desired "behaviour" of a function.
This test case will - that's the idea behind the approach - initially fail, because the code has still to be written.

The major problem or difficulty of this approach is the task of writing suitable tests. Naturally, the perfect test
would check all possible inputs and validate the output. Of course, this is generally not always feasible.

We have set the return value of the fib function to 0 in the following example:

**
File "__main__", line 7, in __main__.fib
Failed example:

fib(0)
Expected:

0
Got:

1
**
File "__main__", line 11, in __main__.fib
Failed example:

fib(10)
Expected:

55
Got:

89
**
File "__main__", line 13, in __main__.fib
Failed example:

fib(15)
Expected:

610
Got:

987
**
1 items had failures:

3 of 4 in __main__.fib
Test Failed 3 failures.

PYTHON TESTS 410

import doctest
def fib(n):

"""
Calculates the n-th Fibonacci number iteratively

>>> fib(0)
0
>>> fib(1)
1
>>> fib(10)
55
>>> fib(15)
610
>>>

"""

return 0

if __name__ == "__main__":
doctest.testmod()

PYTHON TESTS 411

It hardly needs mentioning that the function returns only wrong return values except for fib(0).

Now we have to keep on writing and changing the code for the function fib until it passes the test.

This test approach is a method of software development, which is called test-driven development.

UNITTEST

The Python module unittest is a unit testing framework, which is based on Erich Gamma's JUnit and Kent
Beck's Smalltalk testing framework. The module contains the core framework classes that form the basis of
the test cases and suites (TestCase, TestSuite and so on), and also a text-based utility class for running the tests
and reporting the results (TextTestRunner). The most obvious difference to the module "doctest" lies in the
fact that the test cases of the module "unittest" are not defined inside the module, which has to be tested. The
major advantage is clear: program documentation and test descriptions are separate from each other. The price
you have to pay on the other hand, is an increase of work to create the test cases.

**
File "__main__", line 9, in __main__.fib
Failed example:

fib(1)
Expected:

1
Got:

0
**
File "__main__", line 11, in __main__.fib
Failed example:

fib(10)
Expected:

55
Got:

0
**
File "__main__", line 13, in __main__.fib
Failed example:

fib(15)
Expected:

610
Got:

0
**
1 items had failures:

3 of 4 in __main__.fib
Test Failed 3 failures.

PYTHON TESTS 412

We will use our module fibonacci once more to create a test case with unittest. To this purpose we create a file
fibonacci_unittest.py. In this file we have to import unittest and the module which has to be tested, i.e.
fibonacci.

Furthermore, we have to create a class with an arbitrary name - we will call it "FibonacciTest" - which inherits
from unittest.TestCase. The test cases are defined in this class by using methods. The name of these methods
is arbitrary, but has to start with test. In our method "testCalculation" we use the method assertEqual from the
class TestCase. assertEqual(first, second, msg = None) checks, if expression "first" is equal to the expression
"second". If the two expressions are not equal, msg will be output, if msg is not None.

import unittest
from fibonacci1 import fib

class FibonacciTest(unittest.TestCase):

def testCalculation(self):
self.assertEqual(fib(0), 0)
self.assertEqual(fib(1), 1)
self.assertEqual(fib(5), 5)
self.assertEqual(fib(10), 55)
self.assertEqual(fib(20), 6765)

if name == "main":
unittest.main()

If we call this test case, we get the following output:

$ python3 fibonacci_unittest.py
.

Ran 1 test in 0.000s

OK

This is usually the desired result, but we are now interested what happens in the error case. Therefore we will
create our previous error again. We change again the well-known line:

a, b = 0, 1

will be changed to

PYTHON TESTS 413

a, b = 1, 1

import unittest
from fibonacci3 import fib

class FibonacciTest(unittest.TestCase):

def testCalculation(self):
self.assertEqual(fib(0), 0)
self.assertEqual(fib(1), 1)
self.assertEqual(fib(5), 5)
self.assertEqual(fib(10), 55)
self.assertEqual(fib(20), 6765)

if __name__ == "__main__":
unittest.main()

Now the test result looks like this:

$ python3 fibonacci_unittest.py
F
===
===
FAIL: testCalculation (__main__.FibonacciTest)

Traceback (most recent call last):

File "fibonacci_unittest.py", line 7, in testCalculation
self.assertEqual(fib(0), 0)

AssertionError: 1 != 0

Ran 1 test in 0.000s

FAILED (failures=1)

The first statement in testCalculation has created an exception. The other assertEqual calls had not been
executed. We correct our error and create a new one. Now all the values will be correct, except if the input
argument is 20:

def fib(n):
""" Iterative Fibonacci Function """

PYTHON TESTS 414

a, b = 0, 1
for i in range(n):

a, b = b, a + b
if n == 20:

a = 42
return a

The output of a test run looks now like this:

$ python3 fibonacci_unittest.py
blabal

F

PYTHON TESTS 415

FAIL: TESTCALCULATION (MAI
N.FIBONACCITEST)

Traceback (most recent call last):
File "fibonacci_unittest.py", line 12, in testCalculation

self.assertEqual(fib(20), 6765)
AssertionError: 42 != 6765

Ran 1 test in 0.000s

FAILED (failures=1)

All the statements of testCalculation have been executed, but we haven't seen any output, because everything
was okay:

self.assertEqual(fib(0), 0)
self.assertEqual(fib(1), 1)
self.assertEqual(fib(5), 5)

Methods of the Class TestCase We now have a closer look at the class TestCase.

Method Meaning

setUp() Hook method for setting up the test fixture before exercising it. This method is called
before calling the implemented test methods.

tearDown() Hook method for deconstructing the class fixture after running all tests in the class.

assertEqual(self, first,
second, msg=None) The test fails if the two objects are not equal as determined by the '==' operator.

assertAlmostEqual(self,
first, second, places=None,

msg=None, delta=None)

The test fails if the two objects are unequal as determined by their difference rounded
to the given number of decimal places (default 7) and comparing to zero, or by

comparing that the between the two objects is more than the given delta.
Note that decimal places (from zero) are usually not the same as significant digits

(measured from the most significant digit).
If the two objects compare equal then they will automatically compare almost equal.

assertCountEqual(self,
first, second, msg=None)

An unordered sequence comparison asserting that the same elements, regardless of
order. If the same element occurs more than once, it verifies that the elements occur

the same number of times.

FAIL: TESTCALCULATION (MAIN.FIBONACCITEST) 416

Method Meaning

self.assertEqual(Counter(list(first)),
Counter(list(second)))

Example:
[0, 1, 1] and [1, 0, 1] compare equal, because the number of ones and

zeroes are the same.
[0, 0, 1] and [0, 1] compare unequal, because zero appears twice in the first

list and only once in the second list.

assertDictEqual(self, d1,
d2, msg=None) Both arguments are taken as dictionaries and they are checked if they are equal.

assertTrue(self, expr,
msg=None) Checks if the expression "expr" is True.

assertGreater(self, a, b,
msg=None) Checks, if a > b is True.

assertGreaterEqual(self, a,
b, msg=None) Checks if a ≥ b

assertFalse(self, expr,
msg=None) Checks if expression "expr" is False.

assertLess(self, a, b,
msg=None) Checks if a < b

assertLessEqual(self, a, b,
msg=None) Checks if a ≤ b

assertIn(self, member,
container, msg=None) Checks if a in b

assertIs(self, expr1, expr2,
msg=None) Checks if "a" is "b"

assertIsInstance(self, obj,
cls, msg=None) Checks if isinstance(obj, cls).

assertIsNone(self, obj,
msg=None) Checks if "obj is None"

assertIsNot(self, expr1,
expr2, msg=None) Checks if "a" is not "b"

FAIL: TESTCALCULATION (MAIN.FIBONACCITEST) 417

Method Meaning

assertIsNotNone(self, obj,
msg=None) Checks if obj is not equal to None

assertListEqual(self, list1,
list2, msg=None) Lists are checked for equality.

assertMultiLineEqual(self,
first, second, msg=None) Assert that two multi-line strings are equal.

assertNotRegexpMatches(self,
text, unexpected_regexp,

msg=None)
Fails, if the text Text "text" of the regular expression unexpected_regexp matches.

assertTupleEqual(self,
tuple1, tuple2, msg=None) Analogous to assertListEqual

We expand our previous example by a setUp and a tearDown method:

import unittest
from fibonacci1 import fib

class FibonacciTest(unittest.TestCase):

def setUp(self):
self.fib_elems = ((0,0), (1,1), (2,1), (3,2), (4,3),

(5,5))
print ("setUp executed!")

def testCalculation(self):
for (i,val) in self.fib_elems:

self.assertEqual(fib(i), val)

def tearDown(self):
self.fib_elems = None
print ("tearDown executed!")

if __name__ == "__main__":
unittest.main()

A call returns the following results:

FAIL: TESTCALCULATION (MAIN.FIBONACCITEST) 418

$ python3 fibonacci_unittest2.py
setUp executed!
tearDown executed!
.

Ran 1 test in 0.000s

Most of the TestCase methods have an optional parameter "msg". It's possible to return an additional
description of an error with "msg".

Exercises

1. Exercise:

Can you find a problem in the following code?

import doctest
def fib(n):

""" Calculates the n-th Fibonacci number iteratively

fib(0)
0
fib(1)
1
fib(10)
55
fib(40)
102334155

"""
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-1) + fib(n-2)

if __name__ == "__main__":
doctest.testmod()

Answer:

FAIL: TESTCALCULATION (MAIN.FIBONACCITEST) 419

The doctest is okay. The problem is the implementation of the fibonacci function. This recursive approach is
"highly" inefficient. You need a lot of patience to wait for the termination of the test. The number of hours,
days or weeks depending on your computer.☺

Footnotes:

*The aphorism in full length: "Errare (Errasse) humanum est, sed in errare (errore) perseverare diabolicum."
(To err is human, but to persist in it is diabolic")

** In computer science, the syntax of a computer language is the set of rules that defines the combinations of
symbols that are considered to be a correctly structured document or fragment in that language. Writing "if" as
"iff" is an example for syntax error, both in programming and in the English language.

FAIL: TESTCALCULATION (MAIN.FIBONACCITEST) 420

P Y T E S T

INTRODUCTION

pytest can be used for all types and levels of
software testing. Many projects – amongst them
Mozilla and Dropbox - switched from unittest or
nose to pytest.

A SIMPLE FIRST EXAMPLE WITH
PYTEST

Test files which pytest will use for testing have to
start with test_ or end with _test.py We will
demonstrate the way of working by writing a test
file test_fibonacci.py for a file fibonacci.py. Both
files are in one directory:

The first file is the file which should be tested. We
assume that it is saved as fibonacci_p.py:

def fib(n):
old, new = 0, 1
for _ in range(n):

old, new = new, old + new
return old

Now, we have to provide the code for the file test_fibonacci.py. This file will be used by 'pytest':

from fibonacci_p import fib

def test_fib():
assert fib(0) == 0
assert fib(1) == 1
assert fib(10) == 55

We call pytest in a command shell in the directory where the two file shown above reside:

pytest

The result of this code can be seen in the following:

PYTEST 421

============================= test session starts
==============================
platform linux -- Python 3.7.1, pytest-4.0.2, py-1.7.0, plugg
y-0.8.0
rootdir: /home/bernd/, inifile:
plugins: remotedata-0.3.1, openfiles-0.3.1, doctestplus-0.2.0, arra
ydiff-0.3
collected 1 ite
m

test_fibonacci.py
. [100%]

=========================== 1 passed in 0.01 seconds
===========================

We create now an erroneous version of fib. We change the two start values from 0 and 1 to the values 2 and 1.
This is the beginning of the Lucas sequence, but as we want to implement the Fibonacci sequence this is
wrong. This way, we can study how pytest behaves in this case:

def fib(n):
old, new = 2, 1
for _ in range(n):

old, new = new, old + new
return old

Calling 'pytest' with this erroneous implementation of fibonacci gives us the following results:

$ pytest ============================= test session starts
==============================
platform linux -- Python 3.7.1, pytest-4.0.2, py-1.7.0, plugg
y-0.8.0
rootdir: /home/bernd/, inifile:
plugins: remotedata-0.3.1, openfiles-0.3.1, doctestplus-0.2.0, arra
ydiff-0.3
collected 1 ite
m

test_fibonacci.py
F [100%]

=================================== FAILURES
===================================
___________________________________ test_fib

PYTEST 422

def test_fib():
> assert fib(0) == 0
E assert 2 == 0
E + where 2 = fib(0)

test_fibonacci.py:5: AssertionError
=========================== 1 failed in 0.03 seconds
===========================

ANOTHER PYTEST EXAMPLE

We will get closer to 'reality' in our next example. In a real life scenario, we will usually have more than one
file and for each file we may have a corresponding test file. Each test file may contain various tests. We have
various files in our example folder ex2:

The files to be tested:

• fibonacci.py
• foobar_plus.py
• foobar.py

The test files:

• test_fibonacci.py
• test_foobar_plus.py
• test_foobar.py

We start 'pytest' in the directory 'ex2' and get the following results:

$ pytest
==================== test session starts ======================
platform linux -- Python 3.7.3, pytest-4.3.1, py-1.8.0, plugg
y-0.9.0
rootdir: /home/bernd/ex2, inifile:
plugins: remotedata-0.3.1, openfiles-0.3.2, doctestplus-0.3.0, arra
ydiff-0.3
collected 4 item
s

test_fibonacci.py
. [25%]
test_foobar.py
.. [75%]

PYTEST 423

test_foobar_plus.py
. [100%]

==================== 4 passed in 0.05 seconds =================

ANOTHER PYTEST EXAMPLE

It is possible to execute only tests, which contain a given substring in their name. The substring is determined
by a Python expression This can be achieved with the call option „-k“

pytest -k

The call

pytest -k foobar

will only execute the test files having the substring 'foobar' in their name. In this case, they are test_foobar.py
and test_foobar_plus.py:

$ pytest -k foobar
============================= test session starts
==============================
platform linux -- Python 3.7.1, pytest-4.0.2, py-1.7.0, plugg
y-0.8.0
rootdir: /home/bernd/ex2, inifile:
plugins: remotedata-0.3.1, openfiles-0.3.1, doctestplus-0.2.0, arra
ydiff-0.3
collected 3 items / 1 deselecte
d

test_foobar.py
. [50%]
test_foobar_plus.py
. [100%]

==================== 2 passed, 1 deselected in 0.01 seconds
====================

We will select now only the files containing 'plus' and 'fibo'

pytest -k 'plus or fibo'

$ pytest -k 'plus or fibo'
============================= test session starts

PYTEST 424

==============================
platform linux -- Python 3.7.1, pytest-4.0.2, py-1.7.0, plugg
y-0.8.0
rootdir: /home/bernd/ex2, inifile:
plugins: remotedata-0.3.1, openfiles-0.3.1, doctestplus-0.2.0, arra
ydiff-0.3
collected 3 items / 1 deselecte
d

test_fibonacci.py
. [50%]
test_foobar_plus.py
. [100%]

==================== 2 passed, 1 deselected in 0.01 seconds
====================

MARKERS IN PYTEST

Test functions can be marked or tagged by decorating them with 'pytest.mark.'.

Such a marker can be used to select or deselect test functions. You can see the markers which exist for your
test suite by typing

$ pytest --markers

$ pytest --markers
@pytest.mark.openfiles_ignore: Indicate that open files should be i
gnored for this test

@pytest.mark.remote_data: Apply to tests that require data from rem
ote servers

@pytest.mark.internet_off: Apply to tests that should only run whe
n network access is deactivated

@pytest.mark.filterwarnings(warning): add a warning filter to the g
iven test. see https://docs.pytest.org/en/latest/warnings.html#pyte
st-mark-filterwarnings

@pytest.mark.skip(reason=None): skip the given test function with a
n optional reason. Example: skip(reason="no way of currently testin
g this") skips the test.

@pytest.mark.skipif(condition): skip the given test function if eva
l(condition) results in a True value. Evaluation happens within th

PYTEST 425

e module global context. Example: skipif('sys.platform == "win3
2"') skips the test if we are on the win32 platform. see https://do
cs.pytest.org/en/latest/skipping.html

@pytest.mark.xfail(condition, reason=None, run=True, raises=None, s
trict=False): mark the test function as an expected failure if eva
l(condition) has a True value. Optionally specify a reason for bett
er reporting and run=False if you don't even want to execute the te
st function. If only specific exception(s) are expected, you can li
st them in raises, and if the test fails in other ways, it will be
reported as a true failure. See https://docs.pytest.org/en/latest/s
kipping.html

@pytest.mark.parametrize(argnames, argvalues): call a test functio
n multiple times passing in different arguments in turn. argvalues
generally needs to be a list of values if argnames specifies only o
ne name or a list of tuples of values if argnames specifies multipl
e names. Example: @parametrize('arg1', [1,2]) would lead to two cal
ls of the decorated test function, one with arg1=1 and another wit
h arg1=2.see https://docs.pytest.org/en/latest/parametrize.html fo
r more info and examples.

@pytest.mark.usefixtures(fixturename1, fixturename2, ...): mark tes
ts as needing all of the specified fixtures. see https://docs.pytes
t.org/en/latest/fixture.html#usefixtures

@pytest.mark.tryfirst: mark a hook implementation function such tha
t the plugin machinery will try to call it first/as early as possib
le.

@pytest.mark.trylast: mark a hook implementation function such tha
t the plugin machinery will try to call it last/as late as possibl
e.

This contains also custom defined markers!

REGISTERING MARKERS

Since pytest version 4.5 markers have to be registered.They can be registered in the init file pytest.ini, placed
in the test directory. We register the markers 'slow' and 'crazy', which we will use in the following example:

[pytest] markers = slow: mark a test as a 'slow' (slowly) running test crazy: stupid function to test :-)

We add a recursive and inefficient version rfib to our fibonacci module and mark the corresponding test
routine with slow, besides this rfib is marked with crazy as well:

PYTEST 426

content of fibonacci.py

def fib(n):
old, new = 0, 1
for i in range(n):

old, new = new, old + new
return old

def rfib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return rfib(n-1) + rfib(n-2)

The corresponding test file:

""" content of test_fibonacci.py """

import pytest
from fibonacci import fib, rfib

def test_fib():
assert fib(0) == 0
assert fib(1) == 1
assert fib(34) == 5702887

@pytest.mark.crazy
@pytest.mark.slow
def test_rfib():

assert fib(0) == 0
assert fib(1) == 1
assert rfib(34) == 5702887

Besides this we will add the files foobar.py and test_foobar.py as well. We mark the test functions in
test_foobar.py as crazy.

content of foobar.py

def foo():
return "foo"

PYTEST 427

def bar():
return "bar"

This is the correponding test file:

content of
test_fooba
r.py
import pytest
from foobar import foo, bar

@pytest.mark.crazy
def test_foo():

assert foo() == "foo"

@pytest.mark.crazy
def test_bar():

assert bar() == "bar"

</pre

We will start tests now depending on the markers. Let's start all tests, which are not marked as slow:

$ pytest -svv -k "slow"
===================================== test session starts
======================================
platform linux -- Python 3.7.1, pytest-4.0.2, py-1.7.0, plugg
y-0.8.0 -- /home/bernd/python
cachedir: .pytest_cache
rootdir: /home/bernd/ex_tagging, inifile:
plugins: remotedata-0.3.1, openfiles-0.3.1, doctestplus-0.2.0, arra
ydiff-0.3
collected 4 items / 3 deselecte
d

test_fibonacci.py::test_rfib PASSED

============================ 1 passed, 3 deselected in 7.05 second
s ============================

PYTEST 428

We will run now only the tests which are not marked as slow or crazy:

$ pytest -svv -k "not slow and not crazy"
======================= test session starts =======================
platform linux -- Python 3.7.1, pytest-4.0.2, py-1.7.0, plugg
y-0.8.0 -- /home/bernd/
cachedir: .pytest_cache
rootdir: /home/bernd//ex_tagging, inifile:
plugins: remotedata-0.3.1, openfiles-0.3.1, doctestplus-0.2.0, arra
ydiff-0.3
collected 4 items / 3 deselecte
d

test_fibonacci.py::test_fib PASSED

===================== 1 passed, 3 deselected in 0.01 seconds
====================

SKIPIF MARKER

If you wish to skip a function conditionally then you can use skipif. In the following example the function
test_foo is marked with a skipif. The function will not be executed, if the Python version is 3.6.x:

import pytest
import sys
from foobar import foo, bar

@pytest.mark.skipif(
sys.version_info[0] == 3 and sys.version_info[1] == 6,
reason="Python version has to be higher than 3.5!")

def test_foo():
assert foo() == "foo"

@pytest.mark.crazy
def test_bar():

assert bar() == "bar"

Instead of a conditional skip we can also use an unconditional skip. This way, we can always skip. We can add
a reason. The following example shows how this can be accomplished by marking the function test_bar with a
skip marker. The reason we give is that it is "even fooer than foo":

import pytest
import sys

PYTEST 429

from foobar import foo, bar

@pytest.mark.skipif(
sys.version_info[0] == 3 and sys.version_info[1] == 6,
reason="Python version has to be higher than 3.5!")

def test_foo():
assert foo() == "foo"

@pytest.mark.skip(reason="Even fooer than foo, so we skip!")
def test_bar():

assert bar() == "bar"

If we call pytest on this code, we get the following output:

$ pytest -v
================ test session starts ===============
platform linux -- Python 3.6.9, pytest-5.0.1, py-1.8.0, pluggy-0.1
2.0 -- /home/bernd/python
cachedir: .pytest_cache
rootdir: /home/bernd/ex_tagging2, inifile: pytest.ini
collected 4 item
s

test_fibonacci.py::test_fib PASSE
D

[25%]
test_fibonacci.py::test_rfib PASSE
D

[50%]
test_foobar.py::test_foo SKIPPE
D

[75%]
test_foobar.py::test_bar PASSE
D

[100%]

============= 3 passed, 1 skipped in 0.01 seconds =============

PARAMETRIZATION WITH MARKERS

We will demonstrate parametrization with markers with our Fibonacci function.

PYTEST 430

content of fibonacci.py

def fib(n):
old, new = 0, 1
for _ in range(n):

old, new = new, old + new
return old

We write a pytest test function which will test against this fibonacci function with various values:

content of the file test_fibonacci.py

import pytest

from fibonacci import fib

@pytest.mark.parametrize(
'n, res', [(0, 0),

(1, 1),
(2, 1),
(3, 2),
(4, 3),
(5, 5),
(6, 8)])

def test_fib(n, res):
assert fib(n) == res

When we call pytest, we get the following results:

$ pytest -v
============================ test session starts
============================
platform linux -- Python 3.6.9, pytest-5.0.1, py-1.8.0, pluggy-0.1
2.0 -- /home/bernd/python
cachedir: .pytest_cache
rootdir: /home/bernd/ex_parametrization1
collected 7 item
s

test_fibonacci.py::test_fib[0-0] PASSE
D [14%]
test_fibonacci.py::test_fib[1-1] PASSE
D [28%]

PYTEST 431

test_fibonacci.py::test_fib[2-1] PASSE
D [42%]
test_fibonacci.py::test_fib[3-2] PASSE
D [57%]
test_fibonacci.py::test_fib[4-3] PASSE
D [71%]
test_fibonacci.py::test_fib[5-5] PASSE
D [85%]
test_fibonacci.py::test_fib[6-8] PASSE
D [100%]

========================== 7 passed in 0.01 seconds
=========================

The numbers inside the square brackets on front of the word "PASSED" are the values of 'n' and 'res'.

PRINTS IN FUNCTIONS

If there are prints in the functions which we test, we will not see this output in our pytests, unless we call
pytest with the option "-s". To demonstrate this we will add a print line to our fibonacci function:

def fib(n):
old, new = 0, 1
for _ in range(n):

old, new = new, old + new
print("result: ", old)
return old

Calling "pytest -s -v" will deliver the following output:

=============== test session starts ==============
platform linux -- Python 3.6.9, pytest-5.0.1, py-1.8.0, pluggy-0.1
2.0 -- /home/bernd/python
cachedir: .pytest_cache
rootdir: /home/bernd/ex_parametrization1
collected 7 item
s

test_fibonacci.py::test_fib[0-0] result: 0
PASSED
test_fibonacci.py::test_fib[1-1] result: 1
PASSED
test_fibonacci.py::test_fib[2-1] result: 1

PYTEST 432

PASSED
test_fibonacci.py::test_fib[3-2] result: 2
PASSED
test_fibonacci.py::test_fib[4-3] result: 3
PASSED
test_fibonacci.py::test_fib[5-5] result: 5
PASSED
test_fibonacci.py::test_fib[6-8] result: 8
PASSED

============= 7 passed in 0.01 seconds =================

COMMAND LINE OPTIONS / FIXTURES

We will write a test version for our fibonacci function which depends on command line arguments. We can
add custom command line options to pytest with the pytest_addoption hook that allows us to manage the
command line parser and the setup for each test. At first, we have to write a file conftest.py with the functions
cmdopt and pytest_addoption:

import pytest

def pytest_addoption(parser):
parser.addoption("--cmdopt",

action="store",
default="full",
help="'num' of tests or full")

@pytest.fixture
def cmdopt(request):

return request.config.getoption("--cmdopt")

The code for our fibonacci test module looks like. The test_fif function has a parameter 'cmdopt' which gets
the parameter option:

from fibonacci import fib

results = [0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377]

def test_fib(cmdopt):
if cmdopt == "full":

num = len(results)

PYTEST 433

else:
num = len(results)
if int(cmdopt) < len(results):

num = int(cmdopt)
for i in range(num):

assert fib(i) == results[i]

We can call it now with various options, as we can see in the following:

$ pytest -q --cmdopt=full -v -s
============ test session starts ================
platform linux -- Python 3.6.9, pytest-5.0.1, py-1.8.0, pluggy-0.1
2.0
rootdir: /home/bernd/Dropbox (Bodenseo)/kurse/python_en/examples/py
test/ex_cmd_line
collected 1 ite
m

test_fibonacci.py running 15 tests!
.

============= 1 passed in 0.01 seconds ============

$ pytest -q --cmdopt=6 -v -s
============= test session starts ==============
platform linux -- Python 3.6.9, pytest-5.0.1, py-1.8.0, pluggy-0.1
2.0
rootdir: /home/bernd/Dropbox (Bodenseo)/kurse/python_en/examples/py
test/ex_cmd_line
collected 1 ite
m

test_fibonacci.py running 6 tests!
.

=========================== 1 passed in 0.01 seconds
================================

Let's put an error in our test results: results = [0, 1, 1, 2, 3, 1001, 8,…] Calling pytest with 'pytest -q --
cmdopt=10 -v -s' gives us the following output:

PYTEST 434

================== test session starts ==================
platform linux -- Python 3.6.9, pytest-5.0.1, py-1.8.0, pluggy-0.1
2.0 rootdir: /home/bernd/ex_cmd_line collected 1 item test_fibonacc
i.py running 10 tests! F =============== FAILURES
=================== _______________ test_fib ___________________ cm
dopt = '10' def test_fib(cmdopt): if cmdopt == "full": num = len(re
sults) else: num = len(results) if int(cmdopt) < len(results): num
= int(cmdopt) print(f"running {num:2d} tests!") for i in range(nu
m): > assert fib(i) == results[i] E assert 5 == 1001 E + where 5 =
fib(5) test_fibonacci.py:16: AssertionError ================ 1 fail
ed in 0.03 seconds =================

OBJECT-ORIENTED PROGRAMMING

PYTEST 435

G E N E R A L I N T R O D U C T I O N

Though Python is an object-oriented language without fuss
or quibble, we have so far intentionally avoided the
treatment of object-oriented programming (OOP) in the
previous chapters of our Python tutorial. We skipped OOP,
because we are convinced that it is easier and more fun to
start learning Python without having to know about all the
details of object-oriented programming.

Even though we have avoided OOP, it has nevertheless
always been present in the exercises and examples of our
course. We used objects and methods from classes without
properly explaining their OOP background. In this chapter,
we will catch up on what has been missing so far. We will

provide an introduction into the principles of object oriented programming in general and into the specifics of
the OOP approach of Python. OOP is one of the most powerful tools of Python, but nevertheless you don't
have to use it, i.e. you can write powerful and efficient programs without it as well.

Though many computer scientists and programmers consider OOP to be a modern programming paradigm, the
roots go back to 1960s. The first programming language to use objects was Simula 67. As the name implies,
Simula 67 was introduced in the year 1967. A major breakthrough for object-oriented programming came with
the programming language Smalltalk in the 1970s.

You will learn to know the four major principles of object-orientation and the way Python deals with them in
the next section of this tutorial on object-oriented programming:

GENERAL INTRODUCTION 436

• Encapsulation
• Data Abstraction
• Polymorphism
• Inheritance

Before we start the section about the way OOP is used in
Python, we want to give you a general idea about object-
oriented programming. For this purpose, we would like to draw
your attention to a public library. Let's think about a huge one,
like the "British Library" in London or the "New York Public
Library" in New York. If it helps, you can imagine the libraries
in Paris, Berlin, Ottawa or Toronto* as well. Each of these
contain an organized collection of books, periodicals,
newspapers, audiobooks, films and so on.

Generally, there are two opposed ways of keeping the stock in a
library. You can use a "closed access" method that is the stock
is not displayed on open shelves. In this system, trained staff
brings the books and other publications to the users on demand.
Another way of running a library is open-access shelving, also
known as "open shelves". "Open" means open to all users of
the library not only specially trained staff. In this case the
books are openly displayed. Imperative languages like C could
be seen as open-access shelving libraries. The user can do everything. It's up to the user to find the books and
to put them back at the right shelf. Even though this is great for the user, it might lead to serious problems in
the long run. For example some books will be misplaced, so it's hard to find them again. As you may have
guessed already, "closed access" can be compared to object oriented programming. The analogy can be seen
like this: The books and other publications, which a library offers, are like the data in an object-oriented
program. Access to the books is restricted like access to the data is restricted in OOP. Getting or returning a
book is only possible via the staff. The staff functions like the methods in OOP, which control the access to the
data. So, the data, - often called attributes, - in such a program can be seen as being hidden and protected by a
shell, and it can only be accessed by special functions, usually called methods in the OOP context. Putting the
data behind a "shell" is called Encapsulation. So a library can be regarded as a class and a book is an instance
or an object of this class. Generally speaking, an object is defined by a class. A class is a formal description of
how an object is designed, i.e. which attributes and methods it has. These objects are called instances as well.
The expressions are in most cases used synonymously. A class should not be confused with an object.

GENERAL INTRODUCTION 437

OOP IN PYTHON

Even though we haven't talked about classes and object
orientation in previous chapters, we have worked with classes
all the time. In fact, everything is a class in Python. Guido van
Rossum has designed the language according to the principle
"first-class everything". He wrote: "One of my goals for Python
was to make it so that all objects were "first class." By this, I
meant that I wanted all objects that could be named in the
language (e.g., integers, strings, functions, classes, modules,
methods, and so on) to have equal status. That is, they can be
assigned to variables, placed in lists, stored in dictionaries,
passed as arguments, and so forth." (Blog, The History of
Python, February 27, 2009) In other words, "everything" is
treated the same way, everything is a class: functions and
methods are values just like lists, integers or floats. Each of
these are instances of their corresponding classes.

x = 42
type(x)

y = 4.34
type(y)

def f(x):
return x + 1

type(f)

import math
type(math)

One of the many integrated classes in Python is the list class, which we have quite often used in our exercises
and examples. The list class provides a wealth of methods to build lists, to access and change elements, or to
remove elements:

x = [3,6,9]
y = [45, "abc"]
print(x[1])

Output: int

Output: float

Output: function

Output: module

GENERAL INTRODUCTION 438

x[1] = 99
x.append(42)
last = y.pop()
print(last)

The variables x and y of the previous example denote two instances of the list class. In simplified terms, we
have said so far that "x and y are lists". We will use the terms "object" and "instance" synonymously in the
following chapters, as it is often done**.

pop and append of the previous example are methods of the list class. pop returns the top (or you might think
of it as the "rightest") element of the list and removes this element from the list. We will not explain how
Python has implemented lists internally. We don't need this information, because the list class provides us with
all the necessary methods to access the data indirectly. That is, the encapsulation details are encapsulated. We
will learn about encapsulation later.

A MINIMAL CLASS IN PYTHON

6

abc

GENERAL INTRODUCTION 439

We will design and use a robot class in Python as an example to demonstrate the most important terms and
ideas of object orientation. We will start with the simplest class in Python.

class Robot:
pass

We can realize the fundamental syntactical structure of a class in Python: A class consists of two parts: the
header and the body. The header usually consists of just one line of code. It begins with the keyword "class"
followed by a blank and an arbitrary name for the class. The class name is "Robot" in our case. The class
name is followed by a listing of other class names, which are classes from which the defined class inherits.
These classes are called superclasses, base classes or sometimes parent classes. If you look at our example,
you will see that this listing of superclasses is not obligatory. You don't have to bother about inheritance and
superclasses for now. We will introduce them later.

The body of a class consists of an indented block of statements. In our case a single statement, the "pass"
statement.

A class object is created, when the definition is left normally, i.e. via the end. This is basically a wrapper
around the contents of the namespace created by the class definition.

It's hard to believe, especially for C++ or Java programmers, but we have already defined a complete class
with just three words and two lines of code. We are capable of using this class as well:

class Robot:
pass

if __name__ == "__main__":
x = Robot()
y = Robot()
y2 = y
print(y == y2)
print(y == x)

We have created two different robots x and y in our example. Besides this, we have created a reference y2 to y,
i.e. y2 is an alias name for y.

ATTRIBUTES

Those who have learned already another object-oriented language, must have realized that the terms attributes
and properties are usually used synonymously. It may even be used in the definition of an attribute, like
Wikipedia does: "In computing, an attribute is a specification that defines a property of an object, element, or
file. It may also refer to or set the specific value for a given instance of such."

True
False

GENERAL INTRODUCTION 440

Even in normal English usage the words "attribute" and "property" can be used in some cases as synonyms.
Both can have the meaning "An attribute, feature, quality, or characteristic of something or someone". Usually
an "attribute" is used to denote a specific ability or characteristic which something or someone has, like black
hair, no hair, or a quick perception, or "her quickness to grasp new tasks". So, think a while about your
outstanding attributes. What about your "outstanding properties"? Great, if one of your strong points is your
ability to quickly understand and adapt to new situations! Otherwise, you would not be learning Python!

Let's get back to Python: We will learn later that properties and attributes are essentially different things in
Python. This subsection of our tutorial is about attributes in Python. So far our robots have no attributes. Not
even a name, like it is customary for ordinary robots, isn't it? So, let's implement a name attribute. "type
designation", "build year" etc. are easily conceivable as further attributes as well***.

Attributes are created inside a class definition, as we will soon learn. We can dynamically create arbitrary new
attributes for existing instances of a class. We do this by joining an arbitrary name to the instance name,
separated by a dot ".". In the following example, we demonstrate this by creating an attribute for the name and
the year built:

class Robot:
pass

x = Robot()
y = Robot()

x.name = "Marvin"
x.build_year = "1979"

y.name = "Caliban"
y.build_year = "1993"

print(x.name)

print(y.build_year)

As we have said before: This is not the way to properly create instance attributes. We introduced this example,
because we think that it may help to make the following explanations easier to understand.

If you want to know, what's happening internally: The instances possess dictionaries __dict__ , which they
use to store their attributes and their corresponding values:

x.__dict__

Marvin

1993

Output: {'name': 'Marvin', 'build_year': '1979'}

GENERAL INTRODUCTION 441

y.__dict__

Attributes can be bound to class names as well. In this case, each instance will possess this name as well.
Watch out, what happens, if you assign the same name to an instance:

class Robot(object):
pass

x = Robot()
Robot.brand = "Kuka"
x.brand

x.brand = "Thales"
Robot.brand

y = Robot()
y.brand

Robot.brand = "Thales"
y.brand

x.brand

If you look at the __dict__ dictionaries, you can see what's happening.

x.__dict__

y.__dict__

Robot.__dict__

Output: {'name': 'Caliban', 'build_year': '1993'}

Output: 'Kuka'

Output: 'Kuka'

Output: 'Kuka'

Output: 'Thales'

Output: 'Thales'

Output: {'brand': 'Thales'}

Output: {}

GENERAL INTRODUCTION 442

If you try to access y.brand, Python checks first, if "brand" is a key of the y. __dict__ dictionary. If it is
not, Python checks, if "brand" is a key of the Robot. __dict__ . If so, the value can be retrieved.

If an attribute name is not in included in either of the dictionary, the attribute name is not defined. If you try to
access a non-existing attribute, you will raise an AttributeError:

x.energy

By using the function getattr, you can prevent this exception, if you provide a default value as the third
argument:

getattr(x, 'energy', 100)

Binding attributes to objects is a general concept in Python. Even function names can be attributed. You can
bind an attribute to a function name in the same way, we have done so far to other instances of classes:

def f(x):
return 42

f.x = 42
print(f.x)

This can be used as a replacement for the static function variables of C and C++, which are not possible in
Python. We use a counter attribute in the following example:

Output: mappingproxy({'__module__': '__main__',
'__dict__': <attribute '__dict__' of 'Robot' ob

jects>,
'__weakref__': <attribute '__weakref__' of 'Rob

ot' objects>,
'__doc__': None,
'brand': 'Thales'})

AttributeError Traceback (most recent call last)
<ipython-input-28-82fa0f11497d> in <module>
----> 1 x.energy
AttributeError: 'Robot' object has no attribute 'energy'

Output: 100

42

GENERAL INTRODUCTION 443

def f(x):
f.counter = getattr(f, "counter", 0) + 1
return "Monty Python"

for i in range(10):
f(i)

print(f.counter)

Some uncertainty may arise at this point. It is possible to assign attributes to most class instances, but this has
nothing to do with defining classes. We will see soon how to assign attributes when we define a class.

To properly create instances of classes, we also need methods. You will learn in the following subsection of
our Python tutorial, how you can define methods.

METHODS

Methods in Python are essentially functions in accordance with Guido's saying
"first-class everything".

Let's define a function "hi", which takes an object "obj" as an argument and
assumes that this object has an attribute "name". We will also define our basic
Robot class again:

def hi(obj):
print("Hi, I am " + obj.name + "!")

class Robot:
pass

x = Robot()
x.name = "Marvin"
hi(x)

We will now bind the function „hi“ to a class attribute „say_hi“!

def hi(obj):
print("Hi, I am " + obj.name)

10

Hi, I am Marvin!

GENERAL INTRODUCTION 444

class Robot:
say_hi = hi

x = Robot()
x.name = "Marvin"
Robot.say_hi(x)

"say_hi" is called a method. Usually, it will be called like this:

x.say_hi()

It is possible to define methods like this, but you shouldn't do it.

The proper way to do it:

• Instead of defining a function outside of a class definition and binding it to a class attribute, we
define a method directly inside (indented) of a class definition.

• A method is "just" a function which is defined inside a class.
• The first parameter is used a reference to the calling instance.
• This parameter is usually called self.
• Self corresponds to the Robot object x.

We have seen that a method differs from a function only in two aspects:

• It belongs to a class, and it is defined within a class
• The first parameter in the definition of a method has to be a reference to the instance, which

called the method. This parameter is usually called "self".

As a matter of fact, "self" is not a Python keyword. It's just a naming convention! So C++ or Java
programmers are free to call it "this", but this way they are risking that others might have greater difficulties in
understanding their code!

Most other object-oriented programming languages pass the reference to the object (self) as a hidden
parameter to the methods.

You saw before that the calls Robot.say_hi(x)". and "x.say_hi()" are equivalent. "x.say_hi()" can be seen as an
"abbreviated" form, i.e. Python automatically binds it to the instance name. Besides this "x.say_hi()" is the
usual way to call methods in Python and in other object oriented languages.

For a Class C, an instance x of C and a method m of C the following three method calls are equivalent:

• type(x).m(x, ...)
• C.m(x, ...)
• x.m(...)

Hi, I am Marvin

GENERAL INTRODUCTION 445

Before you proceed with the following text, you may mull over the previous example for awhile. Can you
figure out, what is wrong in the design?

There is more than one thing about this code, which may disturb you, but the essential problem at the moment
is the fact that we create a robot and that after the creation, we shouldn't forget about naming it! If we forget it,
say_hi will raise an error.

We need a mechanism to initialize an instance right after its creation. This is the __init__ -method, which
we cover in the next section.

THE __INIT__ METHOD

We want to define the attributes of an instance right after its creation. __init__ is a method which is
immediately and automatically called after an instance has been created. This name is fixed and it is not
possible to chose another name. __init__ is one of the so-called magic methods,we will get to know it
with some more details later. The __init__ method is used to initialize an instance. There is no explicit
constructor or destructor method in Python, as they are known in C++ and Java. The __init__ method
can be anywhere in a class definition, but it is usually the first method of a class, i.e. it follows right after the
class header.

class A:
def __init__(self):

print("__init__ has been executed!")

x = A()

We add an __init__ -method to our robot class:

class Robot:
def __init__(self, name=None):

self.name = name

def say_hi(self):
if self.name:

print("Hi, I am " + self.name)
else:

print("Hi, I am a robot without a name")

x = Robot()
x.say_hi()
y = Robot("Marvin")

__init__ has been executed!

GENERAL INTRODUCTION 446

y.say_hi()

DATA ABSTRACTION, DATA ENCAPSULATION, AND INFORMATION
HIDING

DEFINITIONS OF TERMS

Data Abstraction, Data Encapsulation and Information
Hiding are often synonymously used in books and tutorials
on OOP. However, there is a difference. Encapsulation is
seen as the bundling of data with the methods that operate
on that data. Information hiding on the other hand is the
principle that some internal information or data is
"hidden", so that it can't be accidentally changed. Data
encapsulation via methods doesn't necessarily mean that
the data is hidden. You might be capable of accessing and
seeing the data anyway, but using the methods is
recommended. Finally, data abstraction is present, if both
data hiding and data encapsulation is used. In other words, data abstraction is the broader term:

Data Abstraction = Data Encapsulation + Data Hiding

Encapsulation is often accomplished by providing two kinds of methods for attributes: The methods for
retrieving or accessing the values of attributes are called getter methods. Getter methods do not change the
values of attributes, they just return the values. The methods used for changing the values of attributes are
called setter methods.

We will define now a Robot class with a Getter and a Setter for the name attribute. We will call them
get_name and set_name accordingly.

class Robot:
def __init__(self, name=None):

self.name = name

def say_hi(self):
if self.name:

print("Hi, I am " + self.name)
else:

print("Hi, I am a robot without a name")

def set_name(self, name):
self.name = name

Hi, I am a robot without a name
Hi, I am Marvin

GENERAL INTRODUCTION 447

def get_name(self):
return self.name

x = Robot()
x.set_name("Henry")
x.say_hi()
y = Robot()
y.set_name(x.get_name())
print(y.get_name())

Before you go on, you can do a little exercise. You can add an additional attribute "build_year" with Getters
and Setters to the Robot class.

class Robot:
def __init__(self,

name=None,
build_year=None):

self.name = name
self.build_year = build_year

def say_hi(self):
if self.name:

print("Hi, I am " + self.name)
else:

print("Hi, I am a robot without a name")
if self.build_year:

print("I was built in " + str(self.build_year))
else:

print("It's not known, when I was created!")

def set_name(self, name):
self.name = name

def get_name(self):
return self.name

def set_build_year(self, by):
self.build_year = by

Hi, I am Henry
Henry

GENERAL INTRODUCTION 448

def get_build_year(self):
return self.build_year

x = Robot("Henry", 2008)
y = Robot()
y.set_name("Marvin")
x.say_hi()
y.say_hi()

There is still something wrong with our Robot class. The Zen of Python says: "There should be one-- and
preferably only one --obvious way to do it." Our Robot class provides us with two ways to access or to change
the "name" or the "build_year" attribute. This can be prevented by using private attributes, which we will
explain later.

__STR__- AND __REPR__ -METHODS

We will have a short break in our treatise on data abstraction for a quick side-trip. We want to introduce two
important magic methods "__str__" and "__repr__" , which we will need in future examples. In the
course of this tutorial, we have already encountered the __str__ method. We had seen that we can depict
various data as string by using the str function, which uses "magically" the internal __str__ method of the
corresponding data type. __repr__ is similar. It also produces a string representation.

l = ["Python", "Java", "C++", "Perl"]
print(l)

str(l)

repr(l)

d = {"a":3497, "b":8011, "c":8300}
print(d)

str(d)

Hi, I am Henry
I was built in 2008
Hi, I am Marvin
It's not known, when I was created!

['Python', 'Java', 'C++', 'Perl']

Output: "['Python', 'Java', 'C++', 'Perl']"

Output: "['Python', 'Java', 'C++', 'Perl']"

{'a': 3497, 'b': 8011, 'c': 8300}

GENERAL INTRODUCTION 449

repr(d)

x = 587.78
str(x)

repr(x)

If you apply str or repr to an object, Python is looking for a corresponding method __str__ or
__repr__ in the class definition of the object. If the method does exist, it will be called. In the following

example, we define a class A, having neither a __str__ nor a __repr__ method. We want to see, what
happens, if we use print directly on an instance of this class, or if we apply str or repr to this instance:

class A:
pass

a = A()
print(a)

print(repr(a))

print(str(a))

a

As both methods are not available, Python uses the default output for our object "a".

If a class has a __str__ method, the method will be used for an instance x of that class, if either the
function str is applied to it or if it is used in a print function. __str__ will not be used, if repr is called, or
if we try to output the value directly in an interactive Python shell:

class A:

Output: "{'a': 3497, 'b': 8011, 'c': 8300}"

Output: "{'a': 3497, 'b': 8011, 'c': 8300}"

Output: '587.78'

Output: '587.78'

<__main__.A object at 0x0000016B162A2688>

<__main__.A object at 0x0000016B162A2688>

<__main__.A object at 0x0000016B162A2688>

Output: <__main__.A at 0x16b162a2688>

GENERAL INTRODUCTION 450

def __str__(self):
return "42"

a = A()

print(repr(a))

print(str(a))

a

Otherwise, if a class has only the __repr__ method and no __str__ method, __repr__ will be
applied in the situations, where __str__ would be applied, if it were available:

class A:
def __repr__(self):

return "42"

a = A()
print(repr(a))
print(str(a))
a

A frequently asked question is when to use __repr__ and when __str__ . __str__ is always the
right choice, if the output should be for the end user or in other words, if it should be nicely printed.
__repr__ on the other hand is used for the internal representation of an object. The output of
__repr__ should be - if feasible - a string which can be parsed by the python interpreter. The result of this

parsing is in an equal object. That is, the following should be true for an object "o":

o == eval(repr(o))

This is shown in the following interactive Python session:

l = [3,8,9]

<__main__.A object at 0x0000016B162A4108>

42

Output: <__main__.A at 0x16b162a4108>

42
42

Output: 42

GENERAL INTRODUCTION 451

s = repr(l)
s

l == eval(s)

l == eval(str(l))

We show in the following example with the datetime module that eval can only be applied on the strings
created by repr:

import datetime
today = datetime.datetime.now()
str_s = str(today)
eval(str_s)

repr_s = repr(today)
t = eval(repr_s)
type(t)

We can see that eval(repr_s) returns again a datetime.datetime object. The string created by str can't be turned
into a datetime.datetime object by parsing it.

We will extend our robot class with a repr method. We dropped the other methods to keep this example
simple:

Output: '[3, 8, 9]'

Output: True

Output: True

Traceback (most recent call last):
File "C:\Users\melis\Anaconda3\lib\site-packages\IPython\core\in

teractiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)

File "<ipython-input-57-52b036e82a64>", line 4, in <module>
eval(str_s)

File "<string>", line 1
2020-06-11 17:48:26.391635

^
SyntaxError: invalid token

Output: datetime.datetime

GENERAL INTRODUCTION 452

class Robot:
def __init__(self, name, build_year):

self.name = name
self.build_year = build_year

def __repr__(self):
return "Robot('" + self.name + "', " + str(self.build_yea

r) + ")"

if __name__ == "__main__":
x = Robot("Marvin", 1979)

x_str = str(x)
print(x_str)
print("Type of x_str: ", type(x_str))
new = eval(x_str)
print(new)
print("Type of new:", type(new))

x_str has the value Robot('Marvin', 1979). eval(x_str) converts it again into a Robot instance.

Now it's time to extend our class with a user friendly __str__ method:

class Robot:
def __init__(self, name, build_year):

self.name = name
self.build_year = build_year

def __repr__(self):
return "Robot('" + self.name + "', " + str(self.build_yea

r) + ")"

def __str__(self):
return "Name: " + self.name + ", Build Year: " + str(sel

f.build_year)

if __name__ == "__main__":

Robot('Marvin', 1979)
Type of x_str: <class 'str'>
Robot('Marvin', 1979)
Type of new: <class '__main__.Robot'>

GENERAL INTRODUCTION 453

x = Robot("Marvin", 1979)

x_str = str(x)
print(x_str)
print("Type of x_str: ", type(x_str))
new = eval(x_str)
print(new)
print("Type of new:", type(new))

When we start this program, we can see that it is not possible to convert our string x_str, created via str(x),
into a Robot object anymore.

We show in the following program that x_repr can still be turned into a Robot object:

class Robot:
def __init__(self, name, build_year):

self.name = name
self.build_year = build_year

def __repr__(self):
return "Robot(\"" + self.name + "\"," + str(self.build_ye

ar) + ")"

def __str__(self):
return "Name: " + self.name + ", Build Year: " + str(sel

f.build_year)

Name: Marvin, Build Year: 1979
Type of x_str: <class 'str'>
Traceback (most recent call last):

File "C:\Users\melis\Anaconda3\lib\site-packages\IPython\core\in
teractiveshell.py", line 3326, in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

File "<ipython-input-60-c8082321922a>", line 19, in <module>
new = eval(x_str)

File "<string>", line 1
Name: Marvin, Build Year: 1979

^
SyntaxError: invalid syntax

GENERAL INTRODUCTION 454

if __name__ == "__main__":
x = Robot("Marvin", 1979)

x_repr = repr(x)
print(x_repr, type(x_repr))
new = eval(x_repr)
print(new)
print("Type of new:", type(new))

PUBLIC, - PROTECTED-, AND PRIVATE ATTRIBUTES

Who doesn't know those trigger-happy farmers from films. Shooting as soon as
somebody enters their property. This "somebody" has of course neglected the "no
trespassing" sign, indicating that the land is private property. Maybe he hasn't seen
the sign, maybe the sign is hard to be seen? Imagine a jogger, running the same
course five times a week for more than a year, but than he receives a $50 fine for
trespassing in the Winchester Fells. Trespassing is a criminal offence in
Massachusetts. He was innocent anyway, because the signage was inadequate in the
area**.

Even though no trespassing signs and strict laws do protect the private property,
some surround their property with fences to keep off unwanted "visitors". Should the fence keep the dog in the
yard or the burglar on the street? Choose your fence: Wood panel fencing, post-and-rail fencing, chain-link
fencing with or without barbed wire and so on.

We have a similar situation in the design of object-oriented programming languages. The first decision to take
is how to protect the data which should be private. The second decision is what to do if trespassing, i.e.
accessing or changing private data, occurs. Of course, the private data may be protected in a way that it can't
be accessed under any circumstances. This is hardly possible in practice, as we know from the old saying
"Where there's a will, there's a way"!

Some owners allow a restricted access to their property. Joggers or hikers may find
signs like "Enter at your own risk". A third kind of property might be public
property like streets or parks, where it is perfectly legal to be.

We have the same classification again in object-oriented programming:

• Private attributes should only be used by the owner, i.e. inside of the
class definition itself.

• Protected (restricted) Attributes may be used, but at your own risk.
Essentially, they should only be used under certain conditions.

• Public Attributes can and should be freely used.

Robot("Marvin",1979) <class 'str'>
Name: Marvin, Build Year: 1979
Type of new: <class '__main__.Robot'>

GENERAL INTRODUCTION 455

Python uses a special naming scheme for attributes to control the accessibility of the attributes. So far, we
have used attribute names, which can be freely used inside or outside of a class definition, as we have seen.
This corresponds to public attributes of course. There are two ways to restrict the access to class attributes:

• First, we can prefix an attribute name with a leading underscore "_". This marks the attribute as
protected. It tells users of the class not to use this attribute unless, they write a subclass. We will
learn about inheritance and subclassing in the next chapter of our tutorial.

• Second, we can prefix an attribute name with two leading underscores "__". The attribute is now
inaccessible and invisible from outside. It's neither possible to read nor write to those attributes
except inside the class definition itself*.

To summarize the attribute types:

Naming Type Meaning

name Public These attributes can be freely used
inside or outside a class definition.

_name Protected Protected attributes should not be used
outside the class definition, unless inside

a subclass definition.

__name Private This kind of attribute is inaccessible and
invisible. It's neither possible to read nor

write to those attributes, except inside
the class definition itself.

We want to demonstrate the behaviour of these attribute types with an example class:

class A():
def __init__(self):

self.__priv = "I am private"
self._prot = "I am protected"
self.pub = "I am public"

We store this class (attribute_tests.py) and test its behaviour in the following interactive Python shell:

from attribute_tests import A
x = A()
x.pub

x.pub = x.pub + " and my value can be changed"
x.pub

Output: 'I am public'

GENERAL INTRODUCTION 456

x._prot

x.__priv

The error message is very interesting. One might have expected a message like " __priv is private". We get
the message "AttributeError: 'A' object has no attribute __priv instead, which looks like a "lie". There is
such an attribute, but we are told that there isn't. This is perfect information hiding. Telling a user that an
attribute name is private, means that we make some information visible, i.e. the existence or non-existence of
a private variable.

Our next task is rewriting our Robot class. Though we have Getter and Setter methods for the name and the
build_year, we can access the attributes directly as well, because we have defined them as public attributes.
Data Encapsulation means, that we should only be able to access private attributes via getters and setters.

We have to replace each occurrence of self.name and self.build_year by self. __name and
self.__build_year .

The listing of our revised class:

class Robot:
def __init__(self, name=None, build_year=2000):

self.__name = name
self.__build_year = build_year

def say_hi(self):
if self.__name:

print("Hi, I am " + self.__name)
else:

print("Hi, I am a robot without a name")

def set_name(self, name):
self.__name = name

def get_name(self):

Output: 'I am public and my value can be changed'

Output: 'I am protected'

AttributeError Traceback (most recent call last)
<ipython-input-6-f75b36b98afa> in <module>
----> 1 x.__priv
AttributeError: 'A' object has no attribute '__priv'

GENERAL INTRODUCTION 457

return self.__name

def set_build_year(self, by):
self.__build_year = by

def get_build_year(self):
return self.__build_year

def __repr__(self):
return "Robot('" + self.__name + "', " + str(self.__buil

d_year) + ")"

def __str__(self):
return "Name: " + self.__name + ", Build Year: " + str(se

lf.__build_year)

if __name__ == "__main__":
x = Robot("Marvin", 1979)
y = Robot("Caliban", 1943)
for rob in [x, y]:

rob.say_hi()
if rob.get_name() == "Caliban":

rob.set_build_year(1993)
print("I was built in the year " + str(rob.get_build_yea

r()) + "!")

Every private attribute of our class has a getter and a setter. There are IDEs for object-oriented programming
languages, who automatically provide getters and setters for every private attribute as soon as an attribute is
created.

This may look like the following class:

class A():

def __init__(self, x, y):
self.__x = x
self.__y = y

def GetX(self):
return self.__x

Hi, I am Marvin
I was built in the year 1979!
Hi, I am Caliban
I was built in the year 1993!

GENERAL INTRODUCTION 458

def GetY(self):
return self.__y

def SetX(self, x):
self.__x = x

def SetY(self, y):
self.__y = y

There are at least two good reasons against such an approach. First of all not every private attribute needs to
be accessed from outside. Second, we will create non-pythonic code this way, as you will learn soon.

DESTRUCTOR

What we said about constructors holds true for destructors as well. There is no "real" destructor, but something
similar, i.e. the method __del__ . It is called when the instance is about to be destroyed and if there is no
other reference to this instance. If a base class has a __del__() method, the derived class's __del__()
method, if any, must explicitly call it to ensure proper deletion of the base class part of the instance.

The following script is an example with __init__ and __del__ :

class Robot():
def __init__(self, name):

print(name + " has been created!")

def __del__(self):
print ("Robot has been destroyed")

if __name__ == "__main__":
x = Robot("Tik-Tok")
y = Robot("Jenkins")
z = x
print("Deleting x")
del x
print("Deleting z")
del z
del y

GENERAL INTRODUCTION 459

The usage of the __del__ method is very problematic. If we change the previous code to personalize the
deletion of a robot, we create an error:

class Robot():
def __init__(self, name):

print(name + " has been created!")

def __del__(self):
print (self.name + " says bye-bye!")

if __name__ == "__main__":
x = Robot("Tik-Tok")
y = Robot("Jenkins")
z = x
print("Deleting x")
del x
print("Deleting z")
del z
del y

Tik-Tok has been created!
Jenkins has been created!
Deleting x
Deleting z
Robot has been destroyed
Robot has been destroyed

Tik-Tok has been created!
Jenkins has been created!
Deleting x
Deleting z
Exception ignored in: <function Robot.__del__ at 0x0000024A13CDC8B
8>
Traceback (most recent call last):

File "<ipython-input-18-7dedd1b7f17b>", line 7, in __del__
AttributeError: 'Robot' object has no attribute 'name'
Exception ignored in: <function Robot.__del__ at 0x0000024A13CDC8B
8>
Traceback (most recent call last):

File "<ipython-input-18-7dedd1b7f17b>", line 7, in __del__
AttributeError: 'Robot' object has no attribute 'name'

GENERAL INTRODUCTION 460

We are accessing an attribute which doesn't exist anymore. We will learn later, why this is the case.

Footnotes: + The picture on the right side is taken in the Library of the Court of Appeal for Ontario, located
downtown Toronto in historic Osgoode Hall

++ "Objects are Python's abstraction for data. All data in a Python program is represented by objects or by
relations between objects. (In a sense, and in conformance to Von Neumann's model of a "stored program
computer", code is also represented by objects.) Every object has an identity, a type and a value." (excerpt
from the official Python Language Reference)

+++ "attribute" stems from the Latin verb "attribuere" which means "to associate with"

++++ http://www.wickedlocal.com/x937072506/tJogger-ticketed-for-trespassing-in-the-Winchester-Fells-
kicks-back

+++++ There is a way to access a private attribute directly. In our example, we can do it like this:
x._Robot__build_year You shouldn't do this under any circumstances!

GENERAL INTRODUCTION 461

C L A S S A N D I N S T A N C E
A T T R I B U T E S

CLASS ATTRIBUTES

Instance attributes are owned by the specific instances of a
class. That is, for two different instances, the instance
attributes are usually different. You should by now be
familiar with this concept which we introduced in our
previous chapter.

We can also define attributes at the class level. Class
attributes are attributes which are owned by the class itself.
They will be shared by all the instances of the class.
Therefore they have the same value for every instance. We
define class attributes outside all the methods, usually they
are placed at the top, right below the class header.

In the following interactive Python session, we can see that the class attribute "a" is the same for all instances,
in our examples "x" and "y". Besides this, we see that we can access a class attribute via an instance or via the
class name:

class A:
a = "I am a class attribute!"

x = A()
y = A()
x.a

y.a

A.a

But be careful, if you want to change a class attribute, you have to do it with the notation
ClassName.AttributeName. Otherwise, you will create a new instance variable. We demonstrate this in the
following example:

class A:

Output: 'I am a class attribute!'

Output: 'I am a class attribute!'

Output: 'I am a class attribute!'

CLASS AND INSTANCE ATTRIBUTES 462

a = "I am a class attribute!"

x = A()
y = A()
x.a = "This creates a new instance attribute for x!"
y.a

A.a

A.a = "This is changing the class attribute 'a'!"
A.a

y.a

x.a
but x.a is still the previously created instance variable

Python's class attributes and object attributes are stored in separate dictionaries, as we can see here:

x.__dict__

y.__dict__

A.__dict__

Output: 'I am a class attribute!'

Output: 'I am a class attribute!'

Output: "This is changing the class attribute 'a'!"

Output: "This is changing the class attribute 'a'!"

Output: 'This creates a new instance attribute for x!'

Output: {'a': 'This creates a new instance attribute for x!'}

Output: {}

CLASS AND INSTANCE ATTRIBUTES 463

x.__class__.__dict__

EXAMPLE WITH CLASS ATTRIBUTES

Isaac Asimov devised and introduced the so-called "Three Laws of Robotics" in 1942. The appeared in his
story "Runaround". His three laws have been picked up by many science fiction writers. As we have started
manufacturing robots in Python, it's high time to make sure that they obey Asimovs three laws. As they are the
same for every instance, i.e. robot, we will create a class attribute Three_Laws. This attribute is a tuple with
the three laws.

class Robot:
Three_Laws = (

"""A robot may not injure a human being or, through inaction, allo
w a human being to come to harm.""",
"""A robot must obey the orders given to it by human beings, excep
t where such orders would conflict with the First Law.,""",
"""A robot must protect its own existence as long as such protecti
on does not conflict with the First or Second Law."""
)

def __init__(self, name, build_year):
self.name = name
self.build_year = build_year

other methods as usual

As we mentioned before, we can access a class attribute via instance or via the class name. You can see in the

Output: mappingproxy({'__module__': '__main__',
'a': "This is changing the class attribute

'a'!",
'__dict__': <attribute '__dict__' of 'A' object

s>,
'__weakref__': <attribute '__weakref__' of 'A'

objects>,
'__doc__': None})

Output: mappingproxy({'__module__': '__main__',
'a': "This is changing the class attribute

'a'!",
'__dict__': <attribute '__dict__' of 'A' object

s>,
'__weakref__': <attribute '__weakref__' of 'A'

objects>,
'__doc__': None})

CLASS AND INSTANCE ATTRIBUTES 464

following that we don't need an instance:

from robot_asimov import Robot
for number, text in enumerate(Robot.Three_Laws):

print(str(number+1) + ":\n" + text)

In the following example, we demonstrate, how you can count instance with class attributes. All we have to do
is

• to create a class attribute, which we call "counter" in our example
• to increment this attribute by 1 every time a new instance is created
• to decrement the attribute by 1 every time an instance is destroyed

class C:
counter = 0

def __init__(self):
type(self).counter += 1

def __del__(self):
type(self).counter -= 1

if __name__ == "__main__":
x = C()
print("Number of instances: : " + str(C.counter))
y = C()
print("Number of instances: : " + str(C.counter))
del x
print("Number of instances: : " + str(C.counter))
del y
print("Number of instances: : " + str(C.counter))

1:
A robot may not injure a human being or, through inaction, allow
a human being to come to harm.
2:
A robot must obey the orders given to it by human beings, except w
here such orders would conflict with the First Law.,
3:
A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law.

CLASS AND INSTANCE ATTRIBUTES 465

Principially, we could have written C.counter instead of type(self).counter, because type(self) will be
evaluated to "C" anyway. However we will understand later, that type(self) makes sense, if we use such a class
as a superclass.

STATIC METHODS

We used class attributes as public attributes in the previous section. Of course, we can make public attributes
private as well. We can do this by adding the double underscore again. If we do so, we need a possibility to
access and change these private class attributes. We could use instance methods for this purpose:

class Robot:
__counter = 0

def __init__(self):
type(self).__counter += 1

def RobotInstances(self):
return Robot.__counter

if __name__ == "__main__":
x = Robot()
print(x.RobotInstances())
y = Robot()
print(x.RobotInstances())

This is not a good idea for two reasons: First of all, because the number of robots has nothing to do with a
single robot instance and secondly because we can't inquire the number of robots before we create an instance.
If we try to invoke the method with the class name Robot.RobotInstances(), we get an error message, because
it needs an instance as an argument:

Robot.RobotInstances()

Number of instances: : 1
Number of instances: : 2
Number of instances: : 1
Number of instances: : 0

1
2

CLASS AND INSTANCE ATTRIBUTES 466

The next idea, which still doesn't solve our problem, is omitting the parameter "self":

class Robot:
__counter = 0

def __init__(self):
type(self).__counter += 1

def RobotInstances():
return Robot.__counter

Now it's possible to access the method via the class name, but we can't call it via an instance:

from static_methods2 import Robot
Robot.RobotInstances()

x = Robot()
x.RobotInstances()

The call "x.RobotInstances()" is treated as an instance method call and an instance method needs a reference
to the instance as the first parameter.

So, what do we want? We want a method, which we can call via the class name or via the instance name
without the necessity of passing a reference to an instance to it.

The solution lies in static methods, which don't need a reference to an instance. It's easy to turn a method into
a static method. All we have to do is to add a line with "@staticmethod" directly in front of the method header.
It's the decorator syntax.

TypeError Traceback (most recent call last)
<ipython-input-35-f53600e3296e> in <module>
----> 1 Robot.RobotInstances()
TypeError: RobotInstances() missing 1 required positional argument: 'self'

Output: 0

TypeError Traceback (most recent call last)
<ipython-input-40-4d5e11c3474a> in <module>

1 x = Robot()
----> 2 x.RobotInstances()
TypeError: RobotInstances() takes 0 positional arguments but 1 was given

CLASS AND INSTANCE ATTRIBUTES 467

You can see in the following example that we can now use our method RobotInstances the way we want:

class Robot:
__counter = 0

def __init__(self):
type(self).__counter += 1

@staticmethod
def RobotInstances():

return Robot.__counter

if __name__ == "__main__":
print(Robot.RobotInstances())
x = Robot()
print(x.RobotInstances())
y = Robot()
print(x.RobotInstances())
print(Robot.RobotInstances())

CLASS METHODS

Static methods shouldn't be confused with class methods. Like static methods class methods are not bound to
instances, but unlike static methods class methods are bound to a class. The first parameter of a class method
is a reference to a class, i.e. a class object. They can be called via an instance or the class name.

class Robot:
__counter = 0

def __init__(self):
type(self).__counter += 1

@classmethod
def RobotInstances(cls):

return cls, Robot.__counter

if __name__ == "__main__":

0
1
2
2

CLASS AND INSTANCE ATTRIBUTES 468

print(Robot.RobotInstances())
x = Robot()
print(x.RobotInstances())
y = Robot()
print(x.RobotInstances())
print(Robot.RobotInstances())

The use cases of class methods:

• They are used in the definition of the so-called factory methods, which we will not cover here.
• They are often used, where we have static methods, which have to call other static methods. To

do this, we would have to hard code the class name, if we had to use static methods. This is a
problem, if we are in a use case, where we have inherited classes.

The following program contains a fraction class, which is still not complete. If you work with fractions, you
need to be capable of reducing fractions, e.g. the fraction 8/24 can be reduced to 1/3. We can reduce a fraction
to lowest terms by dividing both the numerator and denominator by the Greatest Common Divisor (GCD).

We have defined a static gcd function to calculate the greatest common divisor of two numbers. the greatest
common divisor (gcd) of two or more integers (at least one of which is not zero), is the largest positive integer
that divides the numbers without a remainder. For example, the 'GCD of 8 and 24 is 8. The static method
"gcd" is called by our class method "reduce" with "cls.gcd(n1, n2)". "CLS" is a reference to "fraction".

class fraction(object):
def __init__(self, n, d):

self.numerator, self.denominator = fraction.reduce(n, d)

@staticmethod
def gcd(a,b):

while b != 0:
a, b = b, a%b

return a

@classmethod
def reduce(cls, n1, n2):

g = cls.gcd(n1, n2)
return (n1 // g, n2 // g)

def __str__(self):

(<class '__main__.Robot'>, 0)
(<class '__main__.Robot'>, 1)
(<class '__main__.Robot'>, 2)
(<class '__main__.Robot'>, 2)

CLASS AND INSTANCE ATTRIBUTES 469

return str(self.numerator)+'/'+str(self.denominator)

Using this class:

from fraction1 import fraction
x = fraction(8,24)
print(x)

CLASS METHODS VS. STATIC METHODS AND INSTANCE METHODS

Our last example will demonstrate the usefulness of class methods in inheritance. We define a class Pet
with a method about . This method should give some general class information. The class Cat will be
inherited both in the subclass Dog and Cat . The method about will be inherited as well. We will
demonstrate that we will encounter problems, if we define the method about as a normal instance method
or as a static method. We will start by defining about as an instance method:

class Pet:
_class_info = "pet animals"

def about(self):
print("This class is about " + self._class_info + "!")

class Dog(Pet):
_class_info = "man's best friends"

class Cat(Pet):
_class_info = "all kinds of cats"

p = Pet()
p.about()
d = Dog()
d.about()
c = Cat()
c.about()

This may look alright at first at first glance. On second thought we recognize the awful design. We had to
create instances of the Pet , Dog and Cat classes to be able to ask what the class is about. It would be a

1/3

This class is about pet animals!
This class is about man's best friends!
This class is about all kinds of cats!

CLASS AND INSTANCE ATTRIBUTES 470

lot better, if we could just write Pet.about() , Dog.about() and Cat.about() to get the
previous result. We cannot do this. We will have to write Pet.about(p) , Dog.about(d) and
Cat.about(c) instead.

Now, we will define the method about as a "staticmethod" to show the disadvantage of this approach. As
we have learned previously in our tutorial, a staticmethod does not have a first parameter with a reference to
an object. So about will have no parameters at all. Due to this, we are now capable of calling "about" without
the necessity of passing an instance as a parameter, i.e. Pet.about() , Dog.about() and
Cat.about() . Yet, a problem lurks in the definition of about . The only way to access the class info
_class_info is putting a class name in front. We arbitrarily put in Pet . We could have put there Cat

or Dog as well. No matter what we do, the solution will not be what we want:

class Pet:
_class_info = "pet animals"

@staticmethod
def about():

print("This class is about " + Pet._class_info + "!")

class Dog(Pet):
_class_info = "man's best friends"

class Cat(Pet):
_class_info = "all kinds of cats"

Pet.about()
Dog.about()
Cat.about()

In other words, we have no way of differenciating between the class Pet and its subclasses Dog and
Cat . The problem is that the method about does not know that it has been called via the Pet the Dog

or the Cat class.

A classmethod is the solution to all our problems. We will decorate about with a classmethod decorator
instead of a staticmethod decorator:

class Pet:
_class_info = "pet animals"

@classmethod

This class is about pet animals!
This class is about pet animals!
This class is about pet animals!

CLASS AND INSTANCE ATTRIBUTES 471

def about(cls):
print("This class is about " + cls._class_info + "!")

class Dog(Pet):
_class_info = "man's best friends"

class Cat(Pet):
_class_info = "all kinds of cats"

Pet.about()
Dog.about()
Cat.about()
This class is about pet animals!
This class is about man's best friends!
This class is about all kinds of cats!

CLASS AND INSTANCE ATTRIBUTES 472

P R O P E R T I E S V S . G E T T E R S A N D
S E T T E R S

PROPERTIES

Getters(also known as 'accessors') and setters (aka.
'mutators') are used in many object oriented programming
languages to ensure the principle of data encapsulation.
Data encapsulation - as we have learnt in our introduction
on Object Oriented Programming of our tutorial - is seen
as the bundling of data with the methods that operate on
them. These methods are of course the getter for retrieving
the data and the setter for changing the data. According to
this principle, the attributes of a class are made private to
hide and protect them.

Unfortunately, it is widespread belief that a proper Python
class should encapsulate private attributes by using getters
and setters. As soon as one of these programmers
introduces a new attribute, he or she will make it a private
variable and creates "automatically" a getter and a setter
for this attribute. Such programmers may even use an
editor or an IDE, which automatically creates getters and
setters for all private attributes. These tools even warn the
programmer if she or he uses a public attribute! Java programmers will wrinkle their brows, screw up their
noses, or even scream with horror when they read the following: The Pythonic way to introduce attributes is to
make them public.

We will explain this later. First, we demonstrate in the following example, how we can design a class in a
Javaesque way with getters and setters to encapsulate the private attribute self.__x :

class P:
def __init__(self, x):

self.__x = x

def get_x(self):
return self.__x

def set_x(self, x):
self.__x = x

We can see in the following demo session how to work with this class and the methods:

PROPERTIES VS. GETTERS AND SETTERS 473

https://www.python-course.eu/python3_object_oriented_programming.php

from mutators import P
p1 = P(42)
p2 = P(4711)
p1.get_x()

p1.set_x(47)
p1.set_x(p1.get_x()+p2.get_x())
p1.get_x()

What do you think about the expression "p1.set_x(p1.get_x()+p2.get_x())"? It's ugly, isn't it? It's a lot easier to
write an expression like the following, if we had a public attribute x:

p1.x = p1.x + p2.x

Such an assignment is easier to write and above all easier to read than the Javaesque expression.

Let's rewrite the class P in a Pythonic way. No getter, no setter and instead of the private attribute
self.__x we use a public one:

class P:
def __init__(self,x):

self.x = x

Beautiful, isn't it? Just three lines of code, if we don't count the blank line!

from p import P
p1 = P(42)
p2 = P(4711)
p1.x

p1.x = 47
p1.x = p1.x + p2.x
p1.x

"But, but, but, but, but ... ", we can hear them howling and screaming, "But there is NO data
ENCAPSULATION!" Yes, in this case there is no data encapsulation. We don't need it in this case. The only
thing get_x and set_x in our starting example did was "getting the data through" without doing anything

Output: 42

Output: 4758

Output: 42

Output: 4758

PROPERTIES VS. GETTERS AND SETTERS 474

additionally.

But what happens if we want to change the implementation in the future? This is a serious argument. Let's
assume we want to change the implementation like this: The attribute x can have values between 0 and 1000.
If a value larger than 1000 is assigned, x should be set to 1000. Correspondingly, x should be set to 0, if the
value is less than 0.

It is easy to change our first P class to cover this problem. We change the set_x method accordingly:

class P:
def __init__(self, x):

self.set_x(x)

def get_x(self):
return self.__x

def set_x(self, x):
if x < 0:

self.__x = 0
elif x > 1000:

self.__x = 1000
else:

self.__x = x

The following Python session shows that it works the way we want it to work:

from mutators1 import P
p1 = P(1001)
p1.get_x()

p2 = P(15)
p2.get_x()

p3 = P(-1)
p3.get_x()

But there is a catch: Let's assume we designed our class with the public attribute and no methods:

Output: 1000

Output: 15

Output: 0

PROPERTIES VS. GETTERS AND SETTERS 475

class P2:
def __init__(self, x):

self.x = x

People have already used it a lot and they have written code like this:

p1 = P2(42)
p1.x = 1001
p1.x

If we would change P2 now in the way of the class P, our new class would break the interface, because the
attribute x will not beavailable anymore. That's why in Java e.g. people are recommended to use only private
attributes with getters and setters, so that they can change the implementation without having to change the
interface.

But Python offers a solution to this problem. The solution is called properties!

The class with a property looks like this:

class P:
def __init__(self, x):

self.x = x

@property
def x(self):

return self.__x

@x.setter
def x(self, x):

if x < 0:
self.__x = 0

elif x > 1000:
self.__x = 1000

else:
self.__x = x

A method which is used for getting a value is decorated with "@property", i.e. we put this line directly in front
of the header. The method which has to function as the setter is decorated with "@x.setter". If the function had
been called "f", we would have to decorate it with "@f.setter". Two things are noteworthy: We just put the
code line "self.x = x" in the __init__ method and the property method x is used to check the limits of the

Output: 1001

PROPERTIES VS. GETTERS AND SETTERS 476

values. The second interesting thing is that we wrote "two" methods with the same name and a different
number of parameters "def x(self)" and "def x(self,x)". We have learned in a previous chapter of our course
that this is not possible. It works here due to the decorating:

from p2 import P
p1 = P(1001)
p1.x

p1.x = -12
p1.x

Alternatively, we could have used a different syntax without decorators to define the property. As you can see,
the code is definitely less elegant and we have to make sure that we use the getter function in the
__init__ method again:

class P:
def __init__(self, x):

self.set_x(x)

def get_x(self):
return self.__x

def set_x(self, x):
if x < 0:

self.__x = 0
elif x > 1000:

self.__x = 1000
else:

self.__x = x

x = property(get_x, set_x)

There is still another problem in the most recent version. We have now two ways to access or change the value
of x: Either by using "p1.x = 42" or by "p1.set_x(42)". This way we are violating one of the fundamentals of
Python: "There should be one-- and preferably only one --obvious way to do it." (see Zen of Python)

We can easily fix this problem by turning the getter and the setter methods into private methods, which can't
be accessed anymore by the users of our class P:

class P:

Output: 1000

Output: 0

PROPERTIES VS. GETTERS AND SETTERS 477

https://www.python-course.eu/python3_history_and_philosophy.php

def __init__(self, x):
self.__set_x(x)

def __get_x(self):
return self.__x

def __set_x(self, x):
if x < 0:

self.__x = 0
elif x > 1000:

self.__x = 1000
else:

self.__x = x

x = property(__get_x, __set_x)

Even though we fixed this problem by using a private getter and
setter, the version with the decorator "@property" is the Pythonic
way to do it!

From what we have written so far, and what can be seen in other
books and tutorials as well, we could easily get the impression that
there is a one-to-one connection between properties (or mutator
methods) and the attributes, i.e. that each attribute has or should
have its own property (or getter-setter-pair) and the other way
around. Even in other object oriented languages than Python, it's
usually not a good idea to implement a class like that. The main
reason is that many attributes are only internally needed and
creating interfaces for the user of the class increases unnecessarily
the usability of the class. The possible user of a class shouldn't be
"drowned" with umpteen - of mainly unnecessary - methods or
properties!

The following example shows a class, which has internal
attributes, which can't be accessed from outside. These are the
private attributes self.__potential _physical and
self.__potential_psychic . Furthermore we show that a

property can be deduced from the values of more than one
attribute. The property "condition" of our example returns the
condition of the robot in a descriptive string. The condition
depends on the sum of the values of the psychic and the physical
conditions of the robot.

class Robot:

PROPERTIES VS. GETTERS AND SETTERS 478

def __init__(self, name, build_year, lk = 0.5, lp = 0.5):
self.name = name
self.build_year = build_year
self.__potential_physical = lk
self.__potential_psychic = lp

@property
def condition(self):

s = self.__potential_physical + self.__potential_psychic
if s <= -1:

return "I feel miserable!"
elif s <= 0:

return "I feel bad!"
elif s <= 0.5:

return "Could be worse!"
elif s <= 1:

return "Seems to be okay!"
else:

return "Great!"

if __name__ == "__main__":
x = Robot("Marvin", 1979, 0.2, 0.4)
y = Robot("Caliban", 1993, -0.4, 0.3)
print(x.condition)
print(y.condition)

PUBLIC INSTEAD OF PRIVATE ATTRIBUTES

Let's summarize the usage of private and public attributes, getters and setters, and properties: Let's assume that
we are designing a new class and we pondering about an instance or class attribute "OurAtt", which we need
for the design of our class. We have to observe the following issues:

• Will the value of "OurAtt" be needed by the possible users of our class?
• If not, we can or should make it a private attribute.
• If it has to be accessed, we make it accessible as a public attribute
• We will define it as a private attribute with the corresponding property, if and only if we have to

do some checks or transformation of the data. (As an example, you can have a look again at our
class P, where the attribute has to be in the interval between 0 and 1000, which is ensured by the
property "x")

• Alternatively, you could use a getter and a setter, but using a property is the Pythonic way to
deal with it!

Let's assume we defined "OurAtt" as a public attribute. Our class has been successfully used by other users for

Seems to be okay!
I feel bad!

PROPERTIES VS. GETTERS AND SETTERS 479

quite a while.

class OurClass:
def __init__(self, a):

self.OurAtt = a

x = OurClass(10)
print(x.OurAtt)

Now comes the point which frightens some traditional OOPistas out of their wits: Imagine "OurAtt" has been
used as an integer. Now, our class has to ensure that "OurAtt" has to be a value between 0 and 1000? Without
property, this is really a horrible scenario! Due to properties it's easy: We create a property version of
"OurAtt".

class OurClass:
def __init__(self, a):

self.OurAtt = a

@property
def OurAtt(self):

return self.__OurAtt

@OurAtt.setter
def OurAtt(self, val):

if val < 0:
self.__OurAtt = 0

elif val > 1000:
self.__OurAtt = 1000

else:
self.__OurAtt = val

x = OurClass(10)
print(x.OurAtt)

This is great, isn't it? You can start with the simplest implementation imaginable, and you are free to later
migrate to a property version without having to change the interface! So properties are not just a replacement

10

10

PROPERTIES VS. GETTERS AND SETTERS 480

for getters and setters!

Something else you might have already noticed: For the users of a class, properties are syntactically identical
to ordinary attributes.

PROPERTIES VS. GETTERS AND SETTERS 481

D E E P E R I N T O P R O P E R T I E S

In the previous chapter of our tutorial, we learned how to create and use
properties in a class. The main objective was to understand them as a way
to get rid of explicit getters and setters and have a simple class interface.
This is usually enough to know for most programmers and for practical use
cases and they will not need more.

If you want to know more about how 'property' works, you can go one step
further with us. By doing this, you can improve your coding skills and get a
deeper insight and understanding of Python. We will have a look at the way
the "property" decorator could be implemented in Python code. (It is
implemented in C code in reality!) By doing this, the way of working will
be clearer. Everything is based on the descriptor protocol, which we will
explain later.

We define a class with the name 'our_property' so that it will not be mistaken for the existing 'property' class.
This class can be used like the 'real' property class.

class our_property:
""" emulation of the property class

for educational purposes """

def __init__(self,
fget=None,
fset=None,
fdel=None,
doc=None):

"""Attributes of 'our_decorator'
fget

function to be used for getting
an attribute value

fset
function to be used for setting
an attribute value

fdel
function to be used for deleting
an attribute

doc
the docstring

"""
self.fget = fget
self.fset = fset
self.fdel = fdel

DEEPER INTO PROPERTIES 482

if doc is None and fget is not None:
doc = fget.__doc__

self.__doc__ = doc

def __get__(self, obj, objtype=None):
if obj is None:

return self
if self.fget is None:

raise AttributeError("unreadable attribute")
return self.fget(obj)

def __set__(self, obj, value):
if self.fset is None:

raise AttributeError("can't set attribute")
self.fset(obj, value)

def __delete__(self, obj):
if self.fdel is None:

raise AttributeError("can't delete attribute")
self.fdel(obj)

def getter(self, fget):
return type(self)(fget, self.fset, self.fdel, self.__do

c__)

def setter(self, fset):
return type(self)(self.fget, fset, self.fdel, self.__do

c__)

def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel, self.__do

c__)

We need another class to use the previously defined class and to demonstrate how the property class decorator
works. To continue the tradition of the previous chapters of our Python tutorial we will again write a Robot
class. We will define a property in this example class to demonstrate the usage of our previously defined
property class or better 'our_decorator' class. When you run the code, you can see __init__ of
'our_property' will be called 'fget' set to a reference to the 'getter' function of 'city'. The attribute 'city' is an
instance of the 'our_property' class. The 'our'property' class provides another decorator 'setter' for the setter
functionality. We apply this with '@city.setter'

class Robot:
def __init__(self, city):

self.city = city

DEEPER INTO PROPERTIES 483

@our_property
def city(self):

print("The Property 'city' will be returned now:")
return self.__city

@city.setter
def city(self, city):

print("'city' will be set")
self.__city = city

'Robot.city' is an instance of the 'our_property' class as we can see in the following:

type(Robot.city)

If you change the line '@our_property' to '@property' the program will behave totally the same, but it will be
using the original Python class 'property' and not our 'our_property' class. We will create instances of the
Robot class in the following Python code:

print("Instantiating a Root and setting 'city' to 'Berlin'")
robo = Robot("Berlin")
print("The value is: ", robo.city)
print("Our robot moves now to Frankfurt:")
robo.city = "Frankfurt"
print("The value is: ", robo.city)

Let's make our property implementation a little bit more talkative with some print functions to see what is
going on. We also change the name to 'chatty_property' for obvious reasons:

class chatty_property:
""" emulation of the property class

for educational purposes """

Output: __main__.our_property

Instantiating a Root and setting 'city' to 'Berlin'
'city' will be set
The Property 'city' will be returned now:
The value is: Berlin
Our robot moves now to Frankfurt:
'city' will be set
The Property 'city' will be returned now:
The value is: Frankfurt

DEEPER INTO PROPERTIES 484

def __init__(self,
fget=None,
fset=None,
fdel=None,
doc=None):

self.fget = fget
self.fset = fset
self.fdel = fdel
print("\n__init__ called with:)")
print(f"fget={fget}, fset={fset}, fdel={fdel}, doc={doc}")
if doc is None and fget is not None:

print(f"doc set to docstring of {fget.__name__} metho
d")

doc = fget.__doc__
self.__doc__ = doc

def __get__(self, obj, objtype=None):
if obj is None:

return self
if self.fget is None:

raise AttributeError("unreadable attribute")
return self.fget(obj)

def __set__(self, obj, value):
if self.fset is None:

raise AttributeError("can't set attribute")
self.fset(obj, value)

def __delete__(self, obj):
if self.fdel is None:

raise AttributeError("can't delete attribute")
self.fdel(obj)

def getter(self, fget):
return type(self)(fget, self.fset, self.fdel, self.__do

c__)

def setter(self, fset):
print(type(self))
return type(self)(self.fget, fset, self.fdel, self.__do

c__)

def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel, self.__do

DEEPER INTO PROPERTIES 485

c__)
class Robot:

def __init__(self, city):
self.city = city

@chatty_property
def city(self):

""" city attribute of Robot """
print("The Property 'city' will be returned now:")
return self.__city

@city.setter
def city(self, city):

print("'city' will be set")
self.__city = city

robo = Robot("Berlin")

__init__ called with:)
fget=<function Robot.city at 0x000002825C9420D8>, fset=None, fde
l=None, doc=None
doc set to docstring of city method
<class '__main__.chatty_property'>

__init__ called with:)
fget=<function Robot.city at 0x000002825C9420D8>, fset=<function R
obot.city at 0x000002825C9425E8>, fdel=None, doc= city attribute o
f Robot

'city' will be set

DEEPER INTO PROPERTIES 486

D E S C R I P T O R S

In the previous two chapters of our Python
tutorial, we learned how to use Python
properties and even how to implement a
custom-made property class. In this
chapter you will learn the details of
descriptors.

Descriptors were introduced to Python in
version 2.2. That time the "What's New in
Python2.2" mentioned: "The one big idea
underlying the new class model is that an
API for describing the attributes of an
object using descriptors has been
formalized. Descriptors specify the value
of an attribute, stating whether it’s a
method or a field. With the descriptor
API, static methods and class methods
become possible, as well as more exotic
constructs."

A descriptor is an object attribute with
"binding behavior", one whose attribute
access has been overridden by methods in the descriptor protocol. Those methods are __get__() ,
__set__() , and __delete__() .

If any of those methods are defined for an object, it is said to be a descriptor.

Their purpose consists in providing programmers with the ability to add managed attributes to classes. The
descriptors are introduced to get, set or delete attributes from the object's __dict__ dictionary via the
above mentioned methods. Accessing a class attribute will start the lookup chain.

Let a closer look at what is happening. Assuming we have an object obj : What happens if we try to access
an attribute (or property) ap ? "Accesssing" the attribute means to "get" the value, so the attribute is used for
example in a print function or inside of an expression. Both the obj and the class belong to type(obj)
contain a dictionary attribute __dict__ . This situation is viuslaized in the following diagram:

DESCRIPTORS 487

obj.ap has a lookup chain starting with obj.__dict__['ap'] , i.e. checks if obj.ap is a key of
the dictionary obj.__dict__['ap'] .

If ap is not a key of obj.__dict__ , it will try to lookup type(obj).__dict__['ap'] .

If obj is not contained in this dictionary either, it will continue checking through the base classes of
type(ap) excluding metaclasses.

We demonstrate this in an example:

class A:
ca_A = "class attribute of A"

def __init__(self):
self.ia_A = "instance attribute of A instance"

DESCRIPTORS 488

class B(A):
ca_B = "class attribute of B"

def __init__(self):
super().__init__()
self.ia_B = "instance attribute of A instance"

x = B()

print(x.ia_B)
print(x.ca_B)
print(x.ia_A)
print(x.ca_A)

If we call print(x.non_existing) we get the following exception:

AttributeError Traceback (most recent ca
ll last)
<ipython-input-4-119192d61d5e> in <module>
----> 1 print(x.non_existing)

AttributeError: 'B' object has no attribute 'non_existing'

If the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends
on which descriptor methods were defined.

Descriptors provide a powerful, general purpose protocol, which is the underlying mechanism behind
properties, methods, static methods, class methods, and super(). Descriptors were needed to implement the so-
called new style classes introduced in version 2.2. The "new style classes" are the default nowadays.

DESCRIPTOR PROTOCOL

The general descriptor protocol consists of three methods:

descr.__get__(self, obj, type=None) -> value

instance attribute of A instance
class attribute of B
instance attribute of A instance
class attribute of A

DESCRIPTORS 489

descr.__set__(self, obj, value) -> None

descr.__delete__(self, obj) -> None

If you define one or more of these methods, you will create a descriptor. We distinguish between data
descriptors and non-data descriptors:

non-data descriptor
If we define only the __get__() method, we create a non-data descriptor, which are mostly used for
methods.

data descriptor
If an object defines __set__() or __delete__(), it is considered a data descriptor. To make a read-only data
descriptor, define both __get__() and __set__() with the __set__() raising an AttributeError when called.
Defining the __set__() method with an exception raising placeholder is enough to make it a data
descriptor.

We finally come now to our simple descriptor example in the following code:

class SimpleDescriptor(object):
"""
A simple data descriptor that can set and return values
"""

def __init__(self, initval=None):
print("__init__ of SimpleDecorator called with initval:

", initval)
self.__set__(self, initval)

def __get__(self, instance, owner):
print(instance, owner)
print('Getting (Retrieving) self.val: ', self.val)
return self.val

def __set__(self, instance, value):
print('Setting self.val to ', value)
self.val = value

class MyClass(object):
x = SimpleDescriptor("green")

DESCRIPTORS 490

m = MyClass()
print(m.x)
m.x = "yellow"
print(m.x)

The third parameter owner of __get__ is always the owner class and provides users with an option to
do something with the class that was used to call the descriptor. Usually, i.e. if the descriptor is called through
an object obj , the object type can be deduced by calling type(obj) . The situation is different, if the
descriptor is invoked through a class. In this case it is None and it wouldn't be possible to access the class
unless the third argument is given. The second parameter instance is the instance that the attribute was
accessed through, or None when the attribute is accessed through the owner.

Let's have a look at the __dict__ dictionaries of both the instances and the class:

'x' is a class attribute in the previous class. You may have asked yourself, if we could also use this mechanism
in the __init__ method to define instance attribute. This is not possible. The methods __get__() ,
__set__() , and __delete__() will only apply if an instance of the class containing the method (a

so-called descriptor class) appears in an owner class (the descriptor must be in either the owner’s class
dictionary or in the class dictionary for one of its parents). In the examples above, the attribute 'x' is in the
owner __dict__ of the owner class MyClass, as we can see below:

print(m.__dict__)
print(MyClass.__dict__)
print(SimpleDescriptor.__dict__)

__init__ of SimpleDecorator called with initval: green
Setting self.val to green
<__main__.MyClass object at 0x7efe93ff4a20> <class '__main__.MyCla
ss'>
Getting (Retrieving) self.val: green
green
Setting self.val to yellow
<__main__.MyClass object at 0x7efe93ff4a20> <class '__main__.MyCla
ss'>
Getting (Retrieving) self.val: yellow
yellow

DESCRIPTORS 491

print(MyClass.__dict__['x'])

It is possible to call a descriptor directly by its method name, e.g. d.__get__(obj) .

Alternatively, it is more common for a descriptor to be invoked automatically upon attribute access. For
example, obj.d looks up d in the dictionary __dict__ of obj . If d defines the method
__get__() , then d.__get__(obj) is invoked according to the precedence rules listed below.

It makes a difference if obj is an object or a class:

• For objects, the method to control the invocation is in object.__getattribute__()
which transforms b.x into the call type(b).__dict__['x'].__get__(b,
type(b)) . The implementation works through a precedence chain that gives data descriptors
priority over instance variables, instance variables priority over non-data descriptors, and assigns
lowest priority to __getattr__() if provided.

• For classes, the corresponing method is in the type class, i.e.
type.__getattribute__() which transforms B.x into
B.__dict__['x'].__get__(None, B) .

__getattribute__ is not implemented in Python but in C. The following Python code is a simulation of
the logic in Python. We can see that the descriptors are called by the __getattribute__
implementations.

def __getattribute__(self, key):
"Emulate type_getattro() in Objects/typeobject.c"
v = type.__getattribute__(self, key)
if hasattr(v, '__get__'):

return v.__get__(None, self)
return v

{}
{'__module__': '__main__', 'x': <__main__.SimpleDescriptor object
at 0x7efe93ff49e8>, '__dict__': <attribute '__dict__' of 'MyClas
s' objects>, '__weakref__': <attribute '__weakref__' of 'MyClass'
objects>, '__doc__': None}
{'__module__': '__main__', '__doc__': '\n A simple data descrip
tor that can set and return values\n ', '__init__': <function S
impleDescriptor.__init__ at 0x7efe93fc8d08>, '__get__': <function
SimpleDescriptor.__get__ at 0x7efe93fc8840>, '__set__': <function
SimpleDescriptor.__set__ at 0x7efe93fc88c8>, '__dict__': <attribut
e '__dict__' of 'SimpleDescriptor' objects>, '__weakref__': <attri
bute '__weakref__' of 'SimpleDescriptor' objects>}

<__main__.SimpleDescriptor object at 0x7efe93ff49e8>

DESCRIPTORS 492

m.__getattribute__("x")

The object returned by super() also has a custom __getattribute__() method for invoking
descriptors. The attribute lookup super(B, obj).m searches obj.__class__.__mro__ for the
base class A immediately following B and then returns A.__dict__['m'].__get__(obj, B) . If
not a descriptor, m is returned unchanged. If not in the dictionary, m reverts to a search using
object.__getattribute__() .

The details above show that the mechanism for descriptors is embedded in the __getattribute__()
methods for object, type, and super(). Classes inherit this machinery when they derive from object or if they
have a meta-class providing similar functionality. This means also that one can turn-off automatic descriptor
calls by overriding __getattribute__() .

from weakref import WeakKeyDictionary

class Voter:
required_age = 18 # in Germany

def __init__(self):
self.age = WeakKeyDictionary()

def __get__(self, instance_obj, objtype):
return self.age.get(instance_obj)

def __set__(self, instance, new_age):
if new_age < Voter.required_age:

msg = '{name} is not old enough to vote in Germany'
raise Exception(msg.format(name=instance.name))

self.age[instance] = new_age
print('{name} can vote in Germany'.format(

name=instance.name))

def __delete__(self, instance):
del self.age[instance]

class Person:
voter_age = Voter()

<__main__.MyClass object at 0x7efe93ff4a20> <class '__main__.MyCla
ss'>
Getting (Retrieving) self.val: yellow

Output: 'yellow'

DESCRIPTORS 493

def __init__(self, name, age):
self.name = name
self.voter_age = age

p1 = Person('Ben', 23)
p2 = Person('Emilia', 22)

p2.voter_age

A pure sample implementation of a property() class (https://docs.python.org/3/howto/
descriptor.html#properties)

class Property:
"Emulate PyProperty_Type() in Objects/descrobject.c"

def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
if doc is None and fget is not None:

doc = fget.__doc__
self.__doc__ = doc

def __get__(self, obj, objtype=None):
if obj is None:

return self
if self.fget is None:

raise AttributeError("unreadable attribute")
return self.fget(obj)

def __set__(self, obj, value):
if self.fset is None:

raise AttributeError("can't set attribute")
self.fset(obj, value)

def __delete__(self, obj):
if self.fdel is None:

raise AttributeError("can't delete attribute")

Ben can vote in Germany
Emilia can vote in Germany

Output: 22

DESCRIPTORS 494

self.fdel(obj)

def getter(self, fget):
return type(self)(fget, self.fset, self.fdel, self.__do

c__)

def setter(self, fset):
return type(self)(self.fget, fset, self.fdel, self.__do

c__)

def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel, self.__do

c__)

A simple class using our Property implementation.

class A:
def __init__(self, prop):

self.prop = prop

@Property
def prop(self):

print("The Property 'prop' will be returned now:")
return self.__prop

@prop.setter
def prop(self, prop):

print("prop will be set")
self.__prop = prop

Using our class A:

print("Initializing the Property 'prop' with the value 'Python'")
x = A("Python")
print("The value is: ", x.prop)
print("Reassigning the Property 'prop' to 'Python descriptors'")
x.prop = "Python descriptors"
print("The value is: ", x.prop)

DESCRIPTORS 495

Let's make our Property implementation a little bit more talkative with some print functions to see what is
going on:

class Property:
"Emulate PyProperty_Type() in Objects/descrobject.c"

def __init__(self, fget=None, fset=None, fdel=None, doc=None):
print("\n__init__ of Property called with:")
print("fget=" + str(fget) + " fset=" + str(fset) + \

" fdel=" + str(fdel) + " doc=" + str(doc))
self.fget = fget
self.fset = fset
self.fdel = fdel
if doc is None and fget is not None:

doc = fget.__doc__
self.__doc__ = doc

def __get__(self, obj, objtype=None):
print("\nProperty.__get__ has been called!")
if obj is None:

return self
if self.fget is None:

raise AttributeError("unreadable attribute")
return self.fget(obj)

def __set__(self, obj, value):
print("\nProperty.__set__ has been called!")
if self.fset is None:

raise AttributeError("can't set attribute")
self.fset(obj, value)

def __delete__(self, obj):
print("\nProperty.__delete__ has been called!")
if self.fdel is None:

raise AttributeError("can't delete attribute")

Initializing the Property 'prop' with the value 'Python'
prop will be set
The Property 'prop' will be returned now:
The value is: Python
Reassigning the Property 'prop' to 'Python descriptors'
prop will be set
The Property 'prop' will be returned now:
The value is: Python descriptors

DESCRIPTORS 496

self.fdel(obj)

def getter(self, fget):
print("\nProperty.getter has been called!")
return type(self)(fget, self.fset, self.fdel, self.__do

c__)

def setter(self, fset):
print("\nProperty.setter has been called!")
return type(self)(self.fget, fset, self.fdel, self.__do

c__)

def deleter(self, fdel):
print("\nProperty.deleter has been called!")
return type(self)(self.fget, self.fset, fdel, self.__do

c__)

class A:
def __init__(self, prop):

self.prop = prop

@Property
def prop(self):

""" This will be the doc string of the property """
print("The Property 'prop' will be returned now:")
return self.__prop

@prop.setter
def prop(self, prop):

print("prop will be set")
self.__prop = prop

def prop2_getter(self):
return self.__prop2

def prop2_setter(self, prop2):
self.__prop2 = prop2

prop2 = Property(prop2_getter, prop2_setter)

print("Initializing the Property 'prop' with the value 'Python'")
x = A("Python")
print("The value is: ", x.prop)
print("Reassigning the Property 'prop' to 'Python descriptors'")

DESCRIPTORS 497

x.prop = "Python descriptors"
print("The value is: ", x.prop)

print(A.prop.getter(x))

def new_prop_setter(self, prop):
if prop=="foo":

self.__prop = "foobar"
else:

self.__prop = prop

A.prop.setter

DESCRIPTORS 498

__init__ of Property called with:
fget=<function A.prop at 0x7efe93fff840> fset=None fdel=None doc=N
one

Property.setter has been called!

__init__ of Property called with:
fget=<function A.prop at 0x7efe93fff840> fset=<function A.prop at
0x7efe9370f840> fdel=None doc= This will be the doc string of the
property

__init__ of Property called with:
fget=<function A.prop2_getter at 0x7efe93715048> fset=<function
A.prop2_setter at 0x7efe93715158> fdel=None doc=None
Initializing the Property 'prop' with the value 'Python'

Property.__set__ has been called!
prop will be set

Property.__get__ has been called!
The Property 'prop' will be returned now:
The value is: Python
Reassigning the Property 'prop' to 'Python descriptors'

Property.__set__ has been called!
prop will be set

Property.__get__ has been called!
The Property 'prop' will be returned now:
The value is: Python descriptors

Property.__get__ has been called!

Property.getter has been called!

__init__ of Property called with:
fget=<__main__.A object at 0x7efe9371b080> fset=<function A.prop a
t 0x7efe9370f840> fdel=None doc= This will be the doc string of th
e property
<__main__.Property object at 0x7efe93ff4358>

Property.__get__ has been called!
Output: <bound method Property.setter of <__main__.Property object a

t 0x7efe93729f98>>

DESCRIPTORS 499

class Robot:
def __init__(self, name="Marvin", city="Freiburg"):

self.name = name
self.city = city

@Property
def name(self):

return self.__name

@name.setter
def name(self, name):

if name == "hello":
self.__name = "hi"

else:
self.__name = name

x = Robot("Marvin")
print(x.name)
x.name = "Eddie"
print(x.name)

class A:
def a(func):

def helper(self, x):

__init__ of Property called with:
fget=<function Robot.name at 0x7efe93715ea0> fset=None fdel=None d
oc=None

Property.setter has been called!

__init__ of Property called with:
fget=<function Robot.name at 0x7efe93715ea0> fset=<function Robo
t.name at 0x7efe93715400> fdel=None doc=None

Property.__set__ has been called!

Property.__get__ has been called!
Marvin

Property.__set__ has been called!

Property.__get__ has been called!
Eddie

DESCRIPTORS 500

return 4 * func(self, x)
return helper

@a
def b(self, x):

return x + 1

a = A()
a.b(4)

A lot of people ask, if it is possible to automatically create descriptors at runtime. This is possible as we show
in the following example. On the other hand, this example is not very useful, because the getters and setters
have no real functionality:

class DynPropertyClass(object):
def add_property(self, attribute):

""" add a property to the class """

def get_attribute(self):
""" The value for attribute 'attribute' will be retrie

ved """
return getattr(self, "_" + type(x).__name__ + "__" + a

ttribute)

def set_attribute(self, value):
""" The value for attribute 'attribute' will be retrie

ved """
#setter = lambda self, value: self.setProperty(attribu

te, value)
setattr(self, "_" + type(x).__name__ + "__" + attribut

e, value)

#construct property attribute and add it to the class
setattr(type(self), attribute, property(fget=get_attribut

e,
fset=set_attribut

e,
doc="Auto‐generate

d method"))

Output: 20

DESCRIPTORS 501

x = DynPropertyClass()
x.add_property('name')
x.add_property('city')
x.name = "Henry"
x.name
x.city = "Hamburg"
print(x.name, x.city)
print(x.__dict__)
Henry Hamburg
{'_DynPropertyClass__name': 'Henry', '_DynPropertyClass__city': 'H
amburg'}

DESCRIPTORS 502

I N H E R I T A N C E

INTRODUCTION AND DEFINITIONS

No object-oriented programming language would be worthy to
look at or use, if it didn't support inheritance. Inheritance was
invented in 1969 for Simula. Python not only supports
inheritance but multiple inheritance as well. Generally speaking,
inheritance is the mechanism of deriving new classes from
existing ones. By doing this, we get a hierarchy of classes. In
most class-based object-oriented languages, an object created
through inheritance (a "child object") acquires all, - though there
are exceptions in some programming languages, - of the
properties and behaviors of the parent object.

Inheritance allows programmers to create classes that are built
upon existing classes, and this enables a class created through
inheritance to inherit the attributes and methods of the parent class. This means that inheritance supports code
reusability. The methods or generally speaking the software inherited by a subclass is considered to be reused
in the subclass. The relationships of objects or classes through inheritance give rise to a directed graph.

The class from which a class inherits is called the parent or superclass. A class which inherits from a
superclass is called a subclass, also called heir class or child class. Superclasses are sometimes called
ancestors as well. There exists a hierarchical relationship between classes. It's similar to relationships or
categorizations that we know from real life. Think about vehicles, for example. Bikes, cars, buses and trucks
are vehicles. Pick-ups, vans, sports cars, convertibles and estate cars are all cars and by being cars they are
vehicles as well. We could implement a vehicle class in Python, which might have methods like accelerate and
brake. Cars, Buses and Trucks and Bikes can be implemented as subclasses which will inherit these methods
from vehicle.

INHERITANCE 503

SYNTAX OF INHERITANCE IN PYTHON

The syntax for a subclass definition looks like this:

class DerivedClassName(BaseClassName):
pass

Instead of the pass statement, there will be methods and attributes like in all other classes. The name
BaseClassName must be defined in a scope containing the derived class definition.

Now we are ready for a simple inheritance example with Python code.

SIMPLE INHERITANCE EXAMPLE

We will stick with our beloved robots or better Robot class from the previous chapters of our Python
tutorial to show how the principle of inheritance works. We will define a class PhysicianRobot , which
inherits from Robot .

class Robot:
def __init__(self, name):

self.name = name

def say_hi(self):
print("Hi, I am " + self.name)

class PhysicianRobot(Robot):
pass

INHERITANCE 504

x = Robot("Marvin")
y = PhysicianRobot("James")

print(x, type(x))
print(y, type(y))

y.say_hi()

If you look at the code of our PhysicianRobot class, you can see that we haven't defined any attributes
or methods in this class. As the class PhysicianRobot is a subclass of Robot , it inherits, in this case,
both the method __init__ and say_hi . Inheriting these methods means that we can use them as if they
were defined in the PhysicianRobot class. When we create an instance of PhysicianRobot , the
__init__ function will also create a name attribute. We can apply the say_hi method to the
PhysisicianRobot object y , as we can see in the output from the code above.

DIFFERENCE BETWEEN TYPE AND ISINSTANCE
You should also pay attention to the following facts, which we pointed out in other sections of our Python
tutorial as well. People frequently ask where the difference between checking the type via the type function
or the function isinstance is lies. The difference can be seen in the following code. We see that
isinstance returns True if we compare an object either with the class it belongs to or with the

superclass. Whereas the equality operator only returns True , if we compare an object with its own class.

<__main__.Robot object at 0x7fd0080b3ba8> <class '__main__.Robot'>
<__main__.PhysicianRobot object at 0x7fd0080b3b70> <class '__mai
n__.PhysicianRobot'>
Hi, I am James

INHERITANCE 505

x = Robot("Marvin")
y = PhysicianRobot("James")

print(isinstance(x, Robot), isinstance(y, Robot))
print(isinstance(x, PhysicianRobot))
print(isinstance(y, PhysicianRobot))

print(type(y) == Robot, type(y) == PhysicianRobot)

This is even true for arbitrary ancestors of the class in the inheritance line:

class A:
pass

class B(A):
pass

class C(B):
pass

x = C()
print(isinstance(x, A))

Now it should be clear, why PEP 8, the official Style Guide for Python code, says: "Object type comparisons
should always use isinstance() instead of comparing types directly."

OVERRIDING

Let us get back to our new PhysicianRobot class. Imagine now that an instance of a
PhysicianRobot should say hi in a different way. In this case, we have to redefine the method
say_hi inside of the subclass PhysicianRobot :

class Robot:
def __init__(self, name):

self.name = name

True True
False
True
False True

True

INHERITANCE 506

https://legacy.python.org/dev/peps/pep-0008/#programming-recommendations

def say_hi(self):
print("Hi, I am " + self.name)

class PhysicianRobot(Robot):
def say_hi(self):

print("Everything will be okay! ")
print(self.name + " takes care of you!")

y = PhysicianRobot("James")
y.say_hi()

What we have done in the previous example is called overriding. A method of a parent class gets overridden
by simply defining a method with the same name in the child class.

If a method is overridden in a class, the original method can still be accessed, but we have to do it by calling
the method directly with the class name, i.e. Robot.say_hi(y) . We demonstrate this in the following
code:

y = PhysicianRobot("Doc James")
y.say_hi()
print("... and now the 'traditional' robot way of saying hi :-)")
Robot.say_hi(y)

We have seen that an inherited class can inherit and override methods from the superclass. Besides this a
subclass often needs additional methods with additional functionalities, which do not exist in the superclass.
An instance of the PhysicianRobot class will need for example the method heal so that the physician
can do a proper job. We will also add an attribute health_level to the Robot class, which can take a
value between 0 and 1 . The robots will 'come to live' with a random value between 0 and 1 . If the
health_level of a Robot is below 0.8, it will need a doctor. We write a method
needs_a_doctor which returns True if the value is below 0.8 and False otherwise. The

'healing' in the heal method is done by setting the health_level to a random value between the old
health_level and 1. This value is calculated by the uniform function of the random module.

import random
class Robot:

Everything will be okay!
James takes care of you!

Everything will be okay!
Doc James takes care of you!
... and now the 'traditional' robot way of saying hi :-)
Hi, I am Doc James

INHERITANCE 507

def __init__(self, name):
self.name = name
self.health_level = random.random()

def say_hi(self):
print("Hi, I am " + self.name)

def needs_a_doctor(self):
if self.health_level < 0.8:

return True
else:

return False
class PhysicianRobot(Robot):

def say_hi(self):
print("Everything will be okay! ")
print(self.name + " takes care of you!")

def heal(self, robo):
robo.health_level = random.uniform(robo.health_level, 1)
print(robo.name + " has been healed by " + self.name +

"!")

doc = PhysicianRobot("Dr. Frankenstein")

rob_list = []
for i in range(5):

x = Robot("Marvin" + str(i))
if x.needs_a_doctor():

print("health_level of " + x.name + " before healing: ",
x.health_level)

doc.heal(x)
print("health_level of " + x.name + " after healing: ",

x.health_level)
rob_list.append((x.name, x.health_level))

print(rob_list)

INHERITANCE 508

When we override a method, we sometimes want to reuse the method of the parent class and at some new
stuff. To demonstrate this, we will write a new version of the PhysicianRobot. say_hi should return the
text from the Robot class version plus the text " and I am a physician!"

class PhysicianRobot(Robot):
def say_hi(self):

Robot.say_hi(self)
print("and I am a physician!")

doc = PhysicianRobot("Dr. Frankenstein")
doc.say_hi()

We don't want to write redundant code and therefore we called Robot.say_hi(self) . We could also
use the super function:

class PhysicianRobot(Robot):
def say_hi(self):

super().say_hi()
print("and I am a physician!")

health_level of Marvin0 before healing: 0.5562005305000016
Marvin0 has been healed by Dr. Frankenstein!
health_level of Marvin0 after healing: 0.7807651150204282
health_level of Marvin1 before healing: 0.40571527448692757
Marvin1 has been healed by Dr. Frankenstein!
health_level of Marvin1 after healing: 0.4160992532325318
health_level of Marvin2 before healing: 0.3786957462635925
Marvin2 has been healed by Dr. Frankenstein!
health_level of Marvin2 after healing: 0.5474124864506639
health_level of Marvin3 before healing: 0.6384666796845331
Marvin3 has been healed by Dr. Frankenstein!
health_level of Marvin3 after healing: 0.6986491928780778
health_level of Marvin4 before healing: 0.5983126049766974
Marvin4 has been healed by Dr. Frankenstein!
health_level of Marvin4 after healing: 0.6988801787833587
[('Marvin0', 0.7807651150204282), ('Marvin1', 0.416099253232531
8), ('Marvin2', 0.5474124864506639), ('Marvin3', 0.698649192878077
8), ('Marvin4', 0.6988801787833587)]

Hi, I am Dr. Frankenstein
and I am a physician!

INHERITANCE 509

doc = PhysicianRobot("Dr. Frankenstein")
doc.say_hi()

super is not realls necessary in this case. One could argue that it makes the code more maintainable,
because we could change the name of the parent class, but this is seldom done anyway in existing classes. The
real benefit of super shows when we use it with multiple inheritance.

DISTINCTION BETWEEN OVERWRITING, OVERLOADING AND
OVERRIDING

OVERWRITING

If we overwrite a function, the original function will be gone. The function will be redefined. This process has
nothing to do with object orientation or inheritance.

def f(x):
return x + 42

print(f(3))
f will be overwritten (or redefined) in the following:

def f(x):
return x + 43

print(f(3))

OVERLOADING

This subchapter will be only interesting for C++ and Java programmers who want to know how overloading
can be accomplished in Python. Those who do not know about overloading will not miss it!

In the context of object-oriented programming, you might have heard about "overloading" as well. Even
though "overloading" is not directly connected to OOP. Overloading is the ability to define a function with the
same name multiple times. The definitions are different concerning the number of parameters and types of the
parameters. It's the ability of one function to perform different tasks, depending on the number of parameters
or the types of the parameters. We cannot overload functions like this in Python, but it is not necessary either.

Hi, I am Dr. Frankenstein
and I am a physician!

45
46

INHERITANCE 510

This course is, however, not about C++ and we have so far avoided using any C++ code. We want to make an
exception now, so that you can see, how overloading works in C++.

#include
#include

using namespace std;

int successor(int number) {
return number + 1;

}

double successor(double number) {
return number + 1;

}

int main() {

cout << successor(10) << endl;
cout << successor(10.3) << endl;

return 0;
}

We defined the successor function twice: One time for int and the other time with float as a Parameter. In
Python the function can be defined like this, as you will know for sure:

In []:

def successor(x):
return x + 1

As x is only a reference to an object, the Python function successor can be called with every object, even
though it will create exceptions with many types. But it will work with int and float values!

Having a function with a different number of parameters is another way of function overloading. The
following C++ program shows such an example. The function f can be called with either one or two integer
arguments:

#include
using namespace std;

int f(int n);
int f(int n, int m);

int main() {

INHERITANCE 511

cout << "f(3): " << f(3) << endl;
cout << "f(3, 4): " << f(3, 4) << endl;
return 0;

}

int f(int n) {
return n + 42;

}
int f(int n, int m) {

return n + m + 42;
}

This doesn't work in Python, as we can see in the following example. The second definition of f with two
parameters redefines or overrides the first definition with one argument. Overriding means that the first
definition is not available anymore.

def f(n):
return n + 42

def f(n,m):
return n + m + 42

print(f(3, 4))

If you call f with only one parameter, you will raise an exception:

f(3)

TypeError Traceback (most recent ca
ll last)
in

----> 1 f(3)

TypeError: f() missing 1 required positional argument: 'm'

Yet, it is possible to simulate the overloading behaviour of C++ in Python in this case with a default
parameter:

49

INHERITANCE 512

def f(n, m=None):
if m:

return n + m +42
else:

return n + 42

print(f(3), f(1, 3))

The * operator can be used as a more general approach for a family of functions with 1, 2, 3, or even more
parameters:

def f(*x):
if len(x) == 1:

return x[0] + 42
elif len(x) == 2:

return x[0] - x[1] + 5
else:

return 2 * x[0] + x[1] + 42

print(f(3), f(1, 2), f(3, 2, 1))

OVERRIDING

Overriding is already explained above!

45 46

45 4 50

INHERITANCE 513

M U L T I P L E I N H E R I T A N C E

INTRODUCTION

In the previous chapter of our tutorial, we have covered inheritance, or
more specific "single inheritance". As we have seen, a class inherits in this
case from one class. Multiple inheritance on the other hand is a feature in
which a class can inherit attributes and methods from more than one parent
class. The critics point out that multiple inheritance comes along with a
high level of complexity and ambiguity in situations such as the diamond
problem. We will address this problem later in this chapter.

The widespread prejudice that multiple inheritance is something
"dangerous" or "bad" is mostly nourished by programming languages with
poorly implemented multiple inheritance mechanisms and above all by improper usage of it. Java doesn't even
support multiple inheritance, while C++ supports it. Python has a sophisticated and well-designed approach to
multiple inheritance.

A class definition, where a child class SubClassName inherits from the parent classes BaseClass1,
BaseClass2, BaseClass3, and so on, looks like this:

class SubclassName(BaseClass1, BaseClass2, BaseClass3, ...):
pass

It's clear that all the superclasses BaseClass1, BaseClass2, BaseClass3, ... can inherit from other superclasses
as well. What we get is an inheritance tree.

MULTIPLE INHERITANCE 514

EXAMPLE: CALENDARCLOCK

We want to introduce the principles of multiple inheritance with an example. For this purpose, we will
implement to independent classes: a "Clock" and a "Calendar" class. After this, we will introduce a class
"CalendarClock", which is, as the name implies, a combination of "Clock" and "Calendar". CalendarClock
inherits both from "Clock" and "Calendar".

The class Clock simulates the tick-tack of a clock. An instance of this class contains the time, which is stored
in the attributes self.hours, self.minutes and self.seconds. Principally, we could have written the __init__
method and the set method like this:

def __init__(self,hours=0, minutes=0, seconds=0):
self._hours = hours
self.__minutes = minutes
self.__seconds = seconds

def set(self,hours, minutes, seconds=0):
self._hours = hours
self.__minutes = minutes
self.__seconds = seconds

MULTIPLE INHERITANCE 515

We decided against this implementation, because we added additional code for checking the plausibility of the
time data into the set method. We call the set method from the __init__ method as well, because we want
to circumvent redundant code. The complete Clock class:

"""
The class Clock is used to simulate a clock.
"""

class Clock(object):
def __init__(self, hours, minutes, seconds):

"""
The paramaters hours, minutes and seconds have to be
integers and must satisfy the following equations:
0 <= h < 24
0 <= m < 60
0 <= s < 60
"""

self.set_Clock(hours, minutes, seconds)

def set_Clock(self, hours, minutes, seconds):
"""
The parameters hours, minutes and seconds have to be
integers and must satisfy the following equations:
0 <= h < 24
0 <= m < 60
0 <= s < 60
"""

if type(hours) == int and 0 <= hours and hours < 24:
self._hours = hours

else:
raise TypeError("Hours have to be integers between 0 a

nd 23!")
if type(minutes) == int and 0 <= minutes and minutes < 60:

self.__minutes = minutes
else:

raise TypeError("Minutes have to be integers between
0 and 59!")

if type(seconds) == int and 0 <= seconds and seconds < 60:
self.__seconds = seconds

else:
raise TypeError("Seconds have to be integers between

MULTIPLE INHERITANCE 516

0 and 59!")

def __str__(self):
return "{0:02d}:{1:02d}:{2:02d}".format(self._hours,

self.__minutes,
self.__seconds)

def tick(self):
"""
This method lets the clock "tick", this means that the
internal time will be advanced by one second.

Examples:
>>> x = Clock(12,59,59)
>>> print(x)
12:59:59
>>> x.tick()
>>> print(x)
13:00:00
>>> x.tick()
>>> print(x)
13:00:01
"""

if self.__seconds == 59:
self.__seconds = 0
if self.__minutes == 59:

self.__minutes = 0
if self._hours == 23:

self._hours = 0
else:

self._hours += 1
else:

self.__minutes += 1
else:

self.__seconds += 1

if __name__ == "__main__":
x = Clock(23,59,59)
print(x)
x.tick()
print(x)
y = str(x)
print(type(y))

MULTIPLE INHERITANCE 517

Let's check our exception handling by inputting floats and strings as input. We also check, what happens, if we
exceed the limits of the expected values:

x = Clock(7.7, 45, 17)

x = Clock(24, 45, 17)

23:59:59
00:00:00
<class 'str'>

TypeError Traceback (most recent call last)
<ipython-input-2-f91279ca09c6> in <module>
----> 1 x = Clock(7.7,45,17)

<ipython-input-1-ffb3e30af1a8> in __init__(self, hours, minutes, seconds)
14 """
15

---> 16 self.set_Clock(hours, minutes, seconds)
17
18 def set_Clock(self, hours, minutes, seconds):

<ipython-input-1-ffb3e30af1a8> in set_Clock(self, hours, minutes, seconds)
28 self._hours = hours
29 else:

---> 30 raise TypeError("Hours have to be integers between 0 an
d 23!")

31 if type(minutes) == int and 0 <= minutes and minutes < 60:
32 self.__minutes = minutes

TypeError: Hours have to be integers between 0 and 23!

MULTIPLE INHERITANCE 518

x = Clock(23, 60, 17)

TypeError Traceback (most recent call last)
<ipython-input-4-36d0f83822b6> in <module>
----> 1 x = Clock(24, 45, 17)

<ipython-input-1-ffb3e30af1a8> in __init__(self, hours, minutes, seconds)
14 """
15

---> 16 self.set_Clock(hours, minutes, seconds)
17
18 def set_Clock(self, hours, minutes, seconds):

<ipython-input-1-ffb3e30af1a8> in set_Clock(self, hours, minutes, seconds)
28 self._hours = hours
29 else:

---> 30 raise TypeError("Hours have to be integers between 0 an
d 23!")

31 if type(minutes) == int and 0 <= minutes and minutes < 60:
32 self.__minutes = minutes

TypeError: Hours have to be integers between 0 and 23!

TypeError Traceback (most recent call last)
<ipython-input-5-6c03e29741a6> in <module>
----> 1 x = Clock(23,60,17)

<ipython-input-1-ffb3e30af1a8> in __init__(self, hours, minutes, seconds)
14 """
15

---> 16 self.set_Clock(hours, minutes, seconds)
17
18 def set_Clock(self, hours, minutes, seconds):

<ipython-input-1-ffb3e30af1a8> in set_Clock(self, hours, minutes, seconds)
32 self.__minutes = minutes
33 else:

---> 34 raise TypeError("Minutes have to be integers between 0
and 59!")

35 if type(seconds) == int and 0 <= seconds and seconds < 60:
36 self.__seconds = seconds

TypeError: Minutes have to be integers between 0 and 59!

MULTIPLE INHERITANCE 519

x = Clock("23", "60", "17")

x = Clock(23, 17)

We will now create a class "Calendar", which has lots of similarities to the previously defined Clock class.
Instead of "tick" we have an "advance" method, which advances the date by one day, whenever it is called.
Adding a day to a date is quite tricky. We have to check, if the date is the last day in a month and the number
of days in the months vary. As if this isn't bad enough, we have February and the leap year problem.

The rules for calculating a leap year are the following:

• If a year is divisible by 400, it is a leap year.
• If a year is not divisible by 400 but by 100, it is not a leap year.
• A year number which is divisible by 4 but not by 100, it is a leap year.
• All other year numbers are common years, i.e. no leap years.

As a little useful gimmick, we added a possibility to output a date either in British or in American (Canadian)
style.

TypeError Traceback (most recent call last)
<ipython-input-6-9d4de9fcfcdc> in <module>
----> 1 x = Clock("23", "60", "17")

<ipython-input-1-ffb3e30af1a8> in __init__(self, hours, minutes, seconds)
14 """
15

---> 16 self.set_Clock(hours, minutes, seconds)
17
18 def set_Clock(self, hours, minutes, seconds):

<ipython-input-1-ffb3e30af1a8> in set_Clock(self, hours, minutes, seconds)
28 self._hours = hours
29 else:

---> 30 raise TypeError("Hours have to be integers between 0 an
d 23!")

31 if type(minutes) == int and 0 <= minutes and minutes < 60:
32 self.__minutes = minutes

TypeError: Hours have to be integers between 0 and 23!

TypeError Traceback (most recent call last)
<ipython-input-7-dcf065c8d655> in <module>
----> 1 x = Clock(23, 17)

TypeError: __init__() missing 1 required positional argument: 'seconds'

MULTIPLE INHERITANCE 520

"""
The class Calendar implements a calendar.
"""

class Calendar(object):
months = (31,28,31,30,31,30,31,31,30,31,30,31)
date_style = "British"

@staticmethod
def leapyear(year):

"""
The method leapyear returns True if the parameter year
is a leap year, False otherwise
"""
if not year % 4 == 0:

return False
elif not year % 100 == 0:

return True
elif not year % 400 == 0:

return False
else:

return True

def __init__(self, d, m, y):
"""
d, m, y have to be integer values and year has to be
a four digit year number
"""

self.set_Calendar(d,m,y)

def set_Calendar(self, d, m, y):
"""
d, m, y have to be integer values and year has to be
a four digit year number
"""

if type(d) == int and type(m) == int and type(y) == int:
self.__days = d
self.__months = m
self.__years = y

else:

MULTIPLE INHERITANCE 521

raise TypeError("d, m, y have to be integers!")

def __str__(self):
if Calendar.date_style == "British":

return "{0:02d}/{1:02d}/{2:4d}".format(self.__days,
self.__months,
self.__years)

else:
assuming American style
return "{0:02d}/{1:02d}/{2:4d}".format(self.__months,

self.__days,
self.__years)

def advance(self):
"""
This method advances to the next date.
"""

max_days = Calendar.months[self.__months-1]
if self.__months == 2 and Calendar.leapyear(self.__years):

max_days += 1
if self.__days == max_days:

self.__days= 1
if self.__months == 12:

self.__months = 1
self.__years += 1

else:
self.__months += 1

else:
self.__days += 1

if __name__ == "__main__":
x = Calendar(31,12,2012)
print(x, end=" ")
x.advance()
print("after applying advance: ", x)
print("2012 was a leapyear:")
x = Calendar(28,2,2012)
print(x, end=" ")
x.advance()
print("after applying advance: ", x)

MULTIPLE INHERITANCE 522

x = Calendar(28,2,2013)
print(x, end=" ")
x.advance()
print("after applying advance: ", x)
print("1900 no leapyear: number divisible by 100 but not by 40

0: ")
x = Calendar(28,2,1900)
print(x, end=" ")
x.advance()
print("after applying advance: ", x)
print("2000 was a leapyear, because number divisibe by 400: ")
x = Calendar(28,2,2000)
print(x, end=" ")
x.advance()
print("after applying advance: ", x)
print("Switching to American date style: ")
Calendar.date_style = "American"
print("after applying advance: ", x)

At last, we will introduce our multiple inheritance example. We are now capable of implementing the
originally intended class CalendarClock, which will inherit from both Clock and Calendar. The method "tick"
of Clock will have to be overridden. However, the new tick method of CalendarClock has to call the tick
method of Clock: Clock.tick(self)

"""
Module, which implements the class CalendarClock.
"""

from clock import Clock
from calendar import Calendar

class CalendarClock(Clock, Calendar):
"""

31/12/2012 after applying advance: 01/01/2013
2012 was a leapyear:
28/02/2012 after applying advance: 29/02/2012
28/02/2013 after applying advance: 01/03/2013
1900 no leapyear: number divisible by 100 but not by 400:
28/02/1900 after applying advance: 01/03/1900
2000 was a leapyear, because number divisibe by 400:
28/02/2000 after applying advance: 29/02/2000
Switching to American date style:
after applying advance: 02/29/2000

MULTIPLE INHERITANCE 523

The class CalendarClock implements a clock with integrate
d

calendar. It's a case of multiple inheritance, as it inher
its

both from Clock and Calendar
"""

def __init__(self, day, month, year, hour, minute, second):
Clock.__init__(self,hour, minute, second)
Calendar.__init__(self, day, month, year)

def tick(self):
"""
advance the clock by one second
"""
previous_hour = self._hours
Clock.tick(self)
if (self._hours < previous_hour):

self.advance()

def __str__(self):
return Calendar.__str__(self) + ", " + Clock.__str__(self)

if __name__ == "__main__":
x = CalendarClock(31, 12, 2013, 23, 59, 59)
print("One tick from ",x, end=" ")
x.tick()
print("to ", x)

x = CalendarClock(28, 2, 1900, 23, 59, 59)
print("One tick from ",x, end=" ")
x.tick()
print("to ", x)

x = CalendarClock(28, 2, 2000, 23, 59, 59)
print("One tick from ",x, end=" ")
x.tick()
print("to ", x)

x = CalendarClock(7, 2, 2013, 13, 55, 40)
print("One tick from ",x, end=" ")
x.tick()
print("to ", x)

MULTIPLE INHERITANCE 524

THE DIAMOND PROBLEM OR THE ,,DEADLY DIAMOND OF DEATH''

The "diamond problem" (sometimes referred as the "deadly diamond of
death") is the generally used term for an ambiguity that arises when two
classes B and C inherit from a superclass A, and another class D inherits
from both B and C. If there is a method "m" in A that B or C (or even both
of them) has overridden, and furthermore, if it does not override this
method, then the question is which version of the method does D inherit? It
could be the one from A, B or C.

Let's look at Python. The first Diamond Problem configuration is like this:
Both B and C override the method m of A:

class A:
def m(self):

print("m of A called")

class B(A):
def m(self):

print("m of B called")

class C(A):
def m(self):

print("m of C called")

class D(B,C):
pass

If you call the method m on an instance x of D, i.e. x.m(), we will get the output "m of B called". If we
transpose the order of the classes in the class header of D in "class D(C,B):", we will get the output "m of C
called".

The case in which m will be overridden only in one of the classes B or C, e.g. in C:

ModuleNotFoundError Traceback (most recent call last)
<ipython-input-1-6b533ccbb057> in <module>

3 """
4

----> 5 from clock import Clock
6 from calendar import Calendar
7

ModuleNotFoundError: No module named 'clock'

MULTIPLE INHERITANCE 525

class A:
def m(self):

print("m of A called")

class B(A):
pass

class C(A):
def m(self):

print("m of C called")

class D(B,C):
pass

x = D()
x.m()

Principially, two possibilities are imaginable: "m of C" or "m of A" could be used

We call this script with Python2.7 (python) and with Python3 (python3) to see what's happening:

$ python diamond1.py
m of A called
$ python3 diamond1.py
m of C called

Only for those who are interested in Python version2: To have the same inheritance behaviour in Python2 as in
Python3, every class has to inherit from the class "object". Our class A doesn't inherit from object, so we get a
so-called old-style class, if we call the script with python2. Multiple inheritance with old-style classes is
governed by two rules: depth-first and then left-to-right. If you change the header line of A into "class
A(object):", we will have the same behaviour in both Python versions.

SUPER AND MRO

We have seen in our previous implementation of the diamond problem, how Python "solves" the problem, i.e.
in which order the base classes are browsed through. The order is defined by the so-called "Method Resolution
Order" or in short MRO*.

We will extend our previous example, so that every class defines its own method m:

class A:
def m(self):

print("m of A called")

m of C called

MULTIPLE INHERITANCE 526

class B(A):
def m(self):

print("m of B called")

class C(A):
def m(self):

print("m of C called")

class D(B,C):
def m(self):

print("m of D called")

Let's apply the method m on an instance of D. We can see that only the code of the method m of D will be
executed. We can also explicitly call the methods m of the other classes via the class name, as we demonstrate
in the following interactive Python session:

from super1 import A,B,C,D
x = D()
B.m(x)

C.m(x)

A.m(x)

Now let's assume that the method m of D should execute the code of m of B, C and A as well, when it is
called. We could implement it like this:

class D(B,C):
def m(self):

print("m of D called")
B.m(self)
C.m(self)
A.m(self)

The output is what we have been looking for:

from mro import D
x = D()

m of B called

m of C called

m of A called

MULTIPLE INHERITANCE 527

x.m()

But it turns out once more that things are more complicated than they seem. How can we cope with the
situation, if both m of B and m of C will have to call m of A as well. In this case, we have to take away the
call A.m(self) from m in D. The code might look like this, but there is still a bug lurking in it:

class A:
def m(self):

print("m of A called")

class B(A):
def m(self):

print("m of B called")
A.m(self)

class C(A):
def m(self):

print("m of C called")
A.m(self)

class D(B,C):
def m(self):

print("m of D called")
B.m(self)
C.m(self)

The bug is that the method m of A will be called twice:

from super3 import D
x = D()
x.m()

One way to solve this problem - admittedly not a Pythonic one - consists in splitting the methods m of B and C

m of D called
m of B called
m of C called
m of A called

m of D called
m of B called
m of A called
m of C called
m of A called

MULTIPLE INHERITANCE 528

in two methods. The first method, called _m consists of the specific code for B and C and the other method
is still called m, but consists now of a call self._m() and a call A.m(self) . The code of the method
m of D consists now of the specific code of D 'print("m of D called")', and the calls B._m(self) ,
C._m(self) and A.m(self) :

class A:
def m(self):

print("m of A called")

class B(A):
def _m(self):

print("m of B called")
def m(self):

self._m()
A.m(self)

class C(A):
def _m(self):

print("m of C called")
def m(self):

self._m()
A.m(self)

class D(B,C):
def m(self):

print("m of D called")
B._m(self)
C._m(self)
A.m(self)

Our problem is solved, but - as we have already mentioned - not in a pythonic way:

from super4 import D
x = D()
x.m()

The optimal way to solve the problem, which is the "super" pythonic way, would be calling the super function:

m of D called
m of B called
m of C called
m of A called

MULTIPLE INHERITANCE 529

class A:
def m(self):

print("m of A called")

class B(A):
def m(self):

print("m of B called")
super().m()

class C(A):
def m(self):

print("m of C called")
super().m()

class D(B,C):
def m(self):

print("m of D called")
super().m()

It also solves our problem, but in a beautiful design as well:

x = D()
x.m()

The super function is often used when instances are initialized with the __init__ method:

class A:
def __init__(self):

print("A.__init__")

class B(A):
def __init__(self):

print("B.__init__")
super().__init__()

class C(A):
def __init__(self):

print("C.__init__")
super().__init__()

m of D called
m of B called
m of C called
m of A called

MULTIPLE INHERITANCE 530

class D(B,C):
def __init__(self):

print("D.__init__")
super().__init__()

We demonstrate the way of working in the following interactive session:

d = D()

c = C()

b = B()

a = A()

The question arises about how the super functions makes decisions. How does it decide which class has to be
used? As we have already mentioned, it uses the so-called method resolution order(MRO). It is based on the
"C3 superclass linearisation" algorithm. This is called a linearisation, because the tree structure is broken
down into a linear order. The mro method can be used to create this list:

D.mro()

B.mro()

A.mro()

D.__init__
B.__init__
C.__init__
A.__init__

C.__init__
A.__init__

B.__init__
A.__init__

A.__init__

Output: [__main__.D, __main__.B, __main__.C, __main__.A, object]

Output: [__main__.B, __main__.A, object]

Output: [__main__.A, object]

MULTIPLE INHERITANCE 531

POLYMORPHISM

Polymorphism is construed from two Greek words. "Poly"
stands for "much" or "many" and "morph" means shape or
form. Polymorphism is the state or condition of being
polymorphous, or if we use the translations of the
components "the ability to be in many shapes or forms.
Polymorphism is a term used in many scientific areas. In
crystallography it defines the state, if something
crystallizes into two or more chemically identical but
crystallographically distinct forms. Biologists know
polymorphism as the existence of an organism in several
form or colour varieties. The Romans even had a god,
called Morpheus, who is able to take any human form:
Morheus appears in Ovid's metamorphoses and is the son
of Somnus, the god of sleep. You can admire Morpheus
and Iris in the picture on the right side.

So, before we fall asleep, we get back to Python and to
what polymorphism means in the context of programming
languages. Polymorphism in Computer Science is the
ability to present the same interface for differing
underlying forms. We can have in some programming
languages polymorphic functions or methods, for example.
Polymorphic functions or methods can be applied to
arguments of different types, and they can behave
differently depending on the type of the arguments to
which they are applied. We can also define the same
function name with a varying number of parameter.

Let's have a look at the following Python function:

def f(x, y):
print("values: ", x, y)

f(42, 43)
f(42, 43.7)
f(42.3, 43)
f(42.0, 43.9)

We can call this function with various types, as demonstrated in the example. In typed programming languages

values: 42 43
values: 42 43.7
values: 42.3 43
values: 42.0 43.9

MULTIPLE INHERITANCE 532

like Java or C++, we would have to overload f to implement the various type combinations.

Our example could be implemented like this in C++:

#include
using namespace std;

void f(int x, int y) {
cout << "values: " << x << ", " << x << endl;

}

void f(int x, double y) {
cout << "values: " << x << ", " << x << endl;

}

void f(double x, int y) {
cout << "values: " << x << ", " << x << endl;

}

void f(double x, double y) {
cout << "values: " << x << ", " << x << endl;

}

int main()
{

f(42, 43);
f(42, 43.7);
f(42.3,43);
f(42.0, 43.9);

}

Python is implicitly polymorphic. We can apply our previously defined function f even to lists, strings or other
types, which can be printed:

def f(x,y):
print("values: ", x, y)

f([3,5,6],(3,5))

f("A String", ("A tuple", "with Strings"))
values: [3, 5, 6] (3, 5)

values: A String ('A tuple', 'with Strings')

MULTIPLE INHERITANCE 533

f({2,3,9}, {"a":3.4,"b":7.8, "c":9.04})

FOOTNOTES

* Python has used since 2.3 the ,,C3 superclass linearisation''-algorithm to determine the MRO. -->

values: {9, 2, 3} {'a': 3.4, 'b': 7.8, 'c': 9.04}

MULTIPLE INHERITANCE 534

M U L T I P L E I N H E R I T A N C E :
E X A M P L E

ROBOT CLASSES

This chapter of our tutorial is meant to deepen the understanding
of multiple inheritance that the reader has built up in our
previous chapter. We will provide a further extentive example
for this important object oriented principle of the programming
language Python. We will use a variation of our Robot class as
the superclass. We will also summarize some other important
aspects of object orientation with Python like properties. We
will also work out the differences between overwriting,
overloading and overriding.

This example has grown during my onsite Python training
classes, because I urgently needed simple and easy to
understand examples of subclassing and above all one for
multiple inheritance.

Starting from the superclass Robot we will derive two
classes: A FightingRobot class and a NursingRobot
class.

Finally we will define a 'combination' of both the
FightingRobot class and the NursingRobot class, i.e.

we will implement a class FightingNurseRobot , which
will inherit both from FightingRobot and
NursingRobot .

Let us start with our Robot class: We use a private class
attribute __illegal_names containing a set of names not allowed to be used for naming robots.

By providing an __add__ method we make sure that our robots are capable of propagating. The name of
the resulting robot will be automatically created. The name of a 'baby' robot will consist of the concatenation
of the names of both parents separated by an hyphen. If a parent name has a name containing a hyphen, we
will use only the first part before the hyphen.

The robots will 'come to live' with a random value between 0 and 1 for the attribute health_level . If the
health_level of a Robot is below a threshold, which is defined by the class attribute
Robot.__crucial_health_level , it will need the nursing powers of a robot from the
NursingClass . To determine if a Robots needs healing, we provide a method needs_a_nurse which

MULTIPLE INHERITANCE: EXAMPLE 535

returns True if the value is below Robot.__crucial_health_level and False otherwise.

import random
class Robot():

__illegal_names = {"Henry", "Oscar"}
__crucial_health_level = 0.6

def __init__(self, name):
self.name = name #---> property setter
self.health_level = random.random()

@property
def name(self):

return self.__name

@name.setter
def name(self, name):

if name in Robot.__illegal_names:
self.__name = "Marvin"

else:
self.__name = name

def __str__(self):
return self.name + ", Robot"

def __add__(self, other):
first = self.name.split("-")[0]
second = other.name.split("-")[0]
return Robot(first + "-" + second)

def needs_a_nurse(self):
if self.health_level < Robot.__crucial_health_level:

return True
else:

return False
def say_hi(self):

print("Hi, I am " + self.name)
print("My health level is: " + str(self.health_level))

We can test the newly designed Robot class now. Watch out how the hyphened names change from

MULTIPLE INHERITANCE: EXAMPLE 536

generation to generation:

first_generation = (Robot("Marvin"),
Robot("Enigma-Alan"),
Robot("Charles-Henry"))

gen1 = first_generation # used as an abbreviation
babies = [gen1[0] + gen1[1], gen1[1] + gen1[2]]
babies.append(babies[0] + babies[1])
for baby in babies:

baby.say_hi()

SUBCLASS NURSINGROBOT

We are ready now for subclassing the Robot class. We will start by creating the NursingRobot class.
We extend the __init__ method with a new attribute healing_power . At first we have to understand
the concept of 'healing power'. Generally, it makes only sense to heal a Robot , if its health level is below 1.
The 'healing' in the heal method is done by setting the health_level to a random value between the old
health_level and healing_power of a ǸursingRobot . This value is calculated by the uniform
function of the random module.

class NursingRobot(Robot):
def __init__(self, name="Hubert", healing_power=None):

super().__init__(name)
if healing_power is None:

self.healing_power = random.uniform(0.8, 1)
else:

self.healing_power = healing_power

def say_hi(self):
print("Well, well, everything will be fine ... " + self.na

me + " takes care of you!")

Hi, I am Marvin-Enigma
My health level is: 0.8879034405855623
Hi, I am Enigma-Charles
My health level is: 0.46930784534193803
Hi, I am Marvin-Enigma
My health level is: 0.2009467867758803

MULTIPLE INHERITANCE: EXAMPLE 537

def say_hi_to_doc(self):
Robot.say_hi(self)

def heal(self, robo):
if robo.health_level > self.healing_power:

print(self.name + " not strong enough to heal " + rob
o.name)

else:
robo.health_level = random.uniform(robo.health_level,

self.healing_power)
print(robo.name + " has been healed by " + self.name

+ "!")

Let's heal the robot class instances which we created so far. If you look at the code, you may wonder about the
function chain , which is a generator from the itertools module. Logically, the same thing happens,
as if we had used first_generation + babies , but chain is not creating a new list. chain is
iterating over both lists, one after the other and this is efficient!

from itertools import chain
nurses = [NursingRobot("Hubert"),

NursingRobot("Emma", healing_power=1)]

for nurse in nurses:
print("Healing power of " + nurse.name,

nurse.healing_power)

print("\nLet's start the healing")
for robo in chain(first_generation, babies):

robo.say_hi()
if robo.needs_a_nurse():

choose randomly a nurse:
nurse = random.choice(nurses)
nurse.heal(robo)
print("New health level: ", robo.health_level)

else:
print(robo.name + " is healthy enough!")

print()

MULTIPLE INHERITANCE: EXAMPLE 538

An interesting question is, what would happen, if Hubert and Emma get added. The question is, what the
resulting type will be:

x = nurses[0] + nurses[1]
x.say_hi()
print(type(x))

Healing power of Hubert 0.8730202054681965
Healing power of Emma 1

Let's start the healing
Hi, I am Marvin
My health level is: 0.3529060178554311
Marvin has been healed by Emma!
New health level: 0.9005591116354148

Hi, I am Enigma-Alan
My health level is: 0.0004876210374201717
Enigma-Alan has been healed by Emma!
New health level: 0.5750360827887102

Hi, I am Charles-Henry
My health level is: 0.06446896431387994
Charles-Henry has been healed by Hubert!
New health level: 0.09474181073613296

Hi, I am Marvin-Enigma
My health level is: 0.8879034405855623
Marvin-Enigma is healthy enough!

Hi, I am Enigma-Charles
My health level is: 0.46930784534193803
Enigma-Charles has been healed by Hubert!
New health level: 0.6182358513871242

Hi, I am Marvin-Enigma
My health level is: 0.2009467867758803
Marvin-Enigma has been healed by Emma!
New health level: 0.8204101216553784

Hi, I am Hubert-Emma
My health level is: 0.8844357538670625
<class '__main__.Robot'>

MULTIPLE INHERITANCE: EXAMPLE 539

We see that the result of addition of two nursing robots is a plain robot of type Robot . This is not wrong but
bad design. We want the resulting robots to be an instance of the NursingRobot class of course. One way
to fix this would be to overload the __add__ method inside of the NursingRobot class:

def __add__(self, other):
first = self.name.split("-")[0]
second = other.name.split("-")[0]
return NursingRobot(first + "-" + second)

This is also bad design, because it is mainly a copy the original function with the only exception of creating an
instance of NursingRobot instead of a Robot instance. An elegant solution would be having __add__ more
generally defined. Instead of creating always a Robot instance, we could have made it dependent on the
type of self by using type(self) . For simplicity's sake we repeat the complete example:

import random
class Robot():

__illegal_names = {"Henry", "Oscar"}
__crucial_health_level = 0.6

def __init__(self, name):
self.name = name #---> property setter
self.health_level = random.random()

@property
def name(self):

return self.__name

@name.setter
def name(self, name):

if name in Robot.__illegal_names:
self.__name = "Marvin"

else:
self.__name = name

def __str__(self):
return self.name + ", Robot"

def __add__(self, other):
first = self.name.split("-")[0]
second = other.name.split("-")[0]
return type(self)(first + "-" + second)

def needs_a_nurse(self):

MULTIPLE INHERITANCE: EXAMPLE 540

if self.health_level < Robot.__crucial_health_level:
return True

else:
return False

def say_hi(self):
print("Hi, I am " + self.name)
print("My health level is: " + str(self.health_level))

class NursingRobot(Robot):
def __init__(self, name="Hubert", healing_power=None):

super().__init__(name)
if healing_power:

self.healing_power = healing_power
else:

self.healing_power = random.uniform(0.8, 1)

def say_hi(self):
print("Well, well, everything will be fine ... " + self.na

me + " takes care of you!")

def say_hi_to_doc(self):
Robot.say_hi(self)

def heal(self, robo):
if robo.health_level > self.healing_power:

print(self.name + " not strong enough to heal " + rob
o.name)

else:
robo.health_level = random.uniform(robo.health_level,

self.healing_power)
print(robo.name + " has been healed by " + self.name

+ "!")

SUBCLASS FIGHTINGROBOT

Unfortunately, our virtual robot world is not better than their human counterpart. In other words, there will be
some fighting going on as well. We subclass Robot once again to create a class with the name
FightingRobot .

class FightingRobot(Robot):

MULTIPLE INHERITANCE: EXAMPLE 541

__maximum_damage = 0.2

def __init__(self, name="Hubert",
fighting_power=None):

super().__init__(name)
if fighting_power:

self.fighting_power = fighting_power
else:

max_dam = FightingRobot.__maximum_damage
self.fighting_power = random.uniform(max_dam, 1)

def say_hi(self):
print("I am the terrible ... " + self.name)

def attack(self, other):
other.health_level = \

other.health_level * self.fighting_power
if isinstance(other, FightingRobot):

the other robot fights back
self.health_level = \

self.health_level * other.fighting_power

Let us see now, how the fighting works:

fighters = (FightingRobot("Rambo", 0.4),
FightingRobot("Terminator", 0.2))

for robo in first_generation:
print(robo, robo.health_level)
fighters[0].attack(robo)
print(robo, robo.health_level)

What about Rambo fighting Terminator? This spectacular fight can be viewed in the following code:

let us make them healthier first:

Marvin, Robot 0.9005591116354148
Marvin, Robot 0.36022364465416595
Enigma-Alan, Robot 0.5750360827887102
Enigma-Alan, Robot 0.23001443311548408
Charles-Henry, Robot 0.09474181073613296
Charles-Henry, Robot 0.037896724294453184

MULTIPLE INHERITANCE: EXAMPLE 542

print("Before the battle:")
for fighter in fighters:

nurses[1].heal(fighter)
print(fighter,

fighter.health_level,
fighter.fighting_power)

fighters[0].attack(fighters[1])

print("\nAfter the battle:")
for fighter in fighters:

print(fighter,
fighter.health_level,
fighter.fighting_power)

AN EXAMPLE OF MULTIPLE INHERITANCE

The underlying idea of the following class FightingNurseRobot consists in having robots who can
both heal and fight.

class FightingNurseRobot(NursingRobot, FightingRobot):

def __init__(self, name, mode="nursing"):
super().__init__(name)
self.mode = mode # alternatively "fighting"

def say_hi(self):
if self.mode == "fighting":

FightingRobot.say_hi(self)
elif self.mode == "nursing":

NursingRobot.say_hi(self)
else:

Robot.say_hi(self)

Before the battle:
Rambo has been healed by Emma!
Rambo, Robot 0.8481669878334196 0.4
Terminator has been healed by Emma!
Terminator, Robot 0.8458447223409832 0.2

After the battle:
Rambo, Robot 0.16963339756668394 0.4
Terminator, Robot 0.33833788893639327 0.2

MULTIPLE INHERITANCE: EXAMPLE 543

We will instantiate two instances of FightingNurseRobot . You can see that after creation they are
capable to heal themselves if necessary. They can also attack other robots.

fn1 = FightingNurseRobot("Donald", mode="fighting")
fn2 = FightingNurseRobot("Angela")

if fn1.needs_a_nurse():
fn1.heal(fn1)

if fn2.needs_a_nurse():
fn2.heal(fn2)

print(fn1.health_level, fn2.health_level)

fn1.say_hi()
fn2.say_hi()
fn1.attack(fn2)
print(fn1.health_level, fn2.health_level)
Angela has been healed by Angela!
0.8198049162122293 0.21016386954814018
I am the terrible ... Donald
Well, well, everything will be fine ... Angela takes care of you!
0.7176570622156614 0.16365553164488025

MULTIPLE INHERITANCE: EXAMPLE 544

M A G I C M E T H O D S A N D O P E R A T O R
O V E R L O A D I N G

INTRODUCTION

The so-called magic methods have
nothing to do with wizardry. You have
already seen them in the previous chapters
of our tutorial. They are special methods
with fixed names. They are the methods
with this clumsy syntax, i.e. the double
underscores at the beginning and the end.
They are also hard to talk about. How do
you pronounce or say a method name like
__init__ ? "Underscore underscore

init underscore underscore" sounds
horrible and is almost a tongue twister.
"Double underscore init double
underscore" is a lot better, but the ideal
way is "dunder init dunder" That's why
magic methods methods are sometimes
called dunder methods!

So what's magic about the __init__
method? The answer is, you don't have to
invoke it directly. The invocation is
realized behind the scenes. When you
create an instance x of a class A with the
statement "x = A()", Python will do the
necessary calls to __new__ and __init__ .

Towards the end of this chapter of our tutorial we will introduce the __call__ method. It is overlooked by
many beginners and even advanced programmers of Python. It is a functionality which many programming
languages do not have, so programmers generally do not look for it. The __call__ method enables Python
programmers to write classes where the instances behave like functions. Both functions and the instances of
such classes are called callables.

We have encountered the concept of operator overloading many times in the course of this tutorial. We had
used the plus sign to add numerical values, to concatenate strings or to combine lists:

4 + 5

3.8 + 9

Output: 9

MAGIC METHODS AND OPERATOR OVERLOADING 545

"Peter" + " " + "Pan"

[3,6,8] + [7,11,13]

It's even possible to overload the "+" operator as well as all the other
operators for the purposes of your own class. To do this, you need to
understand the underlying mechanism. There is a special (or a "magic")
method for every operator sign. The magic method for the "+" sign is the
__add__ method. For "-" it is __sub__ and so on. We have a

complete listing of all the magic methods a little further down.

The mechanism works like this: If we have an expression "x + y" and x is an instance of class K, then Python
will check the class definition of K. If K has a method __add__ it will be called with x.__add__(y) ,
otherwise we will get an error message:

Traceback (most recent call last):
File "", line 1, in

TypeError: unsupported operand type(s) for +: 'K' and 'K'

OVERVIEW OF MAGIC METHODS

BINARY OPERATORS

Operator Method

+ object.__add__(self, other)

- object.__sub__(self, other)

* object.__mul__(self, other)

// object.__floordiv__(self, other)

/ object.__truediv__(self, other)

% object.__mod__(self, other)

Output: 12.8

Output: 'Peter Pan'

Output: [3, 6, 8, 7, 11, 13]

MAGIC METHODS AND OPERATOR OVERLOADING 546

** object.__pow__(self, other[, modulo])

<< object.__lshift__(self, other)

>> object.__rshift__(self, other)

& object.__and__(self, other)

^ object.__xor__(self, other)

| object.__or__(self, other)

EXTENDED ASSIGNMENTS

Operator Method

+= object.__iadd__(self, other)

-= object.__isub__(self, other)

*= object.__imul__(self, other)

/= object.__idiv__(self, other)

//= object.__ifloordiv__(self, other)

%= object.__imod__(self, other)

**= object.__ipow__(self, other[, modulo])

<<= object.__ilshift__(self, other)

>>= object.__irshift__(self, other)

&= object.__iand__(self, other)

^= object.__ixor__(self, other)

|= object.__ior__(self, other)

MAGIC METHODS AND OPERATOR OVERLOADING 547

UNARY OPERATORS

Operator Method

- object.__neg__(self)

+ object.__pos__(self)

abs() object.__abs__(self)

~ object.__invert__(self)

complex() object.__complex__(self)

int() object.__int__(self)

long() object.__long__(self)

float() object.__float__(self)

oct() object.__oct__(self)

hex() object.__hex__(self

COMPARISON OPERATORS

Operator Method

< object.__lt__(self, other)

<= object.__le__(self, other)

== object.__eq__(self, other)

!= object.__ne__(self, other)

>= object.__ge__(self, other)

> object.__gt__(self, other)

MAGIC METHODS AND OPERATOR OVERLOADING 548

EXAMPLE CLASS: LENGTH

We will demonstrate the Length class and how you can overload the "+" operator for your own class. To do
this, we have to overload the __add__ method. Our class contains the __str__ and __repr__
methods as well. The instances of the class Length contain length or distance information. The attributes of an
instance are self.value and self.unit.

This class allows us to calculate expressions with mixed units like this one:

2.56 m + 3 yd + 7.8 in + 7.03 cm

The class can be used like this:

from unit_conversions import Length
L = Length
print(L(2.56,"m") + L(3,"yd") + L(7.8,"in") + L(7.03,"cm"))

The listing of the class:

class Length:
__metric = {"mm" : 0.001, "cm" : 0.01, "m" : 1, "km" : 1000,

"in" : 0.0254, "ft" : 0.3048, "yd" : 0.9144,
"mi" : 1609.344 }

def __init__(self, value, unit = "m"):
self.value = value
self.unit = unit

def Converse2Metres(self):
return self.value * Length.__metric[self.unit]

def __add__(self, other):
l = self.Converse2Metres() + other.Converse2Metres()
return Length(l / Length.__metric[self.unit], self.unit)

def __str__(self):
return str(self.Converse2Metres())

def __repr__(self):
return "Length(" + str(self.value) + ", '" + self.unit +

"')"

5.57162

MAGIC METHODS AND OPERATOR OVERLOADING 549

if __name__ == "__main__":
x = Length(4)
print(x)
y = eval(repr(x))

z = Length(4.5, "yd") + Length(1)
print(repr(z))
print(z)

We use the method __iadd__ to implement the extended assignment:

def __iadd__(self, other):
l = self.Converse2Metres() + other.Converse2Metres()
self.value = l / Length.__metric[self.unit]
return self

Now we are capable of writing the following assignments:

x += Length(1)
x += Length(4, "yd")

We added 1 metre in the example above by writing "x += Length(1))". Most certainly, you will agree with us
that it would be more convenient to simply write "x += 1" instead. We also want to treat expressions like
"Length(5,"yd") + 4.8" similarly. So, if somebody uses a type int or float, our class takes it automatically for
"metre" and converts it into a Length object. It's easy to adapt our __add__ and __iadd__ method for
this task. All we have to do is to check the type of the parameter "other":

def __add__(self, other):
if type(other) == int or type(other) == float:

l = self.Converse2Metres() + other
else:

l = self.Converse2Metres() + other.Converse2Metres()
return Length(l / Length.__metric[self.unit], self.unit)

def __iadd__(self, other):
if type(other) == int or type(other) == float:

l = self.Converse2Metres() + other
else:

l = self.Converse2Metres() + other.Converse2Metres()
self.value = l / Length.__metric[self.unit]

4
Length(5.593613298337708, 'yd')
5.1148

MAGIC METHODS AND OPERATOR OVERLOADING 550

return self

It's a safe bet that if somebody works with adding integers and floats from the right side for a while, he or she
will want to have the same from the left side! SWhat will happen, if we execute the following code line:

x = 5 + Length(3, "yd")

We will get an exception:

AttributeError: 'int' object has no attribute 'Converse2Metres'

Of course, the left side has to be of type "Length", because otherwise Python tries to apply the __add__
method from int, which can't cope with Length objects as second arguments!

Python provides a solution for this problem as well. It's the __radd__ method. It works like this: Python
tries to evaluate the expression "5 + Length(3, 'yd')". First it calls int. __add__ (5,Length(3, 'yd')), which
will raise an exception. After this it will try to invoke Length. __radd__ (Length(3, "yd"), 5). It's easy to
recognize that the implementation of __radd__ is analogue to __add__ :

def __radd__(self, other):
if type(other) == int or type(other) == float:

l = self.Converse2Metres() + other
else:

l = self.Converse2Metres() + other.Converse2Metres()
return Length(l / Length.__metric[self.unit], self.unit)

It's advisable to make use of the __add__ method in the __radd__ method:

def __radd__(self, other):
return Length.__add__(self,other)

The following diagram illustrates the relationship between __add__ and __radd__ :

STANDARD CLASSES AS BASE CLASSES

It's possible to use standard classes - like int, float, dict or lists - as base classes as well.

MAGIC METHODS AND OPERATOR OVERLOADING 551

We extend the list class by adding a push method:

class Plist(list):
def __init__(self, l):

list.__init__(self, l)

def push(self, item):
self.append(item)

if __name__ == "__main__":
x = Plist([3,4])
x.push(47)
print(x)

This means that all the previously introduced binary and extended assignment operators exist in the "reversed"
version as well:
__radd__ , __rsub__ , __rmul__ etc.

EXERCISES

EXERCISE 1

Write a class with the name Ccy, similar to the previously
defined Length class.Ccy should contain values in various
currencies, e.g. "EUR", "GBP" or "USD". An instance
should contain the amount and the currency unit. The
class, you are going to design as an exercise, might be best
described with the following example session:

from currencies import Ccy
v1 = Ccy(23.43, "EUR")
v2 = Ccy(19.97, "USD")
print(v1 + v2)
print(v2 + v1)
print(v1 + 3) # an int or a float is considered to be a EUR value
print(3 + v1)

[3, 4, 47]

MAGIC METHODS AND OPERATOR OVERLOADING 552

SOLUTIONS TO OUR EXERCISES

SOLUTION TO EXERCISE 1

"""

The class "Ccy" can be used to define money values in various
currencies. A Ccy instance has the string attributes 'unit' (e.g.
'CHF', 'CAD' od 'EUR' and the 'value' as a float.

A currency object consists of a value and the corresponding un
it.

"""

class Ccy:
currencies = {'CHF': 1.0821202355817312,

'CAD': 1.488609845538393,
'GBP': 0.8916546282920325,
'JPY': 114.38826536281809,
'EUR': 1.0,
'USD': 1.11123458162018}

def __init__(self, value, unit="EUR"):
self.value = value
self.unit = unit

def __str__(self):
return "{0:5.2f}".format(self.value) + " " + self.unit

def changeTo(self, new_unit):
"""

An Ccy object is transformed from the unit "self.uni
t" to "new_unit"

"""
self.value = (self.value / Ccy.currencies[self.unit] * Cc

y.currencies[new_unit])
self.unit = new_unit

def __add__(self, other):
"""

Defines the '+' operator.
If other is a CCy object the currency values

MAGIC METHODS AND OPERATOR OVERLOADING 553

are added and the result will be the unit of
self. If other is an int or a float, other will
be treated as a Euro value.

"""
if type(other) == int or type(other) == float:

x = (other * Ccy.currencies[self.unit])
else:

x = (other.value / Ccy.currencies[other.unit] * Ccy.cu
rrencies[self.unit])

return Ccy(x + self.value, self.unit)

def __iadd__(self, other):
"""

Similar to __add__
"""
if type(other) == int or type(other) == float:

x = (other * Ccy.currencies[self.unit])
else:

x = (other.value / Ccy.currencies[other.unit] * Ccy.cu
rrencies[self.unit])

self.value += x
return self

def __radd__(self, other):
res = self + other
if self.unit != "EUR":

res.changeTo("EUR")
return res

__sub__, __isub__ and __rsub__ can be defined analogue

from currencies import Ccy

x = Ccy(10,"USD")
y = Ccy(11)
z = Ccy(12.34, "JPY")
z = 7.8 + x + y + 255 + z
print(z)

lst = [Ccy(10,"USD"), Ccy(11), Ccy(12.34, "JPY"), Ccy(12.34, "CA
D")]

Overwriting currencies.py

MAGIC METHODS AND OPERATOR OVERLOADING 554

z = sum(lst)

print(z)

Another interesting aspect of this currency converter class in Python can be shown, if we add multiplication.
You will easily understand that it makes no sense to allow expressions like "12.4 € * 3.4 USD" (or in
prefix notation: "€ 12.4 $ 3.4"), but it makes perfect sense to evaluate "3 4.54 €". You can find the new
currency converter class with the newly added methods for __mul__ , __imul__ and __rmul__ in
the following listing:

"""
The class "Ccy" can be used to define money values in various

currencies. A Ccy instance has the string attributes 'unit' (e.g.
'CHF', 'CAD' od 'EUR' and the 'value' as a float.

A currency object consists of a value and the corresponding un
it.
"""

class Ccy:
currencies = {'CHF': 1.0821202355817312,

'CAD': 1.488609845538393,
'GBP': 0.8916546282920325,
'JPY': 114.38826536281809,
'EUR': 1.0,
'USD': 1.11123458162018}

def __init__(self, value, unit="EUR"):
self.value = value
self.unit = unit

def __str__(self):
return "{0:5.2f}".format(self.value) + " " + self.unit

def __repr__(self):
return 'Ccy(' + str(self.value) + ', "' + self.unit + '")'

def changeTo(self, new_unit):
"""

An Ccy object is transformed from the unit "self.uni
t" to "new_unit"

"""

282.91 EUR
28.40 EUR

MAGIC METHODS AND OPERATOR OVERLOADING 555

self.value = (self.value / Ccy.currencies[self.unit] * Cc
y.currencies[new_unit])

self.unit = new_unit

def __add__(self, other):
"""

Defines the '+' operator.
If other is a CCy object the currency values
are added and the result will be the unit of
self. If other is an int or a float, other will
be treated as a Euro value.

"""
if type(other) == int or type(other) == float:

x = (other * Ccy.currencies[self.unit])
else:

x = (other.value / Ccy.currencies[other.unit] * Cc
y.currencies[self.unit])

return Ccy(x + self.value, self.unit)

def __iadd__(self, other):
"""

Similar to __add__
"""
if type(other) == int or type(other) == float:

x = (other * Ccy.currencies[self.unit])
else:

x = (other.value / Ccy.currencies[other.unit] * Ccy.cu
rrencies[self.unit])

self.value += x
return self

def __radd__(self, other):
res = self + other
if self.unit != "EUR":

res.changeTo("EUR")
return res

__sub__, __isub__ and __rsub__ can be defined analogue

def __mul__(self, other):
"""

Multiplication is only defined as a scalar multiplicat
ion,

MAGIC METHODS AND OPERATOR OVERLOADING 556

i.e. a money value can be multiplied by an int or a fl
oat.

It is not possible to multiply to money values
"""
if type(other)==int or type(other)==float:

return Ccy(self.value * other, self.unit)
else:

raise TypeError("unsupported operand type(s) for *: 'C
cy' and " + type(other).__name__)

def __rmul__(self, other):
return self.__mul__(other)

def __imul__(self, other):
if type(other)==int or type(other)==float:

self.value *= other
return self

else:
raise TypeError("unsupported operand type(s) for *: 'C

cy' and " + type(other).__name__)

Assuming that you have saved the class under the name currency_converter, you can use it in the following
way in the command shell:

from currency_converter import Ccy
x = Ccy(10.00, "EUR")
y = Ccy(10.00, "GBP")
x + y

print(x + y)

print(2*x + y*0.9)

FOOTNOTES

• as suggested by Mark Jackson

Overwriting currency_converter.py

Output: Ccy(21.215104685942173, "EUR")

21.22 EUR

30.09 EUR

MAGIC METHODS AND OPERATOR OVERLOADING 557

C A L L A B L E S A N D C A L L A B L E
I N S T A N C E S

THE CALL METHOD

There will be hardly any Python user who
hasn't stumbled upon exceptions like
'dict' object is not
callable or 'int' object is
not callable . After a while they
find out the reason. They used parentheses
(round bracket) in situation where they
shouldn't have done it. Expressions like
f(x) , gcd(x, y) or sin(3.4)

are usually used for function calls. The
question is, why do we get the message
'dict' object is not
callable if we write d('a') , if d
is a dictionary? Why doesn't it say
'dict' object is not a
function ? First of all, when we invoke
a function in Python, we also say we 'call
the function'. Secondly, there are objects
in Python, which are 'called' like functions
but are not functions strictly speaking.
There are 'lambda functions', which are
defined in a different way. It is also
possible to define classes, where the instances are callable like 'regular' functions. This will be achieved by
adding another magic method the __call__ method.

Before we will come to the __call__ method, we have to know what a callable is. In general, a "callable"
is an object that can be called like a function and behaves like one. All functions are also callables. Python
provides a function with the name callable . With the help of this funciton we can determine whether an
object is callable or not. The function callable returns a Boolean truth value which indicates whether the
object passed as an argument can be called like a function or not. In addition to functions, we have already
seen another form of callables : classes

def the_answer(question):
return 42

print("the_answer: ", callable(the_answer))
the_answer: True

CALLABLES AND CALLABLE INSTANCES 558

https://www.python-course.eu/python3_magic_functions.php

The __call__ method can be used to turn the instances of the class into callables. Functions are callable
objects. A callable object is an object which can be used and behaves like a function but might not be a
function. By using the __call__ method it is possible to define classes in a way that the instances will be
callable objects. The __call__ method is called, if the instance is called "like a function", i.e. using
brackets. The following class definition is the simplest possible way to define a class with a __call__
method.

class FoodSupply:
def __call__(self):

return "spam"

foo = FoodSupply()
bar = FoodSupply()

print(foo(), bar())

The previous class example is extremely simple, but useless in practical terms. Whenever we create an
instance of the class, we get a callable. These callables are always defining the same constant function. A
function without any input and a constant output "spam". We'll now define a class which is slightly more
useful. Let us slightly improve this example:

class FoodSupply:
def __init__(self, *incredients):

self.incredients = incredients

def __call__(self):
result = " ".join(self.incredients) + " plus delicious spa

m!"
return result

f = FoodSupply("fish", "rice")
f()

Let's create another function:

g = FoodSupply("vegetables")
g()

spam spam

Output: 'fish rice plus delicious spam!'

CALLABLES AND CALLABLE INSTANCES 559

Now, we define a class with the name TriangleArea. This class has only one method, which is the
__call__ method. The __call__ method calculates the area of an arbitrary triangle, if the length of the

three sides are given.

class TriangleArea:
def __call__(self, a, b, c):

p = (a + b + c) / 2
result = (p * (p - a) * (p - b) * (p - c)) ** 0.5
return result

area = TriangleArea()

print(area(3, 4, 5))

This program returns 6.0. This class is not very exciting, even though we can create an arbitrary number of
instances where each instance just executes an unaltered __call__ function of the TrianlgeClass. We
cannot pass parameters to the instanciation and the __call__ of each instance returns the value of the area
of the triangle. So each instance behaves like the area function.

After the two very didactic and not very practical examples, we want to demonstrate a more practical example
with the following. We define a class that can be used to define linear equations:

class StraightLines():
def __init__(self, m, c):

self.slope = m
self.y_intercept = c

def __call__(self, x):
return self.slope * x + self.y_intercept

line = StraightLines(0.4, 3)

for x in range(-5, 6):
print(x, line(x))

Output: 'vegetables plus delicious spam!'

6.0

CALLABLES AND CALLABLE INSTANCES 560

We will use this class now to create some straight lines and visualize them with matplotlib:

lines = []
lines.append(StraightLines(1, 0))
lines.append(StraightLines(0.5, 3))
lines.append(StraightLines(-1.4, 1.6))

import matplotlib.pyplot as plt
import numpy as np
X = np.linspace(-5,5,100)
for index, line in enumerate(lines):

line = np.vectorize(line)
plt.plot(X, line(X), label='line' + str(index))

plt.title('Some straight lines')
plt.xlabel('x', color='#1C2833')
plt.ylabel('y', color='#1C2833')
plt.legend(loc='upper left')
plt.grid()
plt.show()

-5 1.0
-4 1.4
-3 1.7999999999999998
-2 2.2
-1 2.6
0 3.0
1 3.4
2 3.8
3 4.2
4 4.6
5 5.0

CALLABLES AND CALLABLE INSTANCES 561

Our next example is also exciting. The class FuzzyTriangleArea defines a __call__ method which
implements a fuzzy behaviour in the calculations of the area. The result should be correct with a likelihood of
p, e.g. 0.8. If the result is not correct the result will be in a range of ± v %. e.g. 0.1.

import random
class FuzzyTriangleArea:

def __init__(self, p=0.8, v=0.1):
self.p, self.v = p, v

def __call__(self, a, b, c):
p = (a + b + c) / 2
result = (p * (p - a) * (p - b) * (p - c)) ** 0.5
if random.random() <= self.p:

return result
else:

return random.uniform(result-self.v,
result+self.v)

area1 = FuzzyTriangleArea()
area2 = FuzzyTriangleArea(0.5, 0.2)
for i in range(12):

print(f"{area1(3, 4, 5):4.3f}, {area2(3, 4, 5):4.2f}")

CALLABLES AND CALLABLE INSTANCES 562

Beware that this output differs with every call! We can see the in most cases we get the right value for the area
but sometimes not.

We can create many different instances of the previous class. Each of these behaves like an area function,
which returns a value for the area, which may or may not be correct, depending on the instantiation parameters
p and v. We can see those instances as experts (expert functions) which return in most cases the correct
answer, if we use p values close to 1. If the value v is close to zero, the error will be small, if at all. The next
task would be merging such experts, let's call them exp1, exp2, ..., expn to get an improved result. We can
perform a vote on the results, i.e. we will return the value which is most often occuring, the correct value.
Alternatively, we can calculate the arithmetic mean. We will implement both possibilities in our class
FuzzyTriangleArea:

5.993, 5.95
6.000, 6.00
6.000, 6.00
5.984, 5.91
6.000, 6.00
6.000, 6.00
6.000, 6.17
6.000, 6.13
6.000, 6.01
5.951, 6.00
6.000, 5.95
5.963, 6.00

CALLABLES AND CALLABLE INSTANCES 563

from random import uniform, random
from collections import Counter

class FuzzyTriangleArea:
def __init__(self, p=0.8, v=0.1):

self.p, self.v = p, v

def __call__(self, a, b, c):
p = (a + b + c) / 2
result = (p * (p - a) * (p - b) * (p - c)) ** 0.5
if random() <= self.p:

return result
else:

return uniform(result-self.v,
result+self.v)

class MergeExperts:
def __init__(self, mode, *experts):

self.mode, self.experts = mode, experts

def __call__(self, a, b, c):
results= [exp(a, b, c) for exp in self.experts]
if self.mode == "vote":

c = Counter(results)
return c.most_common(1)[0][0]

elif self.mode == "mean":
return sum(results) / len(results)

rvalues = [(uniform(0.7, 0.9), uniform(0.05, 0.2)) for _ in rang
e(20)]
experts = [FuzzyTriangleArea(p, v) for p, v in rvalues]
merger1 = MergeExperts("vote", *experts)
print(merger1(3, 4, 5))
merger2 = MergeExperts("mean", *experts)
print(merger2(3, 4, 5))

The following example defines a class with which we can create abitrary polynomial functions:

6.0
6.0073039634137375

CALLABLES AND CALLABLE INSTANCES 564

class Polynomial:
def __init__(self, *coefficients):

self.coefficients = coefficients[::-1]

def __call__(self, x):
res = 0
for index, coeff in enumerate(self.coefficients):

res += coeff * x** index
return res

a constant function
p1 = Polynomial(42)

a straight Line
p2 = Polynomial(0.75, 2)

a third degree Polynomial
p3 = Polynomial(1, -0.5, 0.75, 2)

for i in range(1, 10):
print(i, p1(i), p2(i), p3(i))

You will find further interesting examples of the __call__ function in our tutorial in the chapters
Decorators and Memoization with Decorators. You may also consult our chapter on Polynomials.

1 42 2.75 3.25
2 42 3.5 9.5
3 42 4.25 26.75
4 42 5.0 61.0
5 42 5.75 118.25
6 42 6.5 204.5
7 42 7.25 325.75
8 42 8.0 488.0
9 42 8.75 697.25

CALLABLES AND CALLABLE INSTANCES 565

I N H E R I T A N C E E X A M P L E

INTRODUCTION

There aren't many good examples on inheritance available
on the web. They are either extremely simple and artificial
or they are way too complicated. We want to close the gap
by providing an example which is on the one hand more
realistic - but still not realistic - and on the other hand
simple enough to see and understand the basic aspects of
inheritance. In our previous chapter, we introduced
inheritance formally.

To this purpose we define two base classes: One is an
implementation of a clock and the other one of a calendar.
Based on these two classes, we define a class
CalendarClock, which inherits both from the class
Calendar and from the class Clock.

THE CLOCK CLASS
class Clock(object):

def __init__(self,hours=0, minutes=0, seconds=0):
self.__hours = hours
self.__minutes = minutes
self.__seconds = seconds

def set(self,hours, minutes, seconds=0):
self.__hours = hours
self.__minutes = minutes
self.__seconds = seconds

def tick(self):
""" Time will be advanced by one second """
if self.__seconds == 59:

self.__seconds = 0
if (self.__minutes == 59):

self.__minutes = 0
self.__hours = 0 if self.__hours==23 else sel

f.__hours + 1
else:

self.__minutes += 1;
else:

INHERITANCE EXAMPLE 566

self.__seconds += 1;

def display(self):
print("%d:%d:%d" % (self.__hours, self.__minutes, self.__s

econds))

def __str__(self):
return "%2d:%2d:%2d" % (self.__hours, self.__minutes, sel

f.__seconds)

x = Clock()
print(x)
for i in range(10000):

x.tick()
print(x)

THE CALENDAR CLASS
class Calendar(object):

months = (31,28,31,30,31,30,31,31,30,31,30,31)

def __init__(self, day=1, month=1, year=1900):
self.__day = day
self.__month = month
self.__year = year

def leapyear(self,y):
if y % 4:

not a leap year
return 0;

else:
if y % 100:

return 1;
else:

if y % 400:
return 0

else:
return 1;

def set(self, day, month, year):
self.__day = day
self.__month = month

0: 0: 0
2:46:40

INHERITANCE EXAMPLE 567

self.__year = year

def get():
return (self, self.__day, self.__month, self.__year)

def advance(self):
months = Calendar.months
max_days = months[self.__month-1]
if self.__month == 2:

max_days += self.leapyear(self.__year)
if self.__day == max_days:

self.__day = 1
if (self.__month == 12):

self.__month = 1
self.__year += 1

else:
self.__month += 1

else:
self.__day += 1

def __str__(self):
return str(self.__day)+"/"+ str(self.__month)+ "/"+ str(sel

f.__year)

if __name__ == "__main__":
x = Calendar()
print(x)
x.advance()
print(x)

THE CALENDAR-CLOCK CLASS
from clock1 import Clock
from calendar import Calendar

class CalendarClock(Clock, Calendar):

def __init__(self, day,month,year,hours=0, minutes=0,second
s=0):

Calendar.__init__(self, day, month, year)
Clock.__init__(self, hours, minutes, seconds)

1/1/1900
2/1/1900

INHERITANCE EXAMPLE 568

def __str__(self):
return Calendar.__str__(self) + ", " + Clock.__str__(self)

if __name__ == "__main__":
x = CalendarClock(24,12,57)
print(x)
for i in range(1000):

x.tick()
for i in range(1000):

x.advance()
print(x)

0: 0: 0
2:46:40

TypeError Traceback (most recent call last)
<ipython-input-5-ced1ddf95fd9> in <module>

13
14 if __name__ == "__main__":

---> 15 x = CalendarClock(24,12,57)
16 print(x)
17 for i in range(1000):

<ipython-input-5-ced1ddf95fd9> in __init__(self, day, month, year, hours, m
inutes, seconds)

5
6 def __init__(self, day,month,year,hours=0, minutes=0,seconds=0):

----> 7 Calendar.__init__(self, day, month, year)
8 Clock.__init__(self, hours, minutes, seconds)
9

TypeError: __init__() takes from 1 to 2 positional arguments but 4 were giv
en

INHERITANCE EXAMPLE 569

P O L Y N O M I A L S

INTRODUCTION

If you have been to highschool, you will have
encountered the terms polynomial and polynomial
function. This chapter of our Python tutorial is
completely on polynomials, i.e. we will define a class
to define polynomials. The following is an example
of a polynomial with the degree 4:

p(x) = x4 − 4 ⋅ x2 + 3 ⋅ x

You will find out that there are lots of similarities to
integers. We will define various arithmetic operations
for polynomials in our class, like addition,
subtraction, multiplication and division. Our
polynomial class will also provide means to calculate
the derivation and the integral of polynomials. We
will not miss out on plotting polynomials.

There is a lot of beaty in polynomials and above all
in how they can be implemented as a Python class.
We like to say thanks to Drew Shanon who granted
us permission to use his great picture, treating math
as art!

SHORT MATHEMATICAL INTRODUCTION

We will only deal with polynomial in a single indeterminate (also called variable) x. A general form of a
polynomial in a single indeterminate looks like this:

an ⋅ xn + an − 1 ⋅ xn − 1 + … + a2 ⋅ x2 + a1 ⋅ x + a0

where a0, a1, . . . an are the constants - non-negative integers - and x is the indeterminate or variable. The term

"indeterminate" means that x represents no particular value, but any value may be substituted for it.

This expression is usually written with the summation operator:

POLYNOMIALS 570

http://drewshannon.ca/

n

∑
k = 0

ak ⋅ xk = an ⋅ xn + an − 1 ⋅ xn − 1 + … + a2 ⋅ x2 + a1 ⋅ x + a0

A polynomial function is a function that can be defined by evaluating a polynomial. A function f of one
argument can be defined as:

f(x) =

n

∑
k = 0

ak ⋅ xk

POLYNOMIAL FUNCTIONS WITH PYTHON

It's easy to implement polynomial functions in Python. As an example we define the polynomial function

given in the introduction of this chapter, i.e. p(x) = x4 − 4 ⋅ x2 + 3 ⋅ x

The Python code for this polynomial function looks like this:

def p(x):
return x**4 - 4*x**2 + 3*x

We can call this function like any other function:

for x in [-1, 0, 2, 3.4]:
print(x, p(x))

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-3, 3, 50, endpoint=True)
F = p(X)
plt.plot(X,F)

plt.show()

-1 -6
0 0
2 6
3.4 97.59359999999998

POLYNOMIALS 571

POLYNOMIAL CLASS

We will define now a class for polynomial functions. We will build on an idea which we have developed in the
chapter on decorators of our Python tutorial. We introduced polynomial factories.

A polynomial is uniquely determined by its coefficients. This means, an instance of our polynomial class
needs a list or tuple to define the coefficients.

class Polynomial:
def __init__(self, *coefficients):

""" input: coefficients are in the form a_n, ...a_1, a_0
"""
self.coefficients = list(coefficients) # tuple is turned i

nto a list

def __repr__(self):
"""
method to return the canonical string representation
of a polynomial.
"""
return "Polynomial" + str(tuple(self.coefficients))

We can the instantiate the polynomial of our previous example polynomial function like this:

p = Polynomial(1, 0, -4, 3, 0)
print(p)

p2 = eval(repr(p))

POLYNOMIALS 572

print(p2)

Having defined the canonical string representation of a Polynomial with the repr function, we also want to
define an output which could be used to create a version which is more friendly for people. We write a LaTex
represention which can be used to print the function in a beatiful way:

class Polynomial:

def __init__(self, *coefficients):
""" input: coefficients are in the form a_n, ...a_1, a_0
"""
self.coefficients = list(coefficients) # tuple is turned i

nto a list

def __repr__(self):
"""
method to return the canonical string representation
of a polynomial.
"""
return "Polynomial" + str(tuple(self.coefficients))

def __str__(self):

def x_expr(degree):
if degree == 0:

res = ""
elif degree == 1:

res = "x"
else:

res = "x^"+str(degree)
return res

degree = len(self.coefficients) - 1
res = ""

for i in range(0, degree+1):
coeff = self.coefficients[i]
nothing has to be done if coeff is 0:
if abs(coeff) == 1 and i < degree:

Polynomial(1, 0, -4, 3, 0)
Polynomial(1, 0, -4, 3, 0)

POLYNOMIALS 573

1 in front of x shouldn't occur, e.g. x instead
of 1x

but we need the plus or minus sign:
res += f"{'+' if coeff>0 else '-'}{x_expr(degre

e-i)}"
elif coeff != 0:

res += f"{coeff:+g}{x_expr(degree-i)}"
return res.lstrip('+') # removing leading '+'

polys = [Polynomial(1, 0, -4, 3, 0),
Polynomial(2, 0),
Polynomial(4, 1, -1),
Polynomial(3, 0, -5, 2, 7),
Polynomial(-42)]

output suitable for usage in LaTeX:
for count, poly in enumerate(polys):

print(f"$p_{count} = {str(poly)}$")

If we use this in LaTeX it will look like this:

p0 = x4 − 4x2 + 3x

p1 = 2x

p2 = 4x2 + x − 1

p3 = 3x4 − 5x2 + 2x + 7

p4 = − 42

So far, we have defined polynomials, but what we actually need are polynomial functions. For this purpose,
we turn instances of the Polynomial class into callables by defining the call method.

class Polynomial:
def __init__(self, *coefficients):

$p_0 = x^4-4x^2+3x$
$p_1 = 2x$
$p_2 = 4x^2+x-1$
$p_3 = 3x^4-5x^2+2x+7$
$p_4 = -42$

POLYNOMIALS 574

""" input: coefficients are in the form a_n, ...a_1, a_0
"""
self.coefficients = list(coefficients) # tuple is turned i

nto a list

The __repr__ and __str__ method can be included here,
but is not necessary for the immediately following code

def __call__(self, x):
res = 0
for index, coeff in enumerate(self.coefficients[::-1]):

res += coeff * x** index
return res

It is possible now to call an instance of our class like a function. We call it with an argument and the instance,
- which is a callable, - behaves like a polynomial function:

p = Polynomial(3, 0, -5, 2, 1)
print(p)

for x in range(-3, 3):
print(x, p(x))

Just for fun, let us plot the previously defined function:

import matplotlib.pyplot as plt
X = np.linspace(-1.5, 1.5, 50, endpoint=True)
F = p(X)
plt.plot(X, F)

plt.show()

<__main__.Polynomial object at 0x7fd38cd9d250>
-3 193
-2 25
-1 -3
0 1
1 1
2 33

POLYNOMIALS 575

Before we further refine our class, let us use a numerically more efficient variant for the calculation of
polynomials. We will use this algorithm in our __call__ method. We introduced this variant in our
chapter on decorators.

Every polynomial

f(x) = ∑n
k = 0

ak ⋅ xk

can be also written in the form

f(x) = (anx + xn − 1)x + ⋅ + a1)x + a0

To emperically see that they are equivalent, we rewrite our class definition, but call it Polynomial2 so
that we can use both versions:

class Polynomial2:
def __init__(self, *coefficients):

""" input: coefficients are in the form a_n, ...a_1, a_0
"""
self.coefficients = list(coefficients) # tuple is turned i

nto a list

The __repr__ and __str__ method can be included here,
but is not necessary for the immediately following code

def __call__(self, x):
res = 0
for coeff in self.coefficients:

res = res * x + coeff

POLYNOMIALS 576

https://www.python-course.eu/python3_decorators.php

return res

We will test both classes by comparing the results:

p1 = Polynomial(-4, 3, 0)
p2 = Polynomial2(-4, 3, 0)
res = all((p1(x)==p2(x) for x in range(-10, 10)))
print(res)

It is possible to define addition and subtractions for polynomials. All we have to do is to add or subtract the
coefficients with the same exponents from both polynomials.

If we have polynomial functions f(x) = ∑n
k = 0

ak ⋅ xk and g(x) = ∑n
k = 0

bk ⋅ xk, the addition is defined as

(f + g)(x) =

n

∑
k = 0

(ak + bk) ⋅ xk

and correspondingly subtraction is defined as

(f − g)(x) =

n

∑
k = 0

(ak − bk) ⋅ xk

Before we can add the methods __add__ and __sub__, which are necessary for addition and subtraction, we
add a generatur zip_longest(). It works similar to zip for two parameters, but it does not stop if one of the
iterators is exhausted but uses "fillvalue" instead.

def zip_longest(iter1, iter2, fillvalue=None):
for i in range(max(len(iter1), len(iter2))):

if i >= len(iter1):
yield (fillvalue, iter2[i])

elif i >= len(iter2):
yield (iter1[i], fillvalue)

else:
yield (iter1[i], iter2[i])

i += 1

p1 = (2,)
p2 = (-1, 4, 5)
for x in zip_longest(p1, p2, fillvalue=0):

print(x)

True

POLYNOMIALS 577

We will add this generator to our class as a static method. We are now capable of adding the __add__ and
__sub__ methods as well. We will need the generator zip_longest from itertools. zip_longest
takes and arbitrary number of iterables and a keyword parameter fillvalue . It creates an iterator that
aggregates elements from each of the iterables. If the iterables are of uneven length, missing values are filled-
in with fillvalue. Iteration continues until the longest iterable is exhausted.

import numpy as np
import matplotlib.pyplot as plt
from itertools import zip_longest

class Polynomial:
def __init__(self, *coefficients):

""" input: coefficients are in the form a_n, ...a_1, a_0
"""
self.coefficients = list(coefficients) # tuple is turned i

nto a list

def __repr__(self):
"""
method to return the canonical string representation
of a polynomial.

"""
return "Polynomial" + str(self.coefficients)

def __call__(self, x):
res = 0
for coeff in self.coefficients:

res = res * x + coeff
return res

def degree(self):
return len(self.coefficients)

def __add__(self, other):
c1 = self.coefficients[::-1]
c2 = other.coefficients[::-1]
res = [sum(t) for t in zip_longest(c1, c2, fillvalue=0)]
return Polynomial(*res[::-1])

(2, -1)
(0, 4)
(0, 5)

POLYNOMIALS 578

def __sub__(self, other):
c1 = self.coefficients[::-1]
c2 = other.coefficients[::-1]

res = [t1-t2 for t1, t2 in zip_longest(c1, c2, fillvalu
e=0)]

return Polynomial(*res[::-1])

p1 = Polynomial(4, 0, -4, 3, 0)
p2 = Polynomial(-0.8, 2.3, 0.5, 1, 0.2)

p_sum = p1 + p2
p_diff = p1 - p2

X = np.linspace(-3, 3, 50, endpoint=True)
F1 = p1(X)
F2 = p2(X)
F_sum = p_sum(X)
F_diff = p_diff(X)
plt.plot(X, F1, label="F1")
plt.plot(X, F2, label="F2")
plt.plot(X, F_sum, label="F_sum")
plt.plot(X, F_diff, label="F_diff")

plt.legend()
plt.show()

POLYNOMIALS 579

It is incredibly easy to add differentiation to our class. Mathematically, it is defined as

f ′ (x) =

n

∑
k = 0

k ⋅ ak ⋅ xk − 1

if

f(x) =

n

∑
k = 0

ak ⋅ xk

This can be easily implemented in our method 'derivative':

import numpy as np
import matplotlib.pyplot as plt

class Polynomial:

def __init__(self, *coefficients):
""" input: coefficients are in the form a_n, ...a_1, a_0
"""
self.coefficients = list(coefficients) # tuple is turned i

nto a list

def __repr__(self):
"""
method to return the canonical string representation
of a polynomial.

"""
return "Polynomial" + str(self.coefficients)

def __call__(self, x):
res = 0
for coeff in self.coefficients:

res = res * x + coeff
return res

def degree(self):

POLYNOMIALS 580

return len(self.coefficients)

def __add__(self, other):
c1 = self.coefficients[::-1]
c2 = other.coefficients[::-1]
res = [sum(t) for t in zip_longest(c1, c2, fillvalue=0)]
return Polynomial(*res)

def __sub__(self, other):
c1 = self.coefficients[::-1]
c2 = other.coefficients[::-1]

res = [t1-t2 for t1, t2 in zip_longest(c1, c2, fillvalu
e=0)]

return Polynomial(*res)

def derivative(self):
derived_coeffs = []
exponent = len(self.coefficients) - 1
for i in range(len(self.coefficients)-1):

derived_coeffs.append(self.coefficients[i] * exponent)
exponent -= 1

return Polynomial(*derived_coeffs)

def __str__(self):

def x_expr(degree):
if degree == 0:

res = ""
elif degree == 1:

res = "x"
else:

res = "x^"+str(degree)
return res

degree = len(self.coefficients) - 1
res = ""

for i in range(0, degree+1):
coeff = self.coefficients[i]
nothing has to be done if coeff is 0:

POLYNOMIALS 581

if abs(coeff) == 1 and i < degree:
1 in front of x shouldn't occur, e.g. x instead

of 1x
but we need the plus or minus sign:
res += f"{'+' if coeff>0 else '-'}{x_expr(degre

e-i)}"
elif coeff != 0:

res += f"{coeff:+g}{x_expr(degree-i)}"
return res.lstrip('+') # removing leading '+'

p = Polynomial(-0.8, 2.3, 0.5, 1, 0.2)

p_der = p.derivative()

X = np.linspace(-2, 3, 50, endpoint=True)
F = p(X)
F_derivative = p_der(X)
plt.plot(X, F, label="F")
plt.plot(X, F_derivative, label="F_der")

plt.legend()
plt.show()

Playing around a little bit:

p = Polynomial(1, 2, -3, 4, -55)

POLYNOMIALS 582

p2 = Polynomial(1, 2, 3)

p_der = p.derivative()

print(p)
print(p_der)
print(p2)

p3 = p + p2

print(p3)
x^4+2x^3-3x^2+4x-55
4x^3+6x^2-6x+4
x^2+2x+3
-52x^4+6x^3-2x^2+2x+1

POLYNOMIALS 583

S L O T S

AVOIDING DYNAMICALLY CREATED ATTRIBUTES

The attributes of objects are stored in a dictionary
__dict__ . Like any other dictionary, a dictionary used

for attribute storage doesn't have a fixed number of
elements. In other words, you can add elements to
dictionaries after they are defined, as we have seen in our
chapter on dictionaries. This is the reason, why you can
dynamically add attributes to objects of classes that we
have created so far:

class A(object):
pass

a = A()
a.x = 66
a.y = "dynamically created attribut
e"

The dictionary containing the attributes of "a" can be
accessed like this:

a.__dict__

You might have wondered that you can dynamically add
attributes to the classes, we have defined so far, but that
you can't do this with built-in classes like 'int', or 'list':

x = 42
x.a = "not possible to do it"

Output: {'x': 66, 'y': 'dynamically cr
eated attribute'}

AttributeError Traceback (most recent call last)
<ipython-input-3-8c5f7956a976> in <module>

1 x = 42
----> 2 x.a = "not possible to do it"
AttributeError: 'int' object has no attribute 'a'

SLOTS 584

lst = [34, 999, 1001]
lst.a = "forget it"

If we generated a class in which usually only a few instances are needed in a program, - such as the Function
class, - the advantages outweigh the disadvantages. The additional storage space for the dictionary brings us
significant advantages for the design of our software. However, as soon as a high number of instances of a
class must be generated in a program, the cost-benefit ratio can quickly reverse. The additionally required
storage space can adversely affect or even prevent the execution of the program.

Python's slots are a nice way to work around this space consumption problem. Instead of having a dynamic
dict dictionary that allows adding attributes to objects dynamically, slots provide a static structure which

prohibits additions after the creation of an instance.

When we design a class, we can use slots to prevent the dynamic creation of attributes. To define slots, you
have to define a list with the name __slots__ . The list has to contain all the attributes, you want to use.
Anything not in this list cannot be used as an attribute. We demonstrate this in the following class, in which
the __slots__ list contains only the name for an attribute val :

class S(object):
__slots__ = ['val']

def __init__(self, v):
self.val = v

x = S(42)
print(x.val)

x.new = "not possible"

AttributeError Traceback (most recent call last)
<ipython-input-4-df06616479b6> in <module>

1 lst = [34, 999, 1001]
----> 2 lst.a = "forget it"
AttributeError: 'list' object has no attribute 'a'

SLOTS 585

If we start this program, we can see, that it is not possible to create dynamically a new attribute. We fail to
create an attribute "new".

We mentioned in the beginning that slots are preventing a waste of space with objects. Since Python 3.3 this
advantage is not as impressive any more. With Python 3.3 Key-Sharing Dictionaries are used for the storage of
objects. The attributes of the instances are capable of sharing part of their internal storage between each other,
i.e. the part which stores the keys and their corresponding hashes. This helps reducing the memory
consumption of programs, which create many instances of non-builtin types.

42

AttributeError Traceback (most recent call last)
<ipython-input-5-58aeffbcf9f0> in <module>

10 print(x.val)
11

---> 12 x.new = "not possible"
AttributeError: 'S' object has no attribute 'new'

SLOTS 586

C L A S S E S A N D C L A S S C R E A T I O N

BEHIND THE SCENES: RELATIONSHIP BETWEEN CLASS AND TYPE

In this chapter of our tutorial, we will
provide you with a deeper insight into the
magic happening behind the scenes, when
we are defining a class or creating an
instance of a class. You may ask yourself:
"Do I really have to learn theses
additional details on object oriented
programming in Python?" Most probably
not, or you belong to the few people who
design classes at a very advanced level.

First, we will concentrate on the
relationship between type and class.
While defining classes so far, you may
have asked yourself, what is happening
"behind the lines". We have already seen,
that applying "type" to an object returns
the class of which the object is an
instance of:

x = [4, 5, 9]
y = "Hello"
print(type(x), type(y))

If you apply type on the name of a class itself, you get the class "type" returned.

print(type(list), type(str))

This is similar to applying type on type(x) and type(y):

x = [4, 5, 9]
y = "Hello"
print(type(x), type(y))
print(type(type(x)), type(type(y)))

<class 'list'> <class 'str'>

<class 'type'> <class 'type'>

CLASSES AND CLASS CREATION 587

A user-defined class (or the class "object") is an instance of the class "type". So, we can see, that classes are
created from type. In Python3 there is no difference between "classes" and "types". They are in most cases
used as synonyms.

The fact that classes are instances of a class "type" allows us to program metaclasses. We can create classes,
which inherit from the class "type". So, a metaclass is a subclass of the class "type".

Instead of only one argument, type can be called with three parameters:

type(classname, superclasses, attributes_dict)

If type is called with three arguments, it will return a new type object. This provides us with a dynamic form
of the class statement.

• "classname" is a string defining the class name and becomes the name attribute;
• "superclasses" is a list or tuple with the superclasses of our class. This list or tuple will become

the bases attribute;
• the attributes_dict is a dictionary, functioning as the namespace of our class. It contains the

definitions for the class body and it becomes the dict attribute.

Let's have a look at a simple class definition:

class A:
pass

x = A()
print(type(x))

We can use "type" for the previous class defintion as well:

A = type("A", (), {})
x = A()
print(type(x))

Generally speaking, this means, that we can define a class A with

type(classname, superclasses, attributedict)

When we call "type", the call method of type is called. The call method runs two other methods: new and init:

<class 'list'> <class 'str'>
<class 'type'> <class 'type'>

<class '__main__.A'>

<class '__main__.A'>

CLASSES AND CLASS CREATION 588

type.__new__(typeclass, classname, superclasses, attributedict)

type.__init__(cls, classname, superclasses, attributedict)

The new method creates and returns the new class object, and after this, the init method initializes the newly
created object.

class Robot:
counter = 0

def __init__(self, name):
self.name = name

def sayHello(self):
return "Hi, I am " + self.name

def Rob_init(self, name):
self.name = name

Robot2 = type("Robot2",
(),
{"counter":0,
"__init__": Rob_init,
"sayHello": lambda self: "Hi, I am " + self.name})

x = Robot2("Marvin")
print(x.name)
print(x.sayHello())

y = Robot("Marvin")
print(y.name)
print(y.sayHello())

print(x.__dict__)
print(y.__dict__)
Marvin
Hi, I am Marvin
Marvin
Hi, I am Marvin
{'name': 'Marvin'}
{'name': 'Marvin'}

CLASSES AND CLASS CREATION 589

The class definitions for Robot and Robot2 are syntactically completely different, but they implement
logically the same class.

What Python actually does in the first example, i.e. the "usual way" of defining classes, is the following:
Python processes the complete class statement from class Robot to collect the methods and attributes of Robot
to add them to the attributes_dict of the type call. So, Python will call type in a similar or the same way as we
did in Robot2.

CLASSES AND CLASS CREATION 590

O N T H E R O A D T O M E T A C L A S S E S

MOTIVATION FOR METACLASSES

In this chapter of our tutorial we want to provide some incentives or motivation for the use of metaclasses. To
demonstrate some design problems, which can be solved by metaclasses, we will introduce and design a bunch
of philosopher classes. Each philosopher class (Philosopher1, Philosopher2, and so on) need the same "set" of
methods (in our example just one, i.e. "the_answer") as the basics for his or her pondering and brooding. A
stupid way to implement the classes would be having the same code in every philospher class:

class Philosopher1(object):
def the_answer(self, *args):

return 42

class Philosopher2(object):
def the_answer(self, *args):

return 42

class Philosopher3(object):
def the_answer(self, *args):

return 42

ON THE ROAD TO METACLASSES 591

plato = Philosopher1()
print (plato.the_answer())

kant = Philosopher2()
let's see what Kant has to say :-)
print (kant.the_answer())

We can see that we have multiple copies of the method "the_answer". This is error prone and tedious to
maintain, of course.

From what we know so far, the easiest way to accomplish our goal without creating redundant code would be
designing a base, which contains "the_answer" as a method. Now each Philosopher class inherits from this
base class:

class Answers(object):
def the_answer(self, *args):

return 42

class Philosopher1(Answers):
pass

class Philosopher2(Answers):
pass

class Philosopher3(Answers):
pass

plato = Philosopher1()
print plato.the_answer()

kant = Philosopher2()
let's see what Kant has to say :-)
print kant.the_answer()

The way we have designed our classes, each Philosopher class will always have a method "the_answer". Let's
assume, we don't know a priori if we want or need this method. Let's assume that the decision, if the classes
have to be augmented, can only be made at runtime. This decision might depend on configuration files, user

42
42

42
42

ON THE ROAD TO METACLASSES 592

input or some calculations.

the following variable would be set as the result of a runtime c
alculation:
x = raw_input("Do you need 'the answer'? (y/n): ")
if x=="y":

required = True
else:

required = False
def the_answer(self, *args):

return 42

class Philosopher1(object):
pass

if required:
Philosopher1.the_answer = the_answer

class Philosopher2(object):
pass

if required:
Philosopher2.the_answer = the_answer

class Philosopher3(object):
pass

if required:
Philosopher3.the_answer = the_answer

plato = Philosopher1()
kant = Philosopher2()

let's see what Plato and Kant have to say :-)
if required:

print kant.the_answer()
print plato.the_answer()

else:
print "The silence of the philosphers"

Even though this is another solution to our problem, there are still some serious drawbacks. It's error-prone,

Do you need 'the answer'? (y/n): y
42
42

ON THE ROAD TO METACLASSES 593

because we have to add the same code to every class and it seems likely that we might forget it. Besides this
it's getting hardly manageable and maybe even confusing, if there are many methods we want to add.

We can improve our approach by defining a manager function and avoiding redundant code this way. The
manager function will be used to augment the classes conditionally.

the following variable would be set as the result of a runtime c
alculation:
x = raw_input("Do you need 'the answer'? (y/n): ")
if x=="y":

required = True
else:

required = False

def the_answer(self, *args):
return 42

manager function
def augment_answer(cls):

if required:
cls.the_answer = the_answer

class Philosopher1(object):
pass

augment_answer(Philosopher1)

class Philosopher2(object):
pass

augment_answer(Philosopher2)

class Philosopher3(object):
pass

augment_answer(Philosopher3)

plato = Philosopher1()
kant = Philosopher2()

let's see what Plato and Kant have to say :-)
if required:

print kant.the_answer()
print plato.the_answer()

ON THE ROAD TO METACLASSES 594

else:
print "The silence of the philosphers"

This is again useful to solve our problem, but we, i.e. the class designers, must be careful not to forget to call
the manager function "augment_answer". The code should be executed automatically. We need a way to make
sure that "some" code might be executed automatically after the end of a class definition.

the following variable would be set as the result of a runtime c
alculation:
x = raw_input("Do you need 'the answer'? (y/n): ")
if x=="y":

required = True
else:

required = False
def the_answer(self, *args):

return 42

def augment_answer(cls):
if required:

cls.the_answer = the_answer
we have to return the class now:
return cls

@augment_answer
class Philosopher1(object):

pass
@augment_answer
class Philosopher2(object):

pass
@augment_answer
class Philosopher3(object):

pass
plato = Philosopher1()
kant = Philosopher2()

let's see what Plato and Kant have to say :-)
if required:

print kant.the_answer()

Do you need 'the answer'? (y/n): y
42
42

ON THE ROAD TO METACLASSES 595

print plato.the_answer()
else:

print "The silence of the philosphers"

Metaclasses can also be used for this purpose as we will learn in the next chapter.

Do you need 'the answer'? (y/n): y
42
42

ON THE ROAD TO METACLASSES 596

M E T A C L A S S E S

A metaclass is a class whose instances are classes. Like an "ordinary" class defines the behavior of the
instances of the class, a metaclass defines the behavior of classes and their instances.

Metaclasses are not supported by every object oriented programming language. Those programming language,
which support metaclasses, considerably vary in way they implement them. Python is supporting them.

Some programmers see metaclasses in Python as "solutions waiting or looking for a problem".

There are numerous use cases for metaclasses. Just to name a few:

• logging and profiling
• interface checking
• registering classes at creation time
• automatically adding new methods
• automatic property creation
• proxies
• automatic resource locking/synchronization.

DEFINING METACLASSES

Principially, metaclasses are defined like any other Python class, but they are classes that inherit from "type".
Another difference is, that a metaclass is called automatically, when the class statement using a metaclass

METACLASSES 597

ends. In other words: If no "metaclass" keyword is passed after the base classes (there may be no base classes
either) of the class header, type() (i.e. __call__ of type) will be called. If a metaclass keyword is used, on the
other hand, the class assigned to it will be called instead of type.

Now we create a very simple metaclass. It's good for nothing, except that it will print the content of its
arguments in the __new__ method and returns the results of the type.__new__ call:

class LittleMeta(type):
def __new__(cls, clsname, superclasses, attributedict):

print("clsname: ", clsname)
print("superclasses: ", superclasses)
print("attributedict: ", attributedict)
return type.__new__(cls, clsname, superclasses, attributed

ict)

We will use the metaclass "LittleMeta" in the following example:

class S:
pass

class A(S, metaclass=LittleMeta):
pass

a = A()

We can see LittleMeta.__new__ has been called and not type.__new__ .

Resuming our thread from the last chapter: We define a metaclass EssentialAnswers which is capable
of automatically including our augment_answer method:

x = input("Do you need the answer? (y/n): ")
if x.lower() == "y":

required = True
else:

required = False

def the_answer(self, *args):

clsname: A
superclasses: (<class '__main__.S'>,)
attributedict: {'__module__': '__main__', '__qualname__': 'A'}

METACLASSES 598

return 42

class EssentialAnswers(type):
def __init__(cls, clsname, superclasses, attributedict):

if required:
cls.the_answer = the_answer

class Philosopher1(metaclass=EssentialAnswers):
pass

class Philosopher2(metaclass=EssentialAnswers):
pass

class Philosopher3(metaclass=EssentialAnswers):
pass

plato = Philosopher1()
print(plato.the_answer())

kant = Philosopher2()
let's see what Kant has to say :-)
print(kant.the_answer())

We have learned in our chapter "Type and Class Relationship" that after the class definition has been
processed, Python calls

type(classname, superclasses, attributes_dict)

This is not the case, if a metaclass has been declared in the header. That is what we have done in our previous
example. Our classes Philosopher1, Philosopher2 and Philosopher3 have been hooked to the metaclass
EssentialAnswers. That's why EssentialAnswer will be called instead of type:

EssentialAnswer(classname, superclasses, attributes_dict)

To be precise, the arguments of the calls will be set the the following values:

Do you need the answer? (y/n): y
42
42

METACLASSES 599

EssentialAnswer('Philopsopher1',
(),
{'__module__': '__main__', '__qualname__': 'Philoso

pher1'})

The other philosopher classes are treated in an analogue way.

CREATING SINGLETONS USING METACLASSES

The singleton pattern is a design pattern that restricts the instantiation of a class to one object. It is used in
cases where exactly one object is needed. The concept can be generalized to restrict the instantiation to a
certain or fixed number of objects. The term stems from mathematics, where a singleton, - also called a unit
set -, is used for sets with exactly one element.

class Singleton(type):
_instances = {}
def __call__(cls, *args, **kwargs):

if cls not in cls._instances:
cls._instances[cls] = super(Singleto

n, cls).__call__(*args, **kwa
rgs)

return cls._instances[cls]

class SingletonClass(metaclass=Singleton):
pass

class RegularClass():
pass

x = SingletonClass()
y = SingletonClass()
print(x == y)

x = RegularClass()
y = RegularClass()
print(x == y)
True
False

METACLASSES 600

CREATING SINGLETONS USING METACLASSES

Alternatively, we can create Singleton classes by inheriting from a Singleton class, which can be defined like
this:

class Singleton(object):
_instance = None
def __new__(cls, *args, **kwargs):

if not cls._instance:
cls._instance = object.__new__(cls, *args, **kwargs)

return cls._instance

class SingletonClass(Singleton):
pass

class RegularClass():
pass

x = SingletonClass()
y = SingletonClass()
print(x == y)

x = RegularClass()
y = RegularClass()
print(x == y)
True
False

METACLASSES 601

C O U N T M E T H O D C A L L S U S I N G A
M E T A C L A S S

INTRODUCTION

After you have hopefully gone through our chapter Introduction into Metaclasses you may have asked
yourself about the possible use cases for metaclasses. There are some interesting use cases and it's not - like
some say - a solution waiting for a problem. We have mentioned already some examples.

In this chapter of our tutorial on Python, we want to elaborate an example metaclass, which will decorate the
methods of the subclass. The decorated function returned by the decorator makes it possible to count the
number of times each method of the subclass has been called.

This is usually one of the tasks, we expect from a profiler. So we can use this metaclass for simple profiling
purposes. Of course, it will be easy to extend our metaclass for further profiling tasks.

PRELIMINARY REMARKS

Before we actually dive into the problem, we want to remind how we can access the attributes of a class. We
will demonstrate this with the list class. We can get the list of all the non private attributes of a class - in our
example the random class - with the following construct.

import random
cls = "random" # name of the class as a string

COUNT METHOD CALLS USING A METACLASS 602

https://www.python-course.eu/python3_metaclasses.php

all_attributes = [x for x in dir(eval(cls)) if not x.startswit
h("__")]
print(all_attributes)

Now, we are filtering the callable attributes, i.e. the public methods of the class.

methods = [x for x in dir(eval(cls)) if not x.startswith("__")
and callable(eval(cls + "." + x))]

print(methods)

Getting the non callable attributes of the class can be easily achieved by negating callable, i.e. adding "not":

non_callable_attributes = [x for x in dir(eval(cls)) if not x.star
tswith("__")

and not callable(eval(cls + "." +
x))]
print(non_callable_attributes)

In normal Python programming it is neither recommended nor necessary to apply methods in the following
way, but it is possible:

lst = [3,4]
list.__dict__["append"](lst, 42)

['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random', 'SG_MAGICC
ONST', 'SystemRandom', 'TWOPI', '_BuiltinMethodType', '_MethodTyp
e', '_Sequence', '_Set', '_acos', '_ceil', '_cos', '_e', '_exp',
'_inst', '_log', '_pi', '_random', '_sha512', '_sin', '_sqrt', '_t
est', '_test_generator', '_urandom', '_warn', 'betavariate', 'choi
ce', 'expovariate', 'gammavariate', 'gauss', 'getrandbits', 'getst
ate', 'lognormvariate', 'normalvariate', 'paretovariate', 'randin
t', 'random', 'randrange', 'sample', 'seed', 'setstate', 'shuffl
e', 'triangular', 'uniform', 'vonmisesvariate', 'weibullvariate']

['Random', 'SystemRandom', '_BuiltinMethodType', '_MethodType',
'_Sequence', '_Set', '_acos', '_ceil', '_cos', '_exp', '_log', '_s
ha512', '_sin', '_sqrt', '_test', '_test_generator', '_urandom',
'_warn', 'betavariate', 'choice', 'expovariate', 'gammavariate',
'gauss', 'getrandbits', 'getstate', 'lognormvariate', 'normalvaria
te', 'paretovariate', 'randint', 'random', 'randrange', 'sample',
'seed', 'setstate', 'shuffle', 'triangular', 'uniform', 'vonmisesv
ariate', 'weibullvariate']

['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'SG_MAGICCONST', 'TW
OPI', '_e', '_inst', '_pi', '_random']

COUNT METHOD CALLS USING A METACLASS 603

lst

Please note the remark from the Python documentation:

"Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply an
interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class."

A DECORATOR FOR COUNTING FUNCTION CALLS

Finally, we will begin designing the metaclass, which we have mentioned as our target in the beginning of this
chapter. It will decorate all the methods of its subclass with a decorator, which counts the number of calls. We
have defined such a decorator in our chapter Memoization and Decorators:

def call_counter(func):
def helper(*args, **kwargs):

helper.calls += 1
return func(*args, **kwargs)

helper.calls = 0
helper.__name__= func.__name__

return helper

We can use it in the usual way:

@call_counter
def f():

pass
print(f.calls)
for _ in range(10):

f()

print(f.calls)

Output: [3, 4, 42]

COUNT METHOD CALLS USING A METACLASS 604

https://www.python-course.eu/python3_memoization.php

It would be better if you add the alternative notation for decorating function. We will need this in our final
metaclass:

def f():
pass

f = call_counter(f)
print(f.calls)
for _ in range(10):

f()

print(f.calls)

THE "COUNT CALLS" METACLASS

Now we have all the necessary "ingredients" together to write our metaclass. We will include our call_counter
decorator as a staticmethod:

class FuncCallCounter(type):
""" A Metaclass which decorates all the methods of the

subclass using call_counter as the decorator
"""

@staticmethod
def call_counter(func):

""" Decorator for counting the number of function
or method calls to the function or method func

"""
def helper(*args, **kwargs):

helper.calls += 1
return func(*args, **kwargs)

helper.calls = 0
helper.__name__= func.__name__

return helper

0
10

0
10

COUNT METHOD CALLS USING A METACLASS 605

def __new__(cls, clsname, superclasses, attributedict):
""" Every method gets decorated with the decorator call_co

unter,
which will do the actual call counting

"""
for attr in attributedict:

if callable(attributedict[attr]) and not attr.startswi
th("__"):

attributedict[attr] = cls.call_counter(attributedi
ct[attr])

return type.__new__(cls, clsname, superclasses, attributed
ict)

class A(metaclass=FuncCallCounter):
def foo(self):

pass
def bar(self):

pass
if __name__ == "__main__":

x = A()
print(x.foo.calls, x.bar.calls)
x.foo()
print(x.foo.calls, x.bar.calls)
x.foo()
x.bar()
print(x.foo.calls, x.bar.calls)

0 0
1 0
2 1

COUNT METHOD CALLS USING A METACLASS 606

A B S T R A C T C L A S S E S

Abstract classes are classes that contain
one or more abstract methods. An abstract
method is a method that is declared, but
contains no implementation. Abstract
classes cannot be instantiated, and require
subclasses to provide implementations for
the abstract methods.

You can see this in the following
examples:

class AbstractClass:
def do_something(sel

f):
pass

class B(AbstractClass):
pass

a = AbstractClass()
b = B()

If we start this program, we see that this is not an abstract class, because:

• we can instantiate an instance from
• we are not required to implement do_something in the class defintition of B

Our example implemented a case of simple inheritance which has nothing to do with an abstract class. In fact,
Python on its own doesn't provide abstract classes. Yet, Python comes with a module which provides the
infrastructure for defining Abstract Base Classes (ABCs). This module is called - for obvious reasons - abc.

The following Python code uses the abc module and defines an abstract base class:

from abc import ABC, abstractmethod

class AbstractClassExample(ABC):
def __init__(self, value):

self.value = value

ABSTRACT CLASSES 607

super().__init__()

@abstractmethod
def do_something(self):

pass

We will define now a subclass using the previously defined abstract class. You will notice that we haven't
implemented the do_something method, even though we are required to implement it, because this method is
decorated as an abstract method with the decorator "abstractmethod". We get an exception that DoAdd42 can't
be instantiated:

class DoAdd42(AbstractClassExample):
pass

x = DoAdd42(4)

We will do it the correct way in the following example, in which we define two classes inheriting from our
abstract class:

class DoAdd42(AbstractClassExample):
def do_something(self):

return self.value + 42

class DoMul42(AbstractClassExample):
def do_something(self):

return self.value * 42

x = DoAdd42(10)
y = DoMul42(10)

print(x.do_something())
print(y.do_something())

TypeError Traceback (most recent call last)
<ipython-input-4-2bcc42ab0b46> in <module>

2 pass
3

----> 4 x = DoAdd42(4)

TypeError: Can't instantiate abstract class DoAdd42 with abstract methods d
o_something

ABSTRACT CLASSES 608

A class that is derived from an abstract class cannot be instantiated unless all of its abstract methods are
overridden.

You may think that abstract methods can't be implemented in the abstract base class. This impression is
wrong: An abstract method can have an implementation in the abstract class! Even if they are implemented,
designers of subclasses will be forced to override the implementation. Like in other cases of "normal"
inheritance, the abstract method can be invoked with super() call mechanism. This enables providing some
basic functionality in the abstract method, which can be enriched by the subclass implementation.

from abc import ABC, abstractmethod

class AbstractClassExample(ABC):
@abstractmethod
def do_something(self):

print("Some implementation!")

class AnotherSubclass(AbstractClassExample):
def do_something(self):

super().do_something()
print("The enrichment from AnotherSubclass")

x = AnotherSubclass()
x.do_something()

52
420

Some implementation!
The enrichment from AnotherSubclass

ABSTRACT CLASSES 609

